Production industrielle de bioéthanol

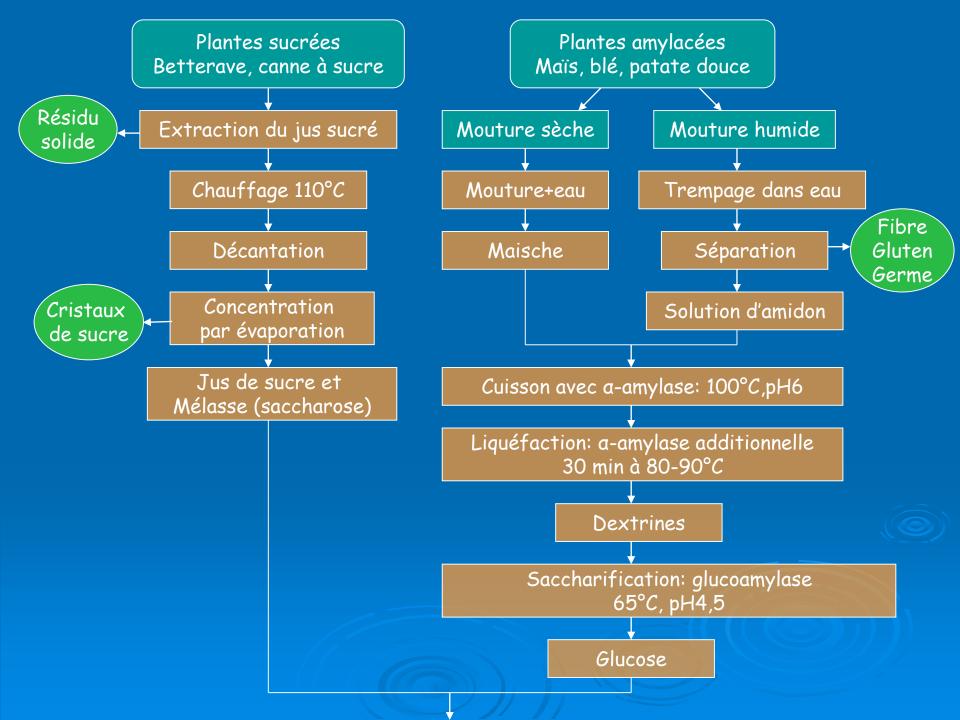
Avril 2020

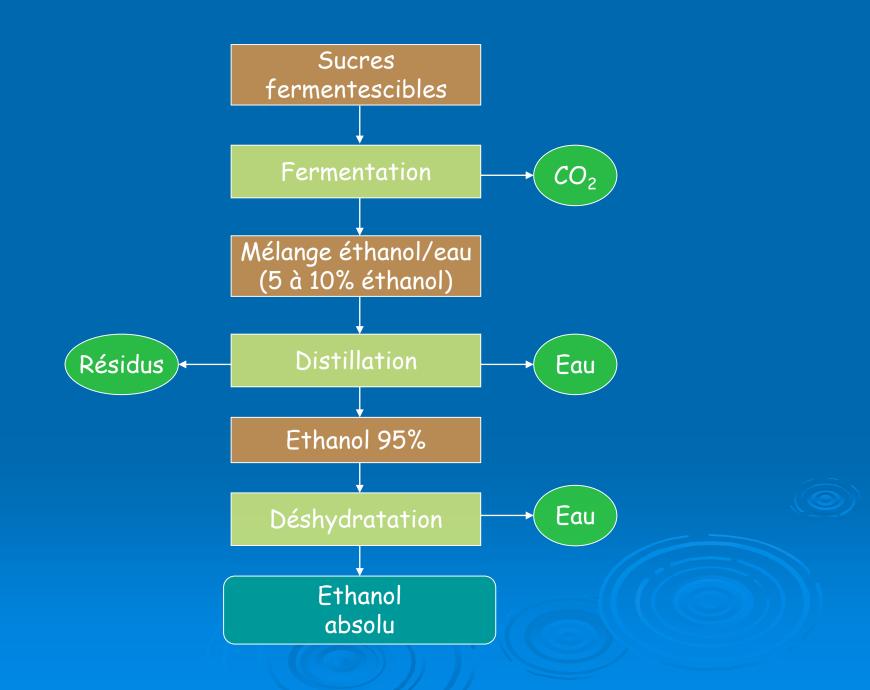
Bioéthanol

Définition:

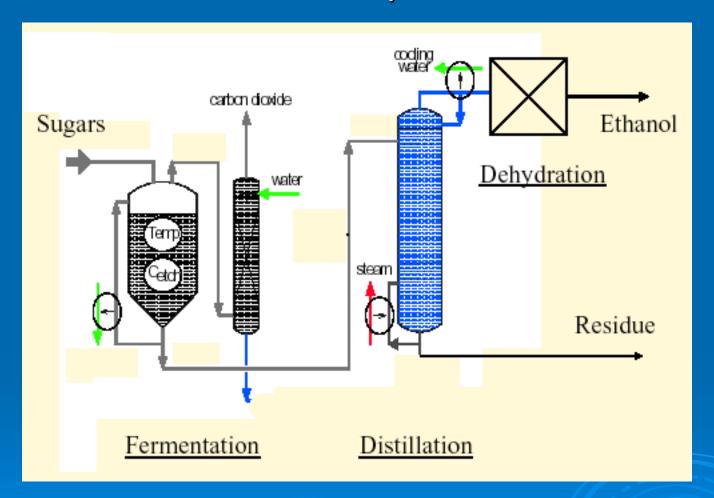
- éthanol produit à partir de biomasse
- produit de substitution aux carburants d'orgine fossile
- énergie renouvelable

Buts:


- être indépendant du marché pétrolier
 - · épuisement des ressources fossiles
 - · limiter le coût de l'importation de pétrole
- réduire les émissions de CO2



Plan


- I. Production de bioéthanol à partir de biomasse sucrée ou amylacée
- II. Production de bioéthanol à partir de biomasse lignocellulosique
- III. Aspects écologiques et économiques

I. Production de bioéthanol à partir de biomasse sucrée ou amylacée

Schéma du procédé

Fermentation

- Choix du microorganisme : levures telles que Saccharomyces cerevisiae, densité cellulaire élevée (8-17% v/v).
- > Sources nutritives : sucres fermentescibles, azote, (acides aminés).
- > Conditions de culture optimales : $32^{\circ}C$, pendant 48 à 72h, pH4, décroissant au cours du temps (formation de CO_2), sous agitation.
- > Procédé : en batch ou en système continu.
- ightharpoonup Réaction catalysée : $C_6H_{12}O_6 \longrightarrow 2 C_2H_5OH + 2 CO_2 + H_2O + 25,4 kcal$
- Inhibition de la croissance des bactéries contaminantes : diminution du pH, antibiotiques.
- > SFS : Saccharification et Fermentation Simultanées

Unités de production d'éthanol

Production: 925 L/jour

Colonne de distillation

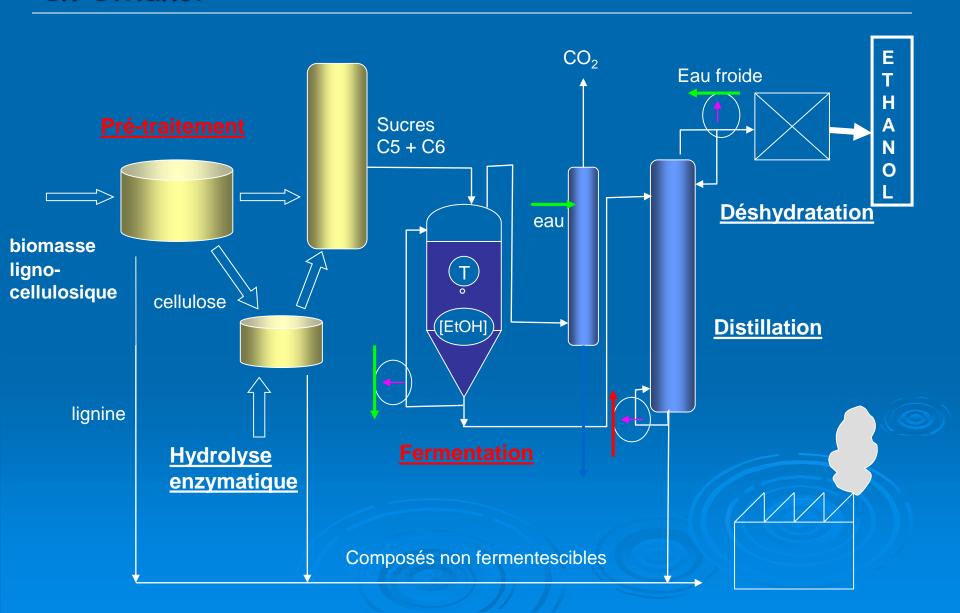
Déshydratation

Tamis moléculaire:

zéolites (aluminosilicate)

structure poreuse avec des cavités, qui adsorbe l'eau et laisse passer l'éthanol

Valorisation des co-produits


Etape	Plantes sucrées	Plantes amylacées Mouture sèche	Plantes amylacées Mouture humide
Extraction	>Résidu solide:		Gluten
	fibres (bagasse ou pulpe)		Fibres
	>Cristaux de sucre		Germe
Fermentation	CO ₂	CO2	CO ₂
	Levure	Levure	Levure
Distillation	Vinasse	Résidu liquide et solide: fibres,	Résidu liquide
		germe, gluten, amidon non fermenté	Amidon non fermenté

II. Production de bioéthanol à partir de biomasse lignocellulosique

Biomasse lignocellulosique: 50% biomasse mondiale

- Espèces ligneuses (peuplier, pin...)
- Co-produits de l'agriculture (paille de céréales, tiges de maïs, bagasse...)
- Sous-produits forestiers
- Sous-produits des industries de papeterie et d'agroalimentaire
- Déchets urbains solides (vieux papiers, journaux...)
 - 3 fractions principales: cellulose (35-50%)
 - hémicellulose (20-30%)
 - lignine (15-25%)

Schéma de conversion de la biomasse lignocellulosique en éthanol

Prétraitement pour l'hydrolyse enzymatique

Buts:

- hydrolyse partielle ou complète de la fraction d'hémicelluloses
- extraction de la lignine en phase insoluble
- réduire le degré de polymérisation de la cellulose pour augmenter les surfaces accessibles par les enzymes

Procédés les plus prometteurs:

- Hydrolyse à l'acide dilué : chauffage en présence d'acide sulfurique dilué en proportion de 1 à 3% par rapport à la matière sèche lignocellulosique
- T<u>hermohydrolyse</u> : cuisson à l'eau sous forte pression en procédé discontinu
- <u>Explosion à la vapeur avec catalyse</u>: végétal porté rapidement à haute température par injection de vapeur sous pression et arrêt du traitement par décompression brutale;
 - en procédé continu ou discontinu

Tableau comparatif des différents procédés

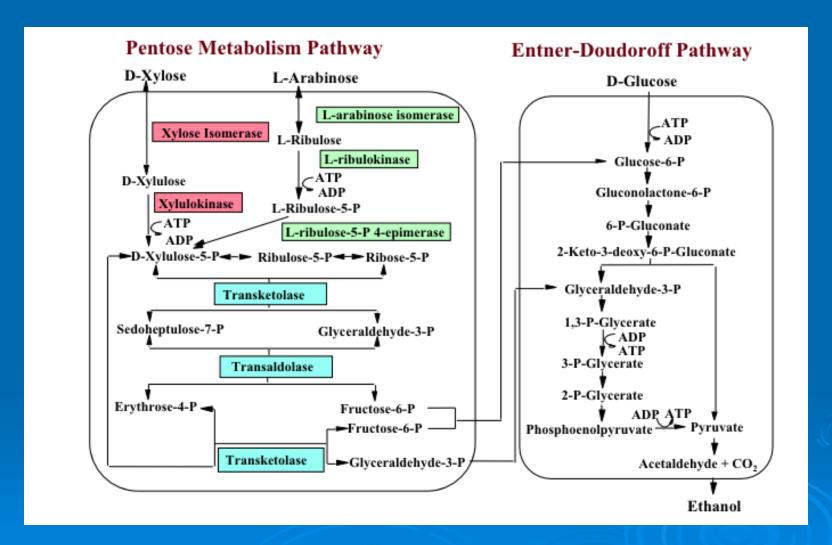
	Explosion à vapeur avec catalyse	Hydrolyse à l'acide dilué	Thermo- hydrolyse
Conditions opératoires	Batch ou continu 160-200° <i>C</i> 1 min à 10 min	Batch ou continu 150-180° <i>C</i> 5 min à 30 min	Batch 170-230° <i>C</i> 5 min à 1h
Présence d'inhibiteurs	Oui si conditions sévères	Peu: Furfural, acétate , hydroxyméthylfurfural	Peu
Etat	Nombreux pilotes (français, canadiens, italiens) Amélioration possible sur la résistance des matériaux	Pilotes industriels (NREL)	Pas de pilotes mais regain d'intérêt ces dernières années

NREL: National Renewable Energy Laboratory (U.S.)

Fermentation éthylique

Sucres fermentescibles obtenus après hydrolyse enzymatique de la cellulose:

- pentoses (essentiellement xylose et arabinose)
- disaccharides (cellobiose)
- glucose


Fermentation du glucose:

meilleurs rendements obtenus avec 5. cerevisiae: 0.47 g/g

Fermentation des pentoses: différentes approches

- expression de gènes bactériens ou levuriens permettant l'assimilation du xylose chez <u>S. cerevisiae</u>
- expression de gènes de Z. mobilis permettant d'améliorer la fermentation du glucose chez <u>E. coli</u>
- expression de gènes de *E. coli* permettant l'assimilation du xylose et de l'arabinose chez <u>Z. mobilis</u>, bactérie éthanolagène

Souche recombinante Zymomonas mobilis AX

7 gènes introduits pour fermenter à la fois le xylose et l'arabinose

Souche recombinante Zymomonas mobilis AX

Avantages:

- fermentation du glucose anaérobie efficace (voie de Entner-Doudoroff)
- manipulations génétiques faciles
- bonne tolérance vis-à-vis de l'éthanol

Inconvénients:

- instabilité des souches recombinées
- pH de fermentation élevé: augmentation du risque de contaminations

Rendement:

Souche AX fermentant le xylose et l'arabinose : 0.5 g/g xylose

Améliorations possibles:

- tolérance acide lactique et acétate
- fermentation d'autres sucres (mannose et galactose)

Stratégies de fermentation

Fermentations séquentielle à 2 étages:

- 1er étage : souche E. coli incapable de fermenter le glucose

- 2ème étage : souche S. cerevisiae

Saccharification et Fermentation Simultanées (SFS): fermentation du glucose

- Hydrolyse enzymatique du cellulose et fermentation des sucres produits en une seule étape
- réduction des risques d'inhibition par les produits terminaux de l'hydrolyse réduction du coût des équipements (1 seul réacteur)
- activité optimale des cellulases à 50°C
 température optimale de fermentation des levures et bactéries = 35°C
 - utilisation de souches thermotolérantes

Améliorations avant application industrielle

Pré-traitement:

- limiter la formation de co-produits qui inhibent la fermentation éthylique (acétate, furfurals, phénols...)
- limiter l'utilisation de réactifs
- limiter la production de déchets

Hydrolyse enzymatique:

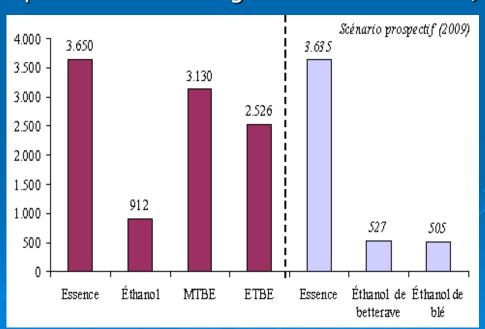
- diminuer le coût de production
- augmenter l'efficacité des enzymes et leur tolérance au glucose

Fermentation éthylique:

- développer des souches thermotolérantes et performantes (fort taux de production d'éthanol dans un minimum de temps)
- augmenter la stabilité des souches mutantes
- augmenter la tolérance des souches aux inhibiteurs et à l'éthanol

<u>Projet Européen:</u> **TIME** (Novembre 2002-Octobre 2005)
Technological Improvement for Ethanol Production from Lignocellulose

III. Aspects écologiques et économiques


Aspects écologiques

- Source d'énergie renouvelable
- Plus d'O2: meilleure combustion: moins de pollution atmosphérique
- Moins de composés cancérigènes

Pollutions	Effet du Bioéthanol
Gaz à effet de serre CO2, CH4, N2O	++
Monoxyde carbone CO	++
Hydrocarbures gazeux HC	++
Oxydes de souffre	++
Particules	0
Hydrocarbures aromatiques	++
Aldéhydes, cétones	(Pot catalytique)
Oxydes d'azote Nox	(Pot catalytique)
Fumées	0
Biodégradabilité	++
Pollution par les nitrates et les phytosanitaires	(Apports raisonnés / charte environnementale)

herbicides/fertilisants : pollution des eaux

Indicateur d'effet de serre (gramme équivalent CO2/kilogramme de carburant)

Aspects économiques

Avantages économiques

- Réduction de la dépendance énergétique
- Création d'emplois qualifiés et non qualifiés en zone rurale

Rendements

	Canne à sucre	Betterave	Maïs	Blé	Bois
Culture (t/ha)	80-100	60	8,3	5,5	12
Ethanol (hL/ha)	77,5	60	30	20	35
Ethanol (hL/t)	8,0	1	3,9	3,7	3

Coûts de production

- Production de la matière organique, production du bioéthanol + frais financiers
- Transport, distribution
- Bénéfices
- Taxes: TIPP (Taxe Intérieure sur les Produits Pétroliers), TVA 19,6%

Aspects économiques

Coûts comparés des filières bioéthanol et essence

	Ethanol Europe	Ethanol USA	Ethanol Brésil	Essence Brut 37,8 €/baril
€/L	0,4-0,6	0,23	0,17	0,24
€/GJ	19-29	10,6	8,3	9

Exonération partielle de TIPP pour compenser cette différence 2003 : taxe éthanol 20,92 €/hL ; essence 58,92 €/hL

Production d'éthanol dans le monde (2004)

	Monde	Brésil	USA	Europe-25	France
Culture	-	Canne à sucre	Maïs	-	Betterave, blé
Millions hL	420	154	113	4	1,2

France: 18000 ha blé, 12000 ha betterave (2002)

Conclusion

Filières de production actuelles:

- plantes amylacées
- plantes sucrées
- La matière entre en compétition avec la nourriture

Matières premières en cours d'évaluation: matières lignocellulosiques

Conversion en sucres fermentescibles difficile

Perspectives d'avenir:

valorisation du petit lait (déchets des industries fromagères)

□ Transformation du lactose en éthanol

Références

Publications

Bothast, R.J.; Schlicher, M.A. (2004) Biotechnological processes for conversion of corn into ethanol. *Appl Microbiol Biotechnol.* 67: 19-25.

Dien, B.S.; Cotta, M.A.; Jeffries, T.W. (2003) Bacteria engineered for fuel ethanol productions current status. *Appl Microbiol Biotechnol*. 63: 258-266.

Zaldivar, J.; Nielsen, J.; Olsson, L. (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. *Appl Microbiol Biotechnol.* 56: 17-34

Ogier, J.-C.; Ballerini, D.; Leygue, J.-P.; Rigal, L.; Pourquié, J. (1999) Production d'éthanol à partir de biomasse lignocellulosique. *Oil & Gas Science and Technology- Revue de l'IFP*, Vol. 54, No. 1, 67-94.

Wheals, A.E.; Basso, L.C.; Alves D.M.G.; Amorim H.V. (1999) Fuel ethanol after 25 years. Trends Biotechnol. 17: 482-7.

Références

Sites Internet

Arvalis - Institut du végétal Rapport de conférence de presse du 1er mars 2005 sur le bioéthanol http://www.arvalisinstitutduvegetal.fr/fr/fichier/communique/202_BIOETHANOL0205.pdf

Centre de Recherche en Economie et Droit de l'Energie, Université de Montpellier I Cahier de recherche « Les biocarburants face aux objectifs et aux contraintes des politiques énergétiques et agricoles », 24 janvier 2005 http://www.sceco.univ-montp1.fr/creden/Cahiers/cahier050154.pdf

Institut Français du Pétrole (IFP)
Panorama 2005 - Les biocarburants dans le monde
http://www.ifp.fr/IFP/fr/fichiers/cinfo/IFP-Panorama05_07-BiocarburantVF.pdf

Ming Zhan (May 2003). Zymomonas mobilis. Special topics session. Microbial Pentose Mentabolism. 25th Symposium on Biotechnology for Fuels and Chemicals. National Bioenergy Center. National Renewable Energy Laboratory http://www.eere.energy.gov/biomass/pdfs/34264.pdf

Planair

Développement d'une filière de carburant au bioéthanol - Rapport final de la phase d'investigations établi pour Alcosuisse, décembre 2002 http://www.etha-plus.ch/presse/presse1103/ETHA+_RES_Planair_Synth.pdf

Project TIME:

http://www.vtt.fi/virtual/timeproject/