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Introduction

The Universe is a book whose mathematics would be the language .....

This phrase from Galileo tends to be verified over time and the evolution
of mathematical theories. Thus we manage to describe more and more
phenomena of the universe whether physical, biological, ecological, economic
... by different laws and mathematical entities.

This handout contains the mathematics I course that I teach in the first
semester of the first year of science and technology. I want to point out
the principal mathematics tools of algebra and analysis that a student must
assimilate and learn. That is, this document can be used as a reference text
for undergraduates in the first year in Science and Technology who will be
facing mathematics problems and will be interested in learning techniques
to solve them.

The course is divided into six chapters cover the basic algebra and anal-
ysis, as Propositional Logic, Methods of Proof, Set Theory, Relations, Ap-
plications, The inverse Trigonometric Application, Real-valued Functions of
Real Variable, Finite Expansions, Vector Spaces and Linear Maps.

I want to inform the reader that I am currently working to improve and
expand this text.

Kesmia Mounira
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Chapter 1

Preliminaries

Number Sets
In mathematics very often we study sets whose elements are the real

numbers. Some special number sets which are frequently encountered are
defined as follow.

� N is the set of Natural numbers: N = {0, 1, 2, 3, ...}
� Z is the set of Integers: Z = {.....,−3,−2,−1, 0, 1, 2, 3, ...}
�D is the set of Decimal numbers: D =

{ p
10n , p ∈ Z, n ∈ N

}
Example: 1.234 = 1234

104
is a decimal number.

�Q is the set of Rational numbers: Q =
{
p
q , p ∈ Z, p ∈ Z

∗
}
.

Rational numbers are numbers that can be expressed as the
quotient of two integers (ie a fraction) with a denominator that
is not zero. Note that all terminating decimals or repeating
decimals (or periodic decimal expansion) are a rational numbers.

Examples:

1. 1
2 = 0.5 (terminating decimals).

2. 9
7 = 1, 28571428571428571428... = 1, 285714 (repeating decimals)

� = is the set of Irrational numbers which are not rational.

Examples: −
√

3,
√

2, π

� R is the set of Real numbers, numbers that can be
represented by any decimal expansion, limited or not.
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Example: 123.101001000100001....,etc.

� C is the set of Complex numbers Q = {a+ bi | a, b ∈ R}
Recall that a complex number is formed by adding a real

number to a real multiple of i, where i =
√
− 1.

We have N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C

� The set of Even numbers contains the elements 0,±2,±4,±6, ...
which are those of the form 2n for some integer n.
� The set of Odd numbers is the set of integers which are

not even. Hence odd numbers are ±1,±3,±5, ... which can be
written as 2n +1 for some integer n.

Absolute value
For real numbers x we define the absolute value of x to be

|x| =
{

x if x ≥ 0
−x if x < 0

Examples: | − 2| = 2, |
√

2| =
√

2, and |0| = 0.
Properties

• ∀x ∈ R, |x| ≥ 0.

• ∀x ∈ R,
√
x2 = |x|.

• ∀x ∈ R, |x|2 = x2.

• ∀x ∈ R,∀y ∈ R, |x · y| = |x| · |y| .

• ∀x ∈ R,∀y ∈ R, |x+ y| ≤ |x|+ |y| .

The greatest integer function

For real numbers x, the greatest integer function [x] gives the greatest
integer not greater than x.

Examples: [3.14] = 3, [−3.14] = −4, [0.7] = 0.

6



Chapter 2

Logic and mathematical
reasoning

2.1 Introduction

Formal logic (symbolic logic) In mathematics, the systematic study of rea-
soning is called formal logic. It analyzes the structure of ARGUMENTs, as
well as the methods and validity of mathematical deduction and proof.

The principles of logic can be attributed to ARISTOTLE (384–322 B.C.E.),
who wrote the first systematic treatise on the subject. He sought to identify
modes of inference that are valid by virtue of their structure, not their con-
tent. For example, “Green and blue are colors; therefore green is a color”
and “Cows and pigs are reptiles; therefore cows are reptiles” have the same
structure (“A and B, therefore A”), and any argument made via this struc-
ture is logically valid. (In particular, the second example is logically sound.)
This mode of thought allowed EUCLID (ca. 300–260 B.C.E.) to formal-
ize geometry, using deductive proofs to infer geometric truths from a small
collection of AXIOMs (self-evident truths).

No significant advance was made in the study of logic for the millennium
that followed. This period was mostly a time of consolidation and trans-
mission of the material from antiquity. The Renaissance, however, brought
renewed interest in the topic. Mathematical scholars of the time, Pierre
Hérigone and Johann Rahn in particular, developed means for representing
logical arguments with abbreviations and symbols, rather than words and
sentences. GOTTFRIED WILHELM LEIBNIZ (1646–1716) came to regard
logic as “universal mathematics.” He advocated the development of a “uni-
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versal language” or a “universal calculus” to quantify the entire process of
mathematical reasoning. He hoped to devise new mechanical symbolism
that would reduce errors in thinking to the equivalent of arithmetical errors.
(He later abandoned work on this project, assessing it too daunting a task
for a single man.)

In the mid-1800s GEORGE BOOLE succeeded in creating a purely sym-
bolic approach to propositional logic, that part which deals with inferences
involving simple declarative sentences (statements) joined by the connec-
tives:

not, and, or, if . . . then . . . , iff

(These are called the NEGATION, CONJUNCTION, DISJUNCTION,
CONDITIONAL, and the BICONDITIONAL, respectively.) He successfully
applied it to mathematics, thereby making a significant step to achieving
Leibniz’s goal.

In 1879 the German mathematician and philosopher Gottlob Frege con-
structed a symbolic system for predicate logic. This generalizes propositional
logic by including QUANTIFIERs: statements using words such as some,
all, and, no. (For example, “All men are mortal” as opposed to “This man
is mortal.”) At the turn of the century DAVID HILBERT sought to devise
a complete, consistent formulation of all of mathematics using a small col-
lection of symbols with well-defined meanings. English mathematician and
philosopher BERTRAND RUSSELL, in collaboration with his colleague AL-
FRED NORTH WHITEHEAD, took up Hilbert’s challenge. In 1925 they
published a monumental work. Beginning with an impressively minimal set
of premises (“self-evident” logical principles), they attempted to establish
the logical foundations of all of mathematics. This was an impressive ac-
complishment. (After hundreds of pages of symbolic manipulations, they
established the validity of “1 + 1 = 2,” for example.) Although they did
not completely reach their goal, Russell and Whitehead’s work has been
important for the development of logic and mathematics.

Six years after the publication of their efforts, however KURT GÖDEL
stunned the mathematical community by proving Hilbert’s (and Leibniz’s)
goal to be futile. He demonstrated once and for all that any formal system of
logic sufficiently sophisticated to incorporate basic principles of arithmetic
cannot attain all the statements it hopes to prove. His results are today
called GÖDEL’S INCOMPLETENESS THEOREMS. The vision to reduce
all truths of reason to incontestable arithmetic was thereby shattered.

Understanding the philosophical foundations of mathematics is still an
area of intense scholarly research.
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2.2 Propositional Logic

Definition (Proposition)
A proposition is a statement which has a truth value either true or false.
Notation: Variables are used to represent propositions. The most com-

mon variables used are p, q, and r.
Examples:

1. p :“2 is even”, q :“2 + 2 = 4”, r :“2 + 2 = 5” are popositions.

2. “x+ 2 = 2x” is not a proposition.

Definition (Negation)
The negation of a proposition p is also called not p, and is denoted by

p̄.
Examples: Give the negation of the following statements.

1. If p: “2 is even” then p̄: “2 is not even”.

2. If p: “2 + 2 = 5” then p̄: “2 + 2 6= 5”.

Definition (Truth-value)
The truth-value is one of the two values, ”true” (T) or ”false” (F),

that can be taken by a given logical formula in an interpretation (model)
considered. Sometimes the truth value T is denoted in the literature by 1,
and F by 0.

2.3 Logical Connectors

2.3.1 Conjunction

Definition (Conjunction)
If p and q are two propositions then their conjunction is the proposition

whose value is true only when both are true. A conjunction can also be
written p ∧ q which is read p and q.

Examples:

1. “A triangle has three sides and a square has four sides” is a conjunction

2. Let p : “2 ≤ 3” and q : “22 ≤ 32” , the proposition p ∧ q is true.

9



2.3.2 Disjunction

Definition (Disjunction)
A compound statement of the form “p or q” is known as a disjunction

and it is denoted by p ∨ q. The disjunction of p and q has value false only
when both are false.

Examples:

1. “An integer is a number which presents itself as a natural integer to
which a positive or negative sign has been added indicating its position
relative to 0 on an oriented axis ”.

2. p̄ ∨ q̄ : “2 > 3” ∨ “22 > 32” is a false proposition.

2.3.3 Implication

Definition (Implication)
A conditional statement of the form “If . . . then. . . ” is known as a

conditional or an implication.

A conditional statement has two components: If p, then q. Statement
p is called the antecedent (hypothesis, or premise) and statement q the
consequent (or conclusion).

Alternative Phrasings of Conditionals

A conditional statement can be written a number of different, but equiv-
alent, ways:

If p, then q.
p implies q.
q if p.

p only if q.
p is sufficient for q.
q is necessary for p.

It is denoted in symbols by: p⇒ q.

The implication of p and q has value false only when p is true and q is
false.

Examples:

10



1. “If a polygon has three sides, then it is a triangle” is a conditional
statement.

2. “If 1 ≤ 3 then 1 + 1 ≤ 3 + 1” is a true implication.

3. “If π and 2 + 3i are real numbers then 2 + 3i is real number” is a true
implication.

4. “If 2 + 3 = 5 then 3 × 2 + 3 × 3 = 20” is a false implication because
when x = 5, 3x = 15 and 15 6= 20.

5. “If (−2)2 = 4 then −2 =
√

4” is a false implication because
√

(−2)2 6=
−2.

Definition (Converse of implication)
The converse of p⇒ q is the proposition q ⇒ p.
Example:
Let p : “x is a prime number different from 2” and q : “x is odd”. One

has p⇒ q but we do not have q ⇒ p.

Theorem 1.1: For all propositions p and q, the following statements
are true.

1. p ⇒ p ∨ q and q ⇒ p ∨ q
2. p ∧ q ⇒ p and p ∧ q ⇒ q
Proof
1. We give a truth table for p⇒ p ∨ q as follows.

p q p ∨ q p⇒ p ∨ q
1 1 1 1

1 0 1 1

0 1 1 1

0 0 0 1

Then p⇒ p ∨ q is always true.
The truth table for q ⇒ p ∨ q is analogous to the one for p⇒ p ∨ q; the

conclusion is the same.
2. In order to prove that p ∧ q ⇒ p for all propositions p and q, we

give a truth table for p ∧ q ⇒ p

11



p q p ∧ q p ∧ q ⇒ p

1 1 1 1

1 0 1 1

0 1 1 1

0 0 0 1

Then p ∧ q ⇒ p is always true.
The truth table for p ∧ q ⇒ q is analogous to the one for p ∧ q ⇒ p.

2.3.4 Equivalence

Definition (Equivalence)
Two mathematical statements are equivalent if they have the same

truth values.
The statement of the form “p if, and only if, q” is called an equivalence

or biconditional statement. It is often abbreviated as p iff q and is written
in symbols as p ≡ q or p ⇐⇒ q . It is equivalent to the compound
statement “p implies q, and q implies p” composed of two CONDITIONAL
statements. The truth-values of p and q must match for the biconditional
statement as a whole to be true.

Examples:

1. “A triangle is equilateral if, and only if, it is equiangular” is a bicon-
ditional statement.

2. The proposition ”(1 = 1) ⇐⇒ (0 = 0)” is true, the proposition ”(1 =
0)⇐⇒ (2 = 0)” is true, whereas the proposition ”(1 = 0)⇐⇒ (0 = 0)”
is false.

3. For all real x (x 6= 0) and y , we have y = x⇐⇒ y
x = 1 is true.

4. The equivalence statement (x = y ⇐⇒ x2 = y2) is not true for all real
x and y: for example 22 = (−2)2 ; 2 = −2.

2.4 Truth table

A truth table is a table showing the truth-value of a statement (typically
a compound one) given the possible truth-values of the simple statements
of which it is composed.

12



The truth values of a proposition, p, can be displayed in tabular form as
follows:

p

1

0

The truth-values of the basic connectives are given as follows:

p q p ∧ q p ∨ q p⇒ q p⇐⇒ q

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 1 1 0

0 0 0 0 1 1

Exercise: Prove the following equivalence by drawing the truth table:

p⇒ q ⇐⇒ p ∨ q

Solution:
p q p p⇒ q p ∨ q
1 1 0 1 1

1 0 0 0 0

0 1 1 1 1

0 0 1 1 1

The truth table establishes that these corresponding pairs of compound
statements are logically equivalent.

Definition (Contrapositive)
The contrapositive of p ⇒ q is the proposition q̄ ⇒ p̄. It can be shown

that these two are equivalent:

(p⇒ q)⇐⇒ (q̄ ⇒ p̄)

The equivalence can easily be verified using truth table:

p q p̄ q̄ p⇒ q q̄ ⇐⇒ p̄

1 1 0 0 1 1

1 0 0 1 0 0

0 1 1 0 1 1

0 0 1 1 1 1

Logical Identities

13



F De Morgan’s laws. p ∧ q ⇐⇒ p̄ ∨ q̄ and p ∨ q ⇐⇒ p̄ ∧ q̄

Both of these laws can easily be verified using truth tables:

p q p ∧ q p̄ ∨ q̄
1 1 0 0

1 0 1 1

0 1 1 1

0 0 1 1

p q p ∨ q p̄ ∧ q̄
1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 1

F Idempotence of ∧ and ∨
P ⇐⇒ P ∧ P and P ⇐⇒ P ∨ P
F Commutativity of ∧ and ∨
p ∧ q ⇐⇒ q ∧ p
p ∨ q ⇐⇒ q ∨ p
F Associativity of ∧ and ∨
p ∧ (q ∧ r) ⇐⇒ (p ∧ q) ∧ r
p ∨ (q ∨ r) ⇐⇒ (p ∨ q) ∨ r
F Distributivity of ∧ over ∨ ( and ∨ over ∧ respectively)
p ∧ (q ∨ r) ⇐⇒ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ⇐⇒ (p ∨ q) ∧ (p ∨ r)
F Domination laws
P ∨ T ⇐⇒ T
P ∧ F ⇐⇒ F
F Identity laws
P ∨ F ⇐⇒ P
P ∧ T ⇐⇒ P
F Negation laws
P ∨ P̄ ⇐⇒ T
P ∧ P̄ ⇐⇒ F
F Double negation law
p ⇐⇒ p
F Absorption laws
P ∨ (P ∧Q) ⇐⇒ P
P ∧ (P ∨Q) ⇐⇒ P

14



Exercise: Prove by applying the above rules.
a) p⇒ q ⇐⇒ p ∧ q̄
b) p̄⇒ q̄ ⇐⇒ p ∨ q̄
Solution:
a) By applying De Morgan’s laws:

p⇒ q ⇐⇒ p ∨ q
⇐⇒ p ∧ q̄
⇐⇒ p ∧ q̄

b) By applying the following equivalence statement p⇒ q ⇐⇒ p∨q, one
has:

p̄⇒ q̄ ⇐⇒ p ∨ q̄
⇐⇒ p ∨ q̄

Exercise: True or False. Prove by any method you like.
a) p⇒ (q ⇒ r) ⇐⇒ (p⇒ q)⇒ r
b) p⇒ (q ∨ r) ⇐⇒ (p⇒ q) ∨ (p⇒ r)
c) p ∧ (q ⇒ r) ⇐⇒ (p ∧ q)⇒ (p ∧ r)
d) p ∨ (q ⇒ r)⇐⇒ (p ∨ q)⇒ (p ∨ r)
Solution: For example, demonstrate the equivalence statement of (d)

using a truth table (you will demonstrate the rest in a similar way)

p q r q ⇒ r p ∨ (q ⇒ r) p ∨ q p ∨ r (p ∨ q)⇒ (p ∨ r)
1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 1 1 1 1 1

1 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0

0 0 1 1 1 0 1 1

0 0 0 1 1 0 0 1

We actually read the same truth values in the fifth and eighth columns.
You’ll notice how we filled in the first three columns. This filling method

makes it possible to forget no situation.

Exercise: If p and q are true and r and s are false statements, find the
truth value of the following statements:

1. (p ∧ q) ∨ r

2. p ∧ (r ⇒ s)

3. (p ∨ s)⇔ (q ∧ r)
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4. p ∧ r ∨ ( q ∨ s)

Solution: Given that p and q are 1 and r and s are 0.

1. (p ∧ q) ∨ r ⇔ (1 ∧ 1) ∨ 0
⇔ 1 ∨ 0
⇔ 1

� truth value of the given statement is true.

2. p ∧ (r ⇒ s) ⇔ 1 ∧ (0⇒ 0)
⇔ 1 ∧ 1
⇔ 1

� truth value of the given statement is true.

3. (p ∨ s)⇔ (q ∧ r) ⇔ (1 ∨ 0)⇔ (1 ∧ 0)
⇔ 1⇔ 0
⇔ 0

� truth value of the given statement is false.

4. p ∧ r ∨ ( q ∨ s) ⇔ 1 ∧ 0 ∨ ( 1 ∨ 0)
⇔ 0 ∨ 0
⇔ 0

� truth value of the given statement is false.

2.5 Predicates and Quantifiers

Definition (Predicate)
A predicate is a statement that contains variables and that may be true

or false depending on the values of these variables.
Examples:

1. Let P (x) : x2 < x is a predicate. One has P (1) : 1 < 1 is false and
P (2) : 4 < 2 is even false. But for x = 1

2 , P (12) : 1
4 <

1
2 is true.

2. Let P (x, y) : x2 + y2 = (x + y)2. Find the values of the following
propositions: P (0, 1), P (0, 0), P (1, 1). For which (x, y) is the value of
P (x, y) true?

A predicate can also be made a proposition by adding a quantifier.
There are two quantifiers:
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Definition (Universal quantifier)
A universal quantifier is a quantifier meaning ”for all”, ”for any”, ”for

each” or ”for every”, denoted by ∀.
Here is a formal way to say that for all values that a predicate variable

x can take in a domain A, the predicate is true:

∀ x︸︷︷︸ ∈ A , P (x)

for all x belonging to A, P (x) is true

Example: All natural numbers of the form 2n + 1 are odd is written:
∀ n, 2n+ 1 is odd.

Definition (Existential quantifier)
An existential quantifier is a quantifier meaning ”there exists”, ”there

is at least one” or ”for some”.
Here is a formal way to say that for some values that a predicate variable

x can take in a domain A, the predicate is true:

∃ x︸︷︷︸ ∈ A , P (x)

for some x belonging to A, P (x) is true

Example: There exists a natural number n satisfying n × n = n + n
can be written: ∃ n : n× n = n+ n.

Remark: A unique existential quantifier is a quantifier meaning
”there is a unique”, ”there is exactly one” or ”there exists only one”. Here
is a formal way to say that for some values that a predicate variable x can
take in a domain A, the predicate is true:

∃! x︸︷︷︸ ∈ A , P (x)

there exists only one x belonging to A, P (x) is true

Example: Let P (x) : x+ 2 = 5.
1) ∀x, P (x): “for all real numbers x, x+ 2 = 5”, which is false.
2) ∃x, P (x): “there is a real number x such that x + 2 = 5”, which is

true.
3) ∃!x, P (x): “there is a unique real number x such that x + 2 = 5”,

which is true.

Predicate Logic and Negating Quantifiers

We observe, at least intuitively, that the negations of ∃ and ∀ are corre-
lated in the following manner.

∀ x, P (x) ⇐⇒ ∃ x, P (x)

∃ x, P (x) ⇐⇒ ∀ x, P (x)
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Example: There is no natural number n satisfying n×n×n = n+n+n
as: ∃ n : n× n× n = n+ n+ n

Example: Let P (x) : x+ 2 = 5.

∃x ∈ Z, “x+ 2 = 5” ⇐⇒ “∀x ∈ Z, x+ 2 6= 5”
Exercise: Write the negations by interchanging ∃ and ∀.
a) There is a real number x such that x2 < 0.
b) Every integer is even.
c) There is an integer x such that x2 + 2x+ 3 = 0.
Solution:

a) ∃x ∈ R, “x2 < 0” ⇐⇒ “∀x ∈ R, x2 ≥ 0”
b) There is an integer which is not even.
c) ∃x ∈ Z, “x2 + 2x+ 3 = 0” ⇐⇒ “∀x ∈ Z, x2 + 2x+ 3 6= 0”
Exercise: Write the following propositions with quantifiers :

f is not increasing on R (where f is a function of R in R).
Solution: By applying the negation of an implication studied above

[p⇒ q ⇐⇒ p ∧ q̄] , one has:

∀ (a, b) ∈ R2/(a ≤ b⇒ f(a) ≤ f(b)) ⇐⇒ ∃ (a, b) ∈ R2, (a ≤ b) ∧ (f(a) > f(b))
Exercise: Show that the function sin is not zero.
Solution: ∃x = π

2 , sin(π2 ) = 1 6= 0.Then sin 6= 0.

2.5.1 Nested Quantifiers

Two quantifiers are nested if one is within the scope of the other. The order
of existential quantifiers and universal quantifiers in a statement is
important.

� When we have one quantifier inside another, we need to
be a little careful.

Example: Consider the following proposition over the integers:

∀x ∈ Z, ∃y∈ Z / (x+ y = 0)

• The proposition is true.

• The existence of y depends on x : if you pick any x, I can find a y that
makes x+ y = 0 true.
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Example: Consider the following proposition over the integers:

∃y ∈ Z, ∀x∈ Z/ (x+ y = 0)

• The proposition is false.

• The existence of y does not depend on x : there is no y that will make
x+ y = 0 true for every x.

Example: Consider the following proposition over the integers:

∃y ∈ Z, ∀x∈ Z/ (x+ y = x)

• The proposition is true.

• There is y = 0 that will make x+ y = x for every x.

Example: Suppose we claimed, “For every real number, there’s a real
number larger than it.”

We’d write this as
∀x ∈ R, ∃y ∈ R : y > x

• The proposition is true.

� We can exchange the same kind of quantifier (∀,∃).

These statements are equivalent:

∀x,∀y, P (x, y) ⇐⇒ ∀y,∀x, P (x, y)

∃x,∃y, P (x, y) ⇐⇒ ∃y,∃x, P (x, y)

Exercise:Translate the following statement into a logical expression.
“Every real number except zero has a multiplicative inverse.”

Solution:
∀y ∈ R∗, ∃x ∈ R : xy = 1

Exercise: Express that the limit of a real-valued function f at point x0
is l and express its negation: lim

x→x0
f(x) = l.

Solution:
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In predicate logic:

∀ε > 0,∃ δ > 0,∀x ∈ R : (|x− x0| < δ ⇒ |f(x)− l| < ε)

its negation is given by: ∃ ε > 0,∀δ > 0, ∃ x ∈ R : |x−x0| < δ∧|f(x)− l| ≥
0.

Exercise: If A = {3, 4, 6, 8}, determine the truth value of each of the
following:

1. ∃ x ∈ A, x+ 4 = 7.

2. ∃ x ∈ A, x is odd.

3. ∀ x ∈ A, (3− x) ∈ N.

Solution:

1. Since x = 3 ∈ A, satisfies x + 4 = 7, the given statement is true. Its
truth value is ‘1’.

2. Since x = 3 ∈ A, satisfies the given statement, the given statement is
true. Its truth value is ‘1’.

3. ∃ x ∈ A, x = 4, do not satisfy 3 − 1 = −1 /∈ N,the given statement is
false. Its truth value is ‘0’.

2.6 Methods of Proof

Our main interest in quantifiers for the purposes of this course is to develop
techniques for proving mathematical statements.

When faced with a mathematical claim, understanding its quantifier is
often a very good strategy for thinking about how to work out a proof.

Example: If the statement has the form ∀x : P (x), then the global
outline is likely have the form: Consider any possible x, and show that it
satisfies the property P (x).

Example: If the statement has the form ∃x : P (x), then the global
outline is different: One needs to specify a particular x, and then show it
satisfies P (x).
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2.6.1 Direct Methods

We have already seen one way of proving a mathematical statement of the
form: If p, then q. Based of the fact that the implication p =⇒ q is false
only when p is true and q is false, the idea behind the method of proof that
we discussed was to assume that p is true and then to proceed, through a
chain of logical deductions, to conclude that q is true. Here is the outline of
the argument:

Suppose that p is true.
p ⇒ r
⇒ s
⇒ ..
⇒ q

Exercise: Prove the statement: If n is even, then n2 is even.
Solution: Assume that the integer n is even.

∃ k ∈ Z, n = 2k =⇒ n2 = (2k)2 = 4k2

=⇒ n2 = 2(2k2)

=⇒ n2 = 2k
′

such that k
′

= 2k2

which shows that n2 is even.
This is an example of a direct method of proof. In the following section

we discuss indirect methods of proof.

2.6.2 Proof by Contrapositive

The idea behind this method of proof comes from the fact that the implica-
tion

q̄ ⇒ p̄

is equivalent to the implication

p⇒ q

Thus, in order to prove p ⇒ q, it suffices to prove: q̄ ⇒ p̄. Here is the
outline of the argument:

Suppose that : q̄ is true
q̄ =⇒ r

=⇒ s
=⇒ ...
=⇒ p̄.
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Consequently, q̄ ⇒ p̄ is true; therefore, p⇒ q is true.

Exercise: Prove that n2 is even implies that n is even.
Solution: Suppose that n is not even. It then follows that

∃ k ∈ Z, n = 2k + 1 =⇒ n2 = (2k + 1)2 = 4k2 + 4k + 1
=⇒ n2 = 2(2k2 + 2k) + 1

=⇒ n2 = 2k
′

+ 1 such that k
′

= 2k2 + 2k

Thus, n is not even implies that n2 is not even, and therefore the con-
trapositive is true; namely, n2 is even implies that n is even.

2.6.3 Proof by Contradiction (Absurd)

To prove that a proposition p is true we may assume that p is false then p̄
is true. Therefore we show that it would lead to a contradiction or a false
statement.

Exercise: Prove that
√

2 is irrational.
Solution: Let p:

√
2 is irrational. Now assume that p is false then p̄ is

true, that is,
√

2 is rational. Then there are some integers a and b with no
common factors:

∃ a ∈ Z, ∃ b ∈ Z∗ :
√

2 = a/b ⇒ a2 = 2b2

⇒ a2 is even
⇒ a = 2c, c ∈ Z
⇒ 4c2 = 2b2 (by Substituting)
⇒ 2c2 = b2

⇒ b2 is even
⇒ b is even

This means that a and b have a common factor 2 which is a contradiction,
and so p̄ must be false and p is true.

2.6.4 Proof by Counter-Example

This proof structure allows us to prove that a property is not true by pro-
viding an example where it does not hold. Thus, in order to prove that the
statement ∀ x, P (x) is false, it suffices to prove that the statement ∃ x, P (x)
is true.

Exercise: Prove that “all triangles are obtuse” is false.
Solution: We give the following counter example: the equilateral trian-

gle having all angles equal to sixty. In this case, there are infinitely many
counter example. However, it only takes one.
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Exercise: Prove that “ If n is an integer and n2 is divisible by 4, then
n is divisible by 4” is false.

Solution: Consider n = 6. Then n2 = 36 is divisible by 4, but n = 6 is
not divisible by 4. Thus, n = 6 is a counter example to the statement.

Exercise: Prove that “(a + b)2 = a2 + b2” is not an algebraic identity,
where a, b ∈ R.

Solution: If a = 1 and b = 2, then (a+b)2 = 9 and a2+b2 = 12+22 = 5.

2.6.5 Proof by Cases Disjunction

This proof structure is used when one wants to prove a property ∀ x, P (x)
depending on a parameter x belonging to a set E, and the proof depends
on the value of x. Hence we decompose the set E into two or more sets
E1, E2, ... and we separate the reasonings following that x ∈ E1, x ∈ E2, .....
This proof is often used to solve (in) equations with absolute values (the
proof depends on the sign of the quantity within the absolute value), to
demonstrate properties in arithmetic (we separate the proof following the
parity of some integers, their congruence modulo n ...).

To prove a proposition by case in the form p⇒ q where p⇐⇒ r ∨ s we
may instead prove both r ⇒ q and s⇒ q.

Exercise: Prove that for any integer n,the quotient n(n+1)
2 is an integer.

Solution:

• If n is even, then n is written n = 2k and n+ 1 = (2k + 1). We then

have n(n+1)
2 = k(2k + 1) which is an integer.

• If n is odd, then n is written n = 2k+ 1 and n+ 1 = 2k+ 2. We then
have n(n+1)

2 = (2k + 1)(k + 1) which is also an integer.

Exercise: Prove that ∀x ∈ R : |x− 1| ≤ x2 − x+ 1.

Solution: |x− 1| =
{

x− 1 if x ≥ 1
−x+ 1 if x < 1

|x− 1| ≤ x2 − x+ 1⇔
{

x− 1 ≤ x2 − x+ 1 if x ≥ 1
−x+ 1 ≤ x2 − x+ 1 if x < 1

1. If x ≥ 1, x− 1− x2 + x− 1 ≤ 0⇔ −x2 + 2x− 2 ≤ 0 is true because
the discriminant of the equation x2−2x+2 = 0 is negative (4 = −4),
hence x2 − 2x+ 2 ≥ 0
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2. If x < 1,−x+ 1− x2 + x− 1 ≤ 0⇔ −x2 ≤ 0 is true.

Therefore ∀x ∈ R : |x− 1| ≤ x2 − x+ 1.

2.6.6 Proof by Mathematical Induction

To prove a proposition in the form ∀n ∈ N, P (n) where n is a natural
number, it suffices to prove it in two steps:

1. P (n0) is true for a certain base step n0. Usually the base case is n = 1
or n = 0.

2. P (n) ⇒ P (n+ 1). That is, if P (n) is true, then P (n+ 1) is true.

Exercise: Prove the following formula for all natural numbers n.
1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2.

Solution: Let P (n) : 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2

We shall prove ∀n ∈ N, P (n) in two steps:
1) P (0) : 0 = 02 so this proposition is true.
2) Let P (n) : 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2

⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1)
⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2n+ 1) = (n+ 1)2

⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2 (n+ 1)− 1) = (n+ 1)2

⇒ P (n+ 1) is true
Therefore ∀n ∈ N, P (n)
Exercise: is 3n − 1 a multiple of 2 ?
Solution:

1. Show it is true for n = 1, 31 − 1 = 3− 1 = 2. One has 2 is a multiple
of 2. That was easy. 31 − 1 is true

2. Assume it is true for n and prove that 3n+1 − 1 is a multiple of 2?;

3n − 1 = 2k ⇒ 3n × 3− 1× 3 = 2k × 3
⇒ 3n × 3− 3 = 2k × 3
⇒ 3n+1 − 1 = 2 + 2k × 3
⇒ 3n+1 − 1 = 2(1 + 3k)

⇒ 3n+1 − 1 = 2k
′

such that k
′

= 1 + 3k

Therefore ∀n ∈ N, 3n− 1 a multiple of 2
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Chapter 3

Sets, Relations and
Applications

3.1 Set Theory

Set is a very basic concept used in all branches of mathematics and computer
science. Although the intuitive notion of a set as a collection of objects is
as ancient as the human race, the idea of a set as a formal mathematical
concept was not proposed until the 19th century. In his development of
BOOLEAN ALGEBRA, British mathematician GEORGE BOOLE (1815–
64) introduced the notion of set as a fundamental tool for the study of FOR-
MAL LOGIC. German mathematician GEORG CANTOR (1845–1918), in
his attempts to understand the foundation of all of mathematics, came to re-
gard sets as even more basic and fundamental than the notion of “number.”
Cantor properly formalized a theory of set manipulations and introduced the
striking notion of CARDINALITY. His work led him to profound insights
into the nature of finite and infinite sets, leading him to extend the concept
of number to include more than one type of INFINITY.

3.1.1 Relationships between elements and parts of a set

Definition (Set, Element)
A set A is a collection of objects called the elements of the set.

• If x is an element of the set A then we write x ∈ A, while the negation
is written x /∈ A.
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• Set is typically specified either explicitly, that is by listing all the ele-
ments the set contains, or implicitly, using a predicate description as
seen in predicate logic, of the form {x| P (x)}.

• The ordering of the elements is not important and repetition of ele-
ments is ignored.

• A set may also be empty set (or null set) and it is denoted by ∅ (phi)
or {}.

• The universe E is the biggest set in which all the other sets we are
interested in lie.

Examples:

1. The set A given by {1, 2, 3} is an explicit description.

2. The set {x, x is a prime number } is implicit.

3. {N,Z,Q,R,C} is a set containing five sets.

4. {x : x ∈ {2, 3, 5} and x ≤ 1} is an empty set.

5. {x : x2 = −1 } is the set of two elements: i and −i.

6. {e, π, 1, π, 2, 1} = {1, 2, π, e}

Definition (Cardinality)
If a set A contains exactly n elements where n is a non-negative integer,

then A is a finite set, and n is called the cardinality of A. We write |A| = n.
Remark: If |A| is finite, A is a finite set; otherwise, A is infinite.
Examples:

1. A = {1, 2,
√

7, 0}, |A| = 4.

2. |{x | −2 < x < 5, x ∈ Z}| = 6.

3. |∅| = 0.

4. |{x | (x ∈ ∅) ∧ (x < −4)}| = 0.

5. The set of positive integers is an infinite set.

Using set notation with quantifiers
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Sometimes, we restrict the domain of a quantified statement explicitly
by using set notations.

• We use ∀ x ∈ A, (P (x)) to denote that P (x) holds for every x ∈ A.

• We use ∃ x ∈ A, (P (x)) to denote that P (x) holds for some x ∈ A.

Definition (Equality)

Two sets A and B are equal if each element of A is an element of B and
vice versa. This is denoted, A = B. Formally:

A = B ⇔ ∀x : x ∈ A⇔ x ∈ B (2.1)

Examples:

1. {1, 2, 3} = {2, 1, 3}.

2. {1, 2, 3, 4} = {x ∈ N , x < 5}.

3. {x ∈ R : x2 + 1 = 0} = ∅.

To say that two sets A and B are not equal, inequality is A 6= B of
course. We use the negation from predicate logic, which is (using the rules
we have studied in predicate logic! namely negation of universal quantifier
and De Morgan’s law). One obtains:

∀x : x ∈ A⇔ x ∈ B ⇔ ∃ x : (x ∈ A⇒ x ∈ B) ∧ (x ∈ B ⇒ x ∈ A)

⇔ ∃ x : (x ∈ A⇒ x ∈ B) ∨ (x ∈ B ⇒ x ∈ A)

⇔ ∃ x :
(

(x ∈ A) ∨ (x ∈ B)
)
∨
(

(x ∈ B) ∨ (x ∈ A)
)

⇔ ∃ x :
(

(x ∈ A) ∧ (x ∈ B)
)
∨
(

(x ∈ B) ∧ (x ∈ A)
)

⇔ ∃ x : ((x ∈ A) ∧ (x /∈ B)) ∨ ((x ∈ B) ∧ (x /∈ A))

Definition (Subset)

• A set A is a subset of B if and only if every element of A is also in
B. We use A ⊆ B to indicate A is a subset of B , that means A is
included in B. Formally

A ⊆ B ⇔ ∀x : x ∈ A⇒ x ∈ B (2.2)

• A is a proper subset (or strict subset) of B, A ⊂ B, if A ⊆ B and
A 6= B.
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• Note the difference between x ∈ A and {x} ⊆ A: in the first expression,
x is an element of A, while in the second, we consider the subset {x},
which is emphasized by the bracket notation.

• To say that A is not a subset of B, we use the negation of the following
statement [∀x : x ∈ A⇒ x ∈ B] , which is:

∀x : x ∈ A⇒ x ∈ B ⇔ ∃ x : (x ∈ A) ∧ (x /∈ B)

Therfore,
A * B ⇔ ∃ x : (x ∈ A) ∧ (x /∈ B) (2.3)

Examples:

1. {12, 43, 66} ⊆ {12, 43, 66}

2. {a,F} ⊂ {a, b,F,N}

3. N ⊆ Z ⊆ Q ⊆ R

4. Let A =
{√

2, i
}
, A * R; i ∈ A and i /∈ R

Remark: There is a difference between ∅ and {∅}: the first one is an
empty set, the second one is a set, which is not empty since it contains one
element: the empty set!

Properties: Notice that A ⊆ A and in fact each set is a subset of itself.
The empty set ∅ is a subset of any set ∅ ⊆ A.

Exercise: Prove that ∅ ⊆ A
Solution: Recall the definition of a subset: all elements of a set A must

be also elements of B; ∀x : x ∈ A ⇒ x ∈ B. We must show the following
implication is true for any A, ∀x : x ∈ ∅ ⇒ x ∈ A. Since the empty set
does not contain any element, x ∈ ∅ is always False statement. Then the
implication is always True.

Venn Diagram

A diagram in which mathematical sets are represented by overlapping
circles within a boundary representing the universal set is called a Venn
diagram. Such diagrams provide convenient pictorial representations of
relations between sets.
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Figure 3.1

Example: In the diagram (See Figure 3.1) a universal set E is repre-
sented by the interior of a rectangle, and one subset A of E as the interior
of one overlapping circle within the rectangle.

The Venn diagram in Fig.1 shows: A ⊆ E, {1, 2, 3, π} ⊆ E, {1, 2, 3, π}
* A, ....

Definition (Power set)

Given a set E, the power set of E is the set of all subsets of E. The
power set is denoted by P (E). Formally:

P (E) = {A, A ⊆ E } (2.4)

Examples: Write the power set of the following sets: ∅, {1}, {1, 2}, {1, 2, 3}.
If E is a set with |E| = n then |P (E)| = ?

1. P (∅) = {∅} and |P (∅)| = 1.

2. P ({1}) = {∅, {1}} and |P ({1})| = 2.

3. P ({1, 2}) = {∅, {1}, {2}, {1, 2}} and |P ({1, 2})| = 4.

4. P ({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and |P ({1, 2, 3}| =
8.

Property: If E is a set with |E| = n then |P (E)| = 2n.
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3.1.2 Set Operations

There are a number of basic set manipulations, each of which can be depicted
with a VENN DIAGRAM.

Definition (Set Intersection)
The intersection of the sets A and B is the set of all elements that are

in both A and B. We write A ∩B. Formally:

A ∩B = {x, ( x ∈ A) ∧ (x ∈ B)} (2.5)

Venn Diagram of Intersection Operation (See figure 3.2):

Figure 3.2

Example:

1. {1, 2, 3, 4} ∩ {−3, 4, 5} = {4}

2. {x| x > 0} ∩ {x| x ≥ 2} = {x| x ≥ 2}.

3. N ∩ Z ∩ R = N

Definition (Set Disjoint)
Two sets A and B are disjoint if A ∩B = ∅.
Examples:

1. {2, 4, 6} ∩ {8, 10, 12} = ∅ , so they are disjoint.

2. {1, 2, 3} ∩ {3, 4, 5} 6= ∅ , so they are not disjoint.

3. N ∩ Z 6= ∅, so they are not disjoint.
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4. {x| x ≥ 1} ∩ Z− = ∅, so they are disjoint.

Definition (Set Union)

The union of two sets A and B , denoted by A ∪ B, is the set that
contains exactly all the elements that are in either A or B (or in both).
Formally:

A ∪B = {x, (x ∈ A) ∨ (x ∈ B)} (2.6)

Venn Diagram of Union Operation (See Figure 3.3):

Figure 3.3

Examples:

1. Let A = {0, 1, 2, 3, 6}, B = {0, 1, 2, 4, 6, 9}, A ∪B = {0, 1, 2, 3, 4, 6, 9}.

2. Z− ∪ Z+ = Z.

3. {x| x > 0} ∪ {x| x > −1} = {x| x > −1}.

Lemma (Cardinality of intersection and union)
For any two sets A and B, we have

|A ∪B| = |A|+ |B| − |A ∩B| (2.7)

Theorem 2. If A and B are any sets, then

1. (A ∩B) ⊆ A and (A ∩B) ⊆ B
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2. A ⊆ (A ∪B) and B ⊆ (A ∪B)

Proof

1) To prove that A ∩B ⊆ A, we must show that x ∈ A ∩B ⇒ x ∈ A.

x ∈ A ∩B ⇒ (x ∈ A) ∧ (x ∈ B) by (2.5)
⇒ x ∈ A by theorem 1

Analogously, we can show that (A ∩B) ⊆ B .

2) To prove that A ⊆ A ∪B, we must show that x ∈ A⇒ x ∈ A ∪B:

x ∈ A ⇒ (x ∈ A) ∨ (x ∈ B) by theorem 1
⇒ x ∈ A ∪B by (2.6)

Analogously, we can show that B ⊆ A ∪B
Properties: For all subsets A, B and C of the univers E , the following

are true.

• Commutative laws:

{
A ∩B = B ∩A
A ∪B = B ∪A

• Associative laws:

{
(A ∩B) ∩ C = B ∩ (A ∩ C)
(A ∪B) ∪ C = B ∪ (A ∪ C) .

• Distributive laws:

{
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

• Identity laws:

{
A ∪ ∅ = A
A ∩ E = A

• Domination laws:

{
A ∪ E = E
A ∩ ∅ = ∅

• Idempotent laws:

{
A ∪A = A
A ∩ ∅ = ∅

Definition (Set Partition)
A collection of nonempty sets {A1, A2, ..., An} is a partition of a set A

if and only if
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1. A = A1 ∪ A2 ∪ ... ∪ An.

2. A1, A2, · · · , An are mutually disjoint (or pairwise disjoint) : Ai∩Aj
= ∅, i 6= j, i, j = 1, 2, .., n.

Example: Consider A = Z, A1 = {x, x is even}, A2 = {x, x is odd} .
Then A1, A2 form a partition of A.
Venn Diagram of Set partition (See Figure 3. 4):

Figure 3.4

Definition (Set difference)

The difference of A and B, is the set containing elements that are in
A but not in B. Formally:

A−B = {x, (x ∈ A) ∧ (x /∈ B)} (2.8)

Venn Diagram of Set difference (See Figure 3.5):
Examples:

1. {1, 2, 3} − {3, 4, 5} = {1, 2}.

2. R −{0} = {x| (x ∈ R) ∧ (x 6= 0)}.

3. N−
{
a
b , (a ∈ Z) ∧ (b ∈ Z∗)

}
= N.

Properties: Let A and B subsets of the univers E.
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Figure 3.5

• A−B ⊂ A

• A−A = ∅, A− ∅ = A, ∅ −A = ∅

Definition (Set complement)
Let A subset of the universal set E. The complement of set A with

respect to E, denoted by CAE or CA or A, is the set that contains exactly
all the elements that are not in A. Formally:

A = E −A = {x ∈ E/ x /∈ A} (2.9)

Venn Diagram of Set complement (See Figure 3.6):

Figure 3.6
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Examples: Let the universe be R

1. {0} = {x, x 6= 0} = R∗.

2. R− = {x, x > 0} = R+.

3. ]−1, 2] = ]−∞,−1] ∪ ]2,+∞[ .

4. R = {x, x /∈ R} = ∅.

Properties: Let A and B subsets of the univers E.

• E = CEE = ∅, ∅ = C∅E = E

• CE
(
CAE
)

= A = A

• A ∪A = ∅, A ∩A = ∅

• A ⊂ B =⇒ B ⊂ A

DE MORGAN’S LAWS explain how set complement in-
teracts with intersections and unions of sets.{

A ∩B = A ∪B
A ∪B = A ∩B

Exercise: Let A and B are subsets of the universal set E. Show that:

1. CE
(
CAE
)

= A = A

2. A ⊂ B =⇒ B ⊂ A

3. A ∩B = B ∪A

4. A ∪B = B ∩A

Solution:
1. CE

(
CAE
)

= A = A ?

x ∈ CE
(
CAE
)
⇐⇒ x /∈

(
CAE
)
⇐⇒ x ∈ A

2. A ⊂ B =⇒ B ⊂ A ?

A ⊂ B ⇐⇒ (∀x, x ∈ A =⇒ x ∈ B)
⇐⇒ (∀x, x /∈ B =⇒ x /∈ A)(
∀x, x ∈ B =⇒ x ∈ A

)
B ⊂ A
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3. A ∩B = B ∪A
x ∈ A ∩B ⇐⇒ x /∈ (A ∩B)

⇐⇒ (x /∈ A) ∨ (x /∈ B)

⇐⇒
(
x ∈ A

)
∨
(
x ∈ B

)
⇐⇒ x ∈ A ∪B

4. A ∪B = B ∩A
x ∈ A ∪B ⇐⇒ x /∈ (A ∪B)

⇐⇒ (x /∈ A) ∧ (x /∈ B)

⇐⇒
(
x ∈ A

)
∧
(
x ∈ B

)
⇐⇒ x ∈ A ∩B

Definition (Set Symmetric Difference)
The symmetric difference of set A and set B, denoted by A4 B, is

the set containing those elements in exactly one of A and B.
Formally:

A4B = (A−B) ∪ (B −A) (2.10)

Venn Diagram of Set difference (See Figure 3.7):

Figure 3.7

Properties: Let A and B subsets of the univers E.

• A4B = B 4A

• A4 ∅ = A

• A4 E = E −A

• A4A = ∅
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• A4B = (A ∪B)− (A ∩B)

• A4B = A4B

Example: If A = {1, 2, 3, 4, 5, 10} and B = {0, 1, 2, 3, 4, 5, 7, 8, 9} , then
A−B = {10} and B −A = {0, 7, 8, 9} . Hence A4B = {0, 7, 8, 9, 10}

Definition (Ordered tuple)

An ordered n-tuple (x1, x2, ..., xn) has x1 as its first element, x2 as
its second element, . . ., xn as its nth element. The order of elements
is important in such a tuple. Note that (x1, x2) 6= (x2, x1) but {x1, x2} =
{x2, x1}.

Definition (Set Cartesian product)

The Cartesian product of the sets A and B, denoted by A×B is the
set of all ordered pairs (x1, x2), where x1 ∈ A, x2 ∈ B:

A×B = {(x1, x2)/ x1 ∈ A, x2 ∈ B } (2.11)

The equality in A × B is defined by: (x1, y1) = (x2, y2) ⇐⇒ x1 = x2 ∧
y1 = y2.

Cartesian product can be formed from n sets A1, A2, ..., An, denoted by
A1 × A2 ×···× An, is defined as the set of ordered tuples (x1, x2, ..., xn)
where x1 ∈ A1, x2 ∈ A2, ..., xn ∈ An. That is:

A1 ×A2 × ··· ×An = {(x1, x2, .; , xn)/ x1 ∈ A1, x2 ∈ A2, .., xn ∈ An}
(2.12)

A1 = A2 = ··· = An = A =⇒ A1 ×A2 × ··· ×An = An (2.12)

If we represent a set A × B, then a segment of the horizontal axis is
marked off to represent A and a segment of the vertical axis is marked off
to represent B; A × B is the rectangle determined by these two segments
(See Figure 8).

Examples: Let A = {−2, 3} and B = {0,−4, 2}

1. A×B = {(−2, 0), (−2,−4), (−2, 2), (3, 0), (3,−4), (3, 2)}.

2. B ×A = {(0,−2), (0, 3), (−4,−2), (−4, 3), (2,−2), (2, 3)}
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Figure 3.8

3. Note that A×B 6= B ×A.

4. R × R = {(x, y) |x ∈ R, y ∈ R} is the set of point coordinates in the
2D Plane.

5. R × R× R = {(x, y, z) |x ∈ R, y ∈ R, z ∈ R} is the set of point
coordinates in the 3D Space.

Lemma (Cardinality of Cartesian product)

In general, if Ai’s are finite sets, we have:

|A1 × A2 × ...× An| = |A1| × |A2| × ...× |An| (2.13)

Properties: If A and B are any sets, then

• A×B 6= B ×A

• A× ∅ = ∅ ×A = ∅

Exercise : The sets A = {1, 2, x}, B = {3, 4, y} are given. Determine
x and y, knowing that {1, 3} × {2, 4} ⊆ A × B

Solution: We form the sets A × B and C = {1, 3} × {2, 4} :
A × B = {(1, 3) , (1, 4) , (1, y) , (2, 3) , (2, 4) , (2, y) , (x, 3) , (x, 4) , (x, y)}

C = {(1, 2) , (1, 4) , (3, 2), (3, 4)}
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Because {1, 3} × {2, 4} ⊆ A × B, we obtain
(1, 2) ∈ C =⇒ (1, 2) ∈ A × B =⇒ (1, 2) = (1, y) =⇒ y = 2.
(3, 4) ∈ C =⇒ (3, 4) ∈ A × B =⇒ (3, 4) = (x, 4) =⇒ x = 3.

For x = 3 and y = 2, we have (3, 2) ∈ A × B.
Therefore: x = 3 and y = 2.
Exercise : Determine the sets A and B that simultaneously satisfy the

following the conditions:

1. A ∪ B = {1, 2, 3, 4, 5};

2. A ∩B = {3, 4, 5};

3. 2 /∈ (B −A)

4. 1 /∈ (A−B)

Solution:
1 /∈ (A−B)⇔ (1 /∈ A) ∨ (1 ∈ B)
1 ∈ (A ∪B)⇔ (1 ∈ A) ∨ (1 ∈ B)
[1 /∈ (A−B)] ∧ [1 ∈ (A ∪B)] ⇔ [(1 /∈ A) ∨ (1 ∈ B)] ∧ [(1 ∈ A) ∨ (1 ∈ B)]

⇔ [(1 /∈ A) ∧ (1 ∈ A)] ∨ (1 ∈ B)
⇔ F ∨ (1 ∈ B)
⇔ 1 ∈ B

2 /∈ (B −A) ⇔ (2 /∈ B) ∨ (2 ∈ A)

2 ∈ (A ∪B)⇔ (2 ∈ A) ∨ (2 ∈ B)
[2 /∈ (B −A)] ∧ [2 ∈ (A ∪B)] ⇔ [(2 /∈ B) ∨ (2 ∈ A)] ∧ [(2 ∈ A) ∨ (2 ∈ B)]

⇔ [(2 /∈ B) ∧ (2 ∈ B)] ∨ (2 ∈ A)
⇔ F ∨ (2 ∈ A)
⇔ 2 ∈ A

Then, A = {2, 3, 4, 5} and B = {1, 3, 4, 5}

3.2 Relations

The notion of relation is omnipresent, in mathematics as in everyday life.
The intuitive idea is to understand the fact that a certain link exists or not
between two or more objects.

The concept of relation finds a precise characterization in a mathematical
context, the Cartesian product operation offering in this respect a frame
both propitious and fertile.
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3.2.1 Binary Relations

Binary relations are an excellent way for capturing certain structures that
appear in computer science.

Definition (Binary Relation)

A binary relation over a nonemty set A is a predicate R that can be
applied to ordered pairs (x, y) of elements x and y given from A.

The representing graph of a relation in A is a graph G ⊆ A× A which
consists of all the pairs (x, y) such that the relation between two elements
x and y is true. Conversely, if we are given an arbitrary graph G ⊆ A× A,
then G defines a relation in A, namely the relation R is true if and only if
(x, y) ∈ G.

Notation for Binary Relations
Let R be a binary relation in A . Then

x R y ⇐⇒ (x, y) ∈ G

Examples:

1. ”x is greater than y ”.

2. ”x and y have the same absolute value”.

3. ”x2 + y2 = 1”.

4. A ⊂ B.

Example: Suppose A = {1, 2, 3, 4} . We give the graph G ⊆ A × A of
the following relation:

∀ x, y ∈ A : x R y ⇐⇒ x < y.
Then, G = {(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}.
Example: A relation R is defined on R by:
∀ x, y ∈ R : x R y ⇐⇒ xy3 − x3y = 6

We show that 1 R 2 , because 1× 23 − 13 × 2 = 6

Remark: If R is a binary relation over A and it does not hold for the
pair (x, y), then x R y.

Examples: 3 6= 4, R * Z, 4 
 3.
Properties of a relation

Let R be a binary relation in A.
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• R is reflexive iff ∀x ∈ A : x R x.

• R is symmetric iff ∀x, y ∈ A : x R y ⇒ y R x.

• R is anti-symmetric iff ∀x, y ∈ A : (x R y) ∧ (y R x) =⇒ x = y.

• R is transitive iff ∀x, y, z ∈ A : (x R y) ∧ (y R z) =⇒ x R z.

Example: Let A = {1, 2, 3} and consider three relations R, T, S on A :
GR = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}.
GS = {(1, 1), (1, 3), (2, 2), (3, 2)}.
GT = {(1, 2), (1, 3), (2, 3)}.

• R is reflexive, symmetric, and transitive, but not anti-symmetric be-
cause (1 R 2) ∧ (2 R 1) but 1 6= 2.

• S is anti-symmetric, but not reflexive because
(
3 R 3

)
, not symmet-

ric (1 R 3 ) but (3 R 1) , and not transitive (1 R 3) ∧ (3 R 2) but(
1 R 2

)
.

• T is anti-symmetric and transitive, but not reflexive
(
1 R 1

)
and not

symmetric (1 R 2 ) but (2 R 1) .

3.2.2 Equivalence Relation

Definition (Equivalence Relation)
An equivalence relation is a relation that is reflexive, symmetric and

transitive.
Examples:

1. The “equal-to” relation, “ = ”, on R is an equivalence relation.

2. The “less- than -or- equal to ” relation, “6”, on R is not an equivalence
relation because it is not symmetric. For example: 1 6 2 but 2 
 1.

3. The “strictly-less-than” relation, “< ”, on R is not an equivalence
relation because it is not reflexive. For example: 1 ≮ 1.

4. The “Line Parallel relation”, “‖” , is an equivalence relation.
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5. The “Perpendicular Lines” relation, “⊥”, is symmetric but neither
reflexive nor transitive.

6. The “subset” relation “⊆ ”, on P (E) such that E = {1, 2, 3} , is not an
equivalence relation because it is not symmetric. For example: {1} ⊆
{1, 2} but {1, 2} * {1} .

Exercise: Let A be the set of all triangles in a plane with R a relation
in A given by

∀ T1, T2 ∈ A : T1 R T2 ⇐⇒ T1 is congruent to T2.

Show that R is an equivalence relation.
Solution:

1. R is reflexive, since every triangle is congruent to itself.

2. T1 R T2 =⇒ T1 is congruent to T2 =⇒ T2 is congruent to T1 =⇒ T2 R
T1. Hence, R is symmetric.

3. (T1R T2) ∧ (T2R T3) =⇒ T1 is congruent to T2 and T2 is congruent to
T3 =⇒ T1 is congruent to T3. Hence, R is transitive.

Therefore, R is an equivalence relation.

Exercise: Consider the binary relation R defined over the set Z:

∀ x, y ∈ Z : x R y ⇐⇒ x+ y is even.

Show that R is an equivalence relation.
Solution:

(a) R is reflexive ⇔ ∀x ∈ Z : x R x.

1. Let x ∈ Z, the sum x + x can be written as 2k for some integer k
(namely, x), so x+ x is even. Then x R x holds, as required.

(b) R is symmetric ⇔ ∀x, y ∈ Z : x R y ⇒ y R x.

Let x, y ∈ Z,
x R y ⇒ ∃k ∈ Z, x+ y = 2k

⇒ y + x = x+ y = 2k (by Commutative Property of Addition)
⇒
⇒

y + x is even
y R x, as required
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(c) R is transitive ⇔ ∀x, y, z ∈ Z : (x R y) ∧ (y R z) =⇒ x R z.

Let x, y, z ∈ Z,
(x R y) ∧ (y R z) ⇒ ∃ k, k′ ∈ Z, (x+ y = 2k) ∧

(
y + z = 2k

′
)

⇒ x+ y + y + z = 2k + 2k
′

⇒ x+ z = 2k + 2k
′ − 2y = 2k

′′
/ k

′′
= k + k

′
+ y

⇒ x+ z is even
⇒ x R z, holds, as required.

Therefore, R is an equivalence relation.

3.2.3 Equivalences and Partitions

Definition (Equivalence Relation)

Given a partition A1, A2, A3, . . . of a set A, two elements x and y of A
are said to be equivalent, with respect to that partition, if they belong to
the same subset specified by the partition.

Example: The days of the year are partitioned by seven disjoint sets
given by the weekday names of the days. For instance, August 1, 1966, and
June 30, 2003, are equivalent in this context since they both belong to the
subset called “Monday.”

Example: Assuming two words of the English language to be equivalent
if they each possess the same number of vowels is an equivalence relation on
the set of all words.

Definition (Equivalence Classes)
Given an equivalence relation R over a set A, for any x ∈ A, the equiv-

alence class of x is the set

[x] = {y, x R y}

[x] is the set of all elements of A that are related to x by relation R.

Property: If R is an equivalence relation over A, then every x ∈ A
belongs to exactly one equivalence class.

Theorem: If R is an equivalence relation on a set A, then the collection
of its equivalence classes is a partition of A. Conversely, if P is a partition
of A, then the relation defined by

x R y ⇔ ∃ S ∈ P : x, y ∈ S
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is an equivalence relation, and its equivalence classes are the elements of
the partition.

Exercise: Provide a proof.

3.2.4 Order Relation

The notion of order relation on a set aims to define the intuitive idea that an
object ”precedes” another, ”come before” it, according to a certain criterion
of ordering, of disposition of the objects in question.

Definition (Order Relation)

A binary relation R on a set A is called an order relation if it is
reflexive, anti-symmetric, and transitive.

Examples:

1. The “less-than-or-equal-to” relation on the set of integers Z is an order
relation.

2. The “strictly-less-than” and “proper-subset” relations are not order
relation because they are not reflexive.

Definition (Total Ordering Relation)
An order relation R on A is called a total ordering if it satisfies one

additional proposition:

∀x ∈ A,∀y ∈ A: (x R y) ∨ (y R x)

Examples:

1. The relation (R,6) is a total order relation.

2. The relation (P (E),⊆) is not a total order relation because ∃ A,B ∈
P (E) : (A * B) ∧ (B * A) .

Example: Show that the relation “Divides” defined on N∗ is an order
relation.

Solution:

1) R is reflexive ⇔ ∀x ∈ N∗ : x R x
We have x divides x, ∀x ∈ N∗. Therefore, relation “Divides” is reflexive.
2) R is anti-symmetric ⇔ ∀x, y ∈ N∗ : (x R y) ∧ (y R x) =⇒ x = y
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Let x, y ∈ N∗,
(x R y) ∧ (y R x) ⇒ (x divides y) and (y divides x)

⇒ ∃ k, k′ ∈ N∗,
(
y = k

′
x
)
∧ ( x = ky)

⇒ x = kk
′
x

⇒ kk
′

= 1

⇒
⇒

k = k
′

= 1 ∈ N∗
x = y

So, the relation is anti-symmetric.

3) R is transitive ⇔ ∀x, y, z ∈ N∗ : (x R y) ∧ (y R z) =⇒ x R z.
Let x, y, z ∈ N∗,
(x R y) ∧ (y R z) ⇒ ∃ k, k′ ∈ N∗, (y = k x) ∧

(
z = k

′
y
)

⇒ z = k
′
k x

⇒ z = k” x / k” = k
′
k ∈ N∗

⇒ x divides z ⇒ x R z

Hence, the relation is transitive.
Thus, the relation R being reflexive, anti-symmetric and transitive, the

relation “divides” is an order relation.

3.3 Applications

3.3.1 Functional Relation

The concept of a function is one of the most basic mathematical ideas and
enters into almost every mathematical discussion.We focus on the concept
of Functional relation which is called an application. We will not study
derivatives or integrals, but rather the notions of injective and surjective
applications, how to compose applications, and when they are invertible.

Definition (Function)

Let E and F be sets. A function is a relation from a set E to another
set F, denoted by f : E → F, that every element x ∈ E assigns at most a
unique element y ∈ F satisfying x f y. To indicate this relation between x
and y we usually write y = f(x).

x f y ⇐⇒ y = f(x)

We say that:
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• y is the image of x (under f ).

• x is the pre-image of y (under f ).

• f maps x onto y, and symbolize this statement by
f

x 7−→ y.

• E is the starting set of f .

• F is the arrival set or codomain of f.

• Gf is the graph of the function f , given by: Gf = {(x, y) ∈ E × F / y = f(x)}

Note that
f : E −→ F

x 7−→ y

Definition ( Domain Definition )
The Domain Df of a function f of E in F is the set of elements x ∈ E

satisfying: there is one and only one element y ∈ F such that y = f(x).
Definition (Range)
We call range of a function f the subset of F with preimages.
Definition (Application)
An application f is a function of E in F whose domain definition Df

is equal to E.
Definition (Application)
An application from a set E to a another set F is a relation which

to every element x ∈ E assigns a unique element y ∈ F . Formally, using
predicate logic:

f Application⇔
{

1) ∀ x ∈ E, ∃ y ∈ F : y = f(x)
2) ∀x1, x2 ∈ E : x1 = x2 ⇒ f(x1) = f(x2)

we can write also,

f Application⇔{∀ x ∈ E, ∃! y ∈ F : y = f(x)

An application (or function) is a triplet f = (E,F,R),
where E and F are two sets and Gf ⊆ E × F is a functional
relation (See Figure 3.9).

Example: Consider the assignment rule f : E = {1, 2, 3, 4} → F =
{x, y, z} which is defined by:
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Figure 3.9

1. G = {(1, x), (2, y), (3, z), (4, x)}

2. G = {(1, x), (2, x), (3, x), (4, y)}

3. G = {(1, z), (2, y), (3, x)}

4. G = {(1, y), (2, x), (3, y), (3, z), (4, x)}

The first two relations are applications and the third relation is function
with Df is {1, 2, 3} but not the last one.

3.3.2 Equality - Extension - Restriction

Definition (The equality of applications)
Two applications f = (A,B,R) and g = (C,D, S) are called equal if

and only if they have the same domain A = C, the same codomain B = D
and the same graphic Gf = Gg. If f, g : A −→ B, the equality f = g is
equivalent to f(x) = g(x), ∀x ∈ A, that is to say:

f = g ⇐⇒ ∀x ∈ A, f(x) = g(x)

Definition ( Extension of an application-Restriction of an ap-
plication)

Let f : X → Y be an application and A and B be sets such that X ⊆ A
and Y ⊆ B. An extension of f to A is an application g : A→ B such that
f(x) = g(x) for all x ∈ X. Alternatively, g is an extension of f to A if f is
the restriction of g to X.
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3.3.3 Image and Inverse Image of a Subsets

Often in mathematics, particularly in analysis and topology, one is interested
in finding the set of image points or inverse image of an application acting on
a given set, which brings us to the two following definitions that are waiting
to be understood.

Definition ( Image of a Subset)
Let f : E −→ F and consider the subset A ⊂ E. The image of the

subset A under f , which we write f(A), is the subset of F that consists of
the images of the elements of A (See Figure 3.10):

f(A) = {f(x), x ∈ A}

y ∈ f(A)⇐⇒ ∃ x ∈ A, y = f(x)

Definition (Inverse Image of a Subset)
Let f : E −→ F and consider the subset B ⊂ F . The inverse image

of the subset B under f, which we write f−1(B) is the subset of E that
consists of the pre-images of elements in B (See Figure 3.10)

f−1(B) = {x, f(x) ∈ B}

Figure 3.10

Example: Let E = {1, 2, 3, 4} and F = {a, b, c} and define an appli-
cation f : E −→ F such that f (1) = f(2) = a, f(3) = f(4) = c. Let
A ⊂ E, A = {1, 2, 3}. Then f(A) = {a, c}. Also for example f−1({b}) = ∅,
f−1({a, c}) = A, f−1({b, c}) = {3}.
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Properties
Given an application f : E −→ F where A,B, are subsets of E and C,D,

are subsets of F , we have the following properties. Notice how the inverse
image always preserves unions and intersections, although not always true
for the image of an application. Then the images of intersections and unions
satisfy:

1. f (A ∩B) ⊆ f (A)∩ f (B) .

2. f (A ∪B) = f (A)∪ f (B) .

3. f−1 (A ∩B) = f−1 (A)∩ f−1 (B) .

4. f−1 (A ∪B) = f−1 (A)∪ f−1 (B) .

5. A ⊆ B =⇒ f(A) ⊆ f(B).

6. C ⊆ D =⇒ f−1(C) ⊆ f−1(D).

7. f−1(C) = f−1(C).

Exercise: Let f(x) = 1 + x2. Find the following:

1. f ({−1, 1}) .

2. f ([−2, 2]) .

3. f ([−2, 3]) .

4. f−1 ({1, 5, 10}) .

5. f−1 ([0, 1]) .

6. f−1 ([2, 5]) .

Solution:

1. f ({−1, 1}) = {2} .

2. f ([−2, 2]) = f ([−2, 0] ∪ [0, 2]) = f([−2, 0]) ∪ f([0, 2]) = [1, 5] .

3. f ([−2, 3]) = f ([−2, 0] ∪ [0, 3]) = f([−2, 0]) ∪ f([0, 3]) = [1, 10] .

4. f−1 ({1, 5, 10}) = {0, 2,−2, 3,−3} .

5. f−1 ([0, 1]) = {0} .

6. f−1 ([2, 5]) = [−2,−1] ∪ [1, 2] .
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3.3.4 Injective, Surjective and Bijective Applications

Definition (Injective)
An injective application (or one-to-one application) f : E −→ F ,

is an application for which every element of the range of the application
corresponds to exactly one element of the domain. Formally:

f Injective ⇐⇒


∀x1, x2 ∈ E : x1 6= x2 ⇒ f(x1) 6= f(x2)

or
∀x1, x2 ∈ E : f(x1) = f(x2)⇒ x1 = x2

In words, this says that all elements in the domain of f have different

images (See Figure 3.11)

Figure 3.11

Example. Consider an application f : R −→ R, f(x) = 4x − 1. We
want to know whether each element of R has a different image. In fact, this
function is a line, so one may ”see” that two distinct elements have distinct
images, but let us try a proof of this.

f(x1) = f(x2) =⇒ 4x1 − 1 = 4x2 − 1
=⇒ 4x1 = 4x2
=⇒ x1 = x2

Therefore f is injective.
Example. Consider an application g : R −→ R, g(x) = x2. A property

of injectivity of g is not true by providing an example where it does not hold.
The two elements x1 = 1 and x2 = −1 are both sent to g(x1) = g(x2) = 1.
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The other definition that always comes in pair with that of injective is
that of surjective.

Definition (Surjective)
An application f : E −→ F is surjective (or onto) if and only if for

every element y ∈ F , there is an element x ∈ E with y = f(x):

∀y ∈ F,∃ x ∈ E : y = f(x)

In words, each element in the co-domain of f has a pre-image (See Figure
3.12)

Figure 3.12

Example. Consider again f : R −→ R, f(x) = 4x − 1. We want to
know whether each element of R has a preimage.

f(x) = y =⇒ 4x− 1 = y
=⇒ 4x = y + 1

=⇒ x = y+1
4 ∈ R

Therefore f is surjective.
Example. Consider again g : R −→ R, g(x) = x2. A property of

surjectivity of g is not even true by providing an example where it does not
hold. If y = −1, there is no x ∈ R such that g(x) = x2 = −1.

Exercise: The function f is defined by: f : R→ R : x 7→ x2 − 6x

1. Give an example to show that f is not injective.
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2. Give an example to show that f is not surjective.

Solution:

1. f(6) = f(0) = 0 but 6 6= 0, therefore the application is not injective.

2. f(x) = x2 − 6x = (x− 3)2 −9

let y = −10 then f(x) = −10 =⇒ (x− 3)2 − 9 = −10
=⇒ (x− 3)2 = −1

There is no real number, x such that f(x) = −10 the application is not
surjective.

Or the range of the application is y ≥ 2. The range of the function is
not R (the codomain), therefore the application is not surjective.

We next combine the definitions of an application which is injective and
surjective, to get:

Definition 1 (Bijective)
An application f : E −→ F is bijective if and only if it is both injective

and surjective (See Figure 3.13)

Definition 2 (Bijective)
An application f : E −→ F is bijective if and only if for every element

y ∈ F , there is a unique element x ∈ E with y = f(x):

∀y ∈ F,∃! x ∈ E : y = f(x)

Example: Consider the application f : R −→ R, f(x) = 4x− 1, which
we have just studied in two previous examples. We know it is both injective
and surjective, therefore it is a bijection.

Bijections have a special feature: they are invertible, formally:
Definition 1 (Inverse Application)
Let f : E −→ F be a bijection. Then the inverse application of f

, f−1 : F −→ E is defined elementwise by: f−1(y) is the unique element
x ∈ E such that f(x) = y. We say that f is invertible.

Example: Let us consider again at our two previous examples, namely,
f(x) = 4x − 1 and g(x) = x2. Then, the application g is not a bijection,
so it cannot have an inverse. Now f is an application bijective, so we can
compute its inverse.
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Figure 3.13

y = f(x) ⇐⇒ y = 4x− 1
⇐⇒ y + 1 = 4x

⇐⇒ x = y+1
4

⇐⇒ f−1(y) = y+1
4

Property: Let f : E −→ F be a bijective application , then f−1 : F −→
E is a bijective application.

3.3.5 Examples of Applications

• Identity Application. Let A be a set; by the identity application
on A we mean the application IA : A→ A given by

IA(x) = x

* IA is injective, IA(x) = IA(y) =⇒ x = y (IA(x) = x and IA(y) = y);
thus the injection holds.

* IA is surjective because, obviously, the range of IA is A.

* Thus IA is bijective.

• Constant Application. Let A and B be sets, and let b be an element

of B. By the constant application fb we mean the application fb
: A→ B given by:

fb(x) = b,∀x ∈ A
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• Characteristic Application. The characteristic application of
a set is used to solve some difficult problems of set theory found in
undergraduate studies. Let’s consider A ⊂ E 6= ∅ (a universal set),
then fA : E → {0, 1} , where the application

fA(x) =

{
1, x ∈ A
0, x /∈ A

is called the characteristic application of the set A.

3.3.6 Operations on Applications

Given two applications, it may be possible to combine them in different ways
to create more complicated applications. If the domains and codomains of
the two applications agree and if the codomain supports arithmetic, we may
define arithmetic operations on the applications by point-wise operations on
their images.

Arithmetic Operations on Applications

Let f : E → F and g : E → F be two applications sharing a common
domain E and let α be a real number. Then f + g, f − g, α ·f , f ·g, and
f/g (g(x) 6= 0) denote the following applications from E to F :

a) (f + g)(x) = f(x) + g(x).
b) (f − g)(x) = f(x)− g(x).
c) (c·f)(x) = c · f(x).
d) (f ·g)(x) = f(x) · g(x).
e) (f/g)(x) = f(x)/g(x), provided g(x) 6= 0.

Exercise: Find counter-examples to each of these statements for f :
R→ R and g : R→ R:

(a) If f and g are surjective, then (f + g) is surjective.
Suppose f(x) = x and g(x) = −x. Then (f + g) (x) = x− x = 0.
(b) If f and g are surjective, then f ·g is surjective.

The same f(x) = x and g(x) = −x from above work; (f ·g) (x) = −x2,
which is not surjective.
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Composition of Applications

In addition to arithmetic operations on applications, there is another oper-
ation called composition of applications which is more set-theoretic or alge-
braic in nature. A composite of two applications is satisfied if the codomain
of the first application agrees with the domain of the second.

If f : E → F and g : F → G are applications in which the codomain
of f equals the domain of g, then the assignment h(x) = g(f(x)) defines an
application h : E → G. For, given any x ∈ E, there is a unique y ∈ F such
that y = f(x), since f is an application. Similarly, since g is an application,
g(f(x)) is a unique image in G. Thus each element x from E yields a unique
image z = g(f(x)) in G, guaranteeing that h is an application from E into
G. This legitimizes the following definition.

Definition (Composite Applications)
If f : E → F and g : F → G, then the composite application f followed

by g is the application g ◦ f such that:

g ◦ f : A → C
x 7→ (g ◦ f) (x) = g(f(x))

Example: If f(x) = −4x + 9 and g(x) = 2x − 7, find (f ◦ g)(x) and
(g ◦ f) (x)

(f ◦ g)(x) = f(g(x))
= −4g(x) + 9
= −4(2x− 7) + 9
= −8x+ 28 + 9
= −8x+ 37

Thus, (f ◦ g)(x) = −8x+ 37.

(g ◦ f)(x) = g(f(x))
= 2f(x)− 7
= 2 (−4x+ 9)− 7
= −8x+ 18− 7
= −8x+ 11

Thus, (g ◦ f)(x) = −8x+ 37.
We remark that (f ◦ g)(x) and (g ◦ f)(x) produced different answers.
Properties: Suppose f, g, and h are application that can be composed

in the order given.

1. Composition is not Commutative: g ◦ f 6= f ◦ g.
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2. If f and g are both injective applications, then so is g ◦ f .

3. If f and g are both surjective applications, then so is g ◦ f.

4. If f and g are both bijective applications, then so is g ◦ f .

5. Composition is Associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 2 (Inverse Applications)

If f : E → F and g : F → E, then f and g are inverse applications of
one another relative to composition iff

g ◦ f = IE and f ◦ g = IF .

Example: Show that the application g : R→ R defined by g(x) = x−1
2

is an inverse for the application g : R→ R defined by f(x) = 2x+ 1.

g(f(x)) = f(x)−1
2 = 2x+1−1

2 = x

f(g(x)) = 2g(x) + 1 = 2
(
x−1
2

)
+ 1 = x

Thus g is f ’s inverse.
Properties: Let f : E → F and g : F → G

1. If f has an inverse, then it is unique.

2. The composition g ◦ f of two invertible applications f and g is invert-
ible. Moreove , the composition of the inverses in the reverse order

(g ◦ f)−1 = f−1 ◦ g−1

Example: Let an application f : E → F.
Determine the inverse application for f(x) = x

x+1 . Assume that f is de-
fined for as inclusive a set of real numbers as possible and that the codomain
of f is its range.

The equation y = x
x+1 defines an application on E = R− {−1} .

We will check its codomain after we determine which values y can be.
Solving y = x

x+1 for x, we get the following:

y = x
x+1 ⇒ y (x+ 1) = x

⇒ yx+ y = x
⇒ yx− x = −y
⇒ x = y

1−y = g(y)
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Since there are x-values for all y except y = 1, our domain for g and our
codomain for f must be taken to be F = R− {1}.

For these x- and y-values the above solution process is reversible. The
inverse application is therefore given by f−1(y) = y

1−y .

3.4 The Inverse Trigonometric Application

In this section, we concern ourselves with finding inverses of the (circular)
trigonometric applications. Our immediate problem is that, owing to their
periodic nature, none of the circular applications is injective. To remedy this,
we restrict the domains of the circular applications to obtain an injective
application.

3.4.1 Arccosine Application

We first consider f(x) = cos(x). Choosing the interval [0, π] allows us to
keep the range as [−1, 1] as well as the property of being bijective.

Recall from Subsection 2.3.4 that the inverse of an application f is typ-
ically denoted f−1. For this reason,we can use the notation f−1(x) =
cos−1(x) for the inverse of f(x) = cos(x) (See Figures 3.14–3.15)

Remark: It is far too easy to confuse cos−1(x) with 1
cos(x) so we will

not use this notation in our text.
Notation: We use the notation f−1(x) = arccos(x), read “arc-cosine

of x”.
Formally:

f−1 : [−1, 1] → [0, π]
x 7→ f−1(x) = arccos(x)

We list some important facts about the arccosine applications in the
following properties.

Properties
arccos(x) = y if and only if y ∈ [0, π] and cos(y) = x.
cos(arccos(x)) = x provided x ∈ [−1, 1].
arccos(cos(x)) = x provided x ∈ [0, π].
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Figure 3.14
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Figure 3.15
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Figure 3.16
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3.4.2 Arcsine Application

We restrict f(x) = sin(x) in a similar manner, although the interval of choice
is
[
−π

2 ,
π
2

]
(See Figure 3.16)

It should be no surprise that we call f−1(x) = arcsin(x), which is read
“arc-sine of x”(See Figure 3.17)

Formally:

f−1 : [−1, 1] →
[
−π

2 ,
π
2

]
x 7→ f−1(x) = arcsin(x)

Figure 3.17

We list some important facts about the arcsine applications in the fol-
lowing properties.

Properties
arcsin(x) = y if and only if y ∈

[
−π

2 ,
π
2

]
and sin(y) = x.

61



sin(arcsin(x)) = x provided x ∈ [−1, 1].
arcsin(sin(x)) = x provided x ∈

[
−π

2 ,
π
2

]
.

Exercise: Find the exact values of the following.

1) arccos(12) 5) arcsin(
√
2
2 )

2) arccos(−
√
2
2 ) 6) arcsin(−1

2)
3) arccos(cos

(
π
6

)
) 7) arccos(cos(11π6 ))

4) cos
(
arccos(−3

5)
)

8) sin
(
arccos(−3

5)
)

Solution:

1. To find arccos(12), we need to find the real number y (or, equivalently,
an angle measuring y radians) which verifies y ∈ [0, π] and with cos(y)
= 1

2 . We know y = π
3 meets these criteria, so arccos(12) = π

3 .

2. The number y = arccos(−
√
2
2 ) ∈ [0, π] with cos(y) = −

√
2
2 . Our answer

is y = 3π
4 .

3. Since π
6 ∈ [0, π], we could simply refer to the properties of arccosine

applications to get arccos(cos
(
π
6

)
) = π

6 .

4. One way to simplify cos
(
arccos(−3

5)
)

is to use the properties of arcco-
sine applications directly. Since−3

5 ∈ [−1, 1], we have cos
(
arccos(−3

5)
)

=
−3

5 .

5. The value of arcsin(
√
2
2 ) is a real number y ∈

[
−π

2 ,
π
2

]
with sin(y) =

√
2
2 . The number we seek is y = π

4 . Hence, arcsin(
√
2
2 ) = π

4 .

6. To find arcsin(−1
2), we seek the number y ∈

[
−π

2 ,
π
2

]
with sin(y) =

−1
2 . The answer is y = −π

6 so that arcsin(−1
2) = −π

6 .

7. Since 11π
6 does not fall between 0 and π, the properties of the arcsine

applications does not apply. We are forced to work through from the

inside out starting with arccos(cos(11π6 )) = arccos(
√
3
2 ). We know

arccos(
√
3
2 ) = π

6 . Hence, arccos(cos(11π6 )) = π
6 .

8. As in the previous question, we let y = arccos(−3
5) so that cos y =

−3
5 for y ∈ [0, π]. Since cos y < 0, we can narrow this down a bit

and conclude that π
2 < y < π . In terms of y, then, we need to

find sin
(
arccos(−3

5)
)

= sin y. Using the Pythagorean Identity cos2 y+

sin2 y = 1, we get
(
−3

5

)2
+ sin2 y = 1 or sin y = ±4

5 . We choose
sin y = 4

5 . Hence, sin
(
arccos(−3

5)
)

= 4
5 .
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The next pair of application we wish to discuss are the inverses of tangent
and cotangent, which are named arctangent and arccotangent, respectively.

3.4.3 Arctangent Application

We restrict f(x) = tan(x) to its fundamental cycle on
]
−π

2 ,
π
2

[
to obtain

f−1(x) = arctan(x). Among other things, note that the vertical asymptotes
x = −π

2 and x = π
2 of the graph of f(x) = tan(x) become the horizontal

asymptotes y = −π
2 and y = π

2 of the graph of f−1(x) = arctan(x). We
show these graphs on Figure 18.

Figure 3.18

We list some of the basic properties of the arctangent application.
Properties
arctan(x) = y if and only if y ∈

]
−π

2 ,
π
2

[
and tan(y) = x.

tan(arctan(x)) = x provided x ∈ R.
arctan(tan(x)) = x provided x ∈

]
−π

2 ,
π
2

[
.

63



3.4.4 Arccotangent Application

We restrict f(x) = cot(x) to its fundamental cycle on ]0, π[ to obtain
f−1(x) = arccot(x). Once again, the vertical asymptotes x = 0 and x = π
of the graph of f(x) = cot(x) become the horizontal asymptotes y = 0 and
y = π of the graph of f−1(x) = arccot(x). We show these graphs on Figure
19.

Figure 3.19

We list some of the basic properties of the arccotangent application.
Properties
arccot(x) = y if and only if y ∈ ]0, π[ and cot(y) = x.
cot(arccot(x)) = x provided x ∈ R.
arccot(cot(x)) = x provided x ∈ ]0, π[ .
Exercise: Find the exact values of the following.

1. arctan(
√

3).
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2. arccot(−
√

3).

3. cot(arccot(−5))

Solution:

1. We know arctan(
√

3) is the real number y ∈
]
−π

2 ,
π
2

[
with tan(y) =

√
3.

We find y = π
3 , so arctan(

√
3) = π

3 .

2. The real number y = arccot(−
√

3) ∈ ]0, π[ with cot(y) = −
√

3. We
get arccot(−

√
3) = 5π

7 .

3. We can apply properties of the arccotangent application directly and
obtain cot(arccot(−5)) = −5.
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Chapter 4

Real-Valued Functions of a
Real Variable

In this chapter we shall study limit, continuity and differentiability of real
valued functions defined on certain sets.

4.0.5 Overview

In mathematics, an “elementary function” is a function of a single variable
composed of particular simple functions.

Basic examples:
The elementary functions of (x) of mathematics comprise:

• Polynomial functions: x 7→ a0 + a1x+ a2x
2 + ...+ anx

n, ai ∈ R, i =
0, ..., n

• Trigonometric functions: x 7→ sinx, cosx, tanx, cotx

• Exponential functions: x 7→ expx

• Logarithms: x 7→ lnx

• Inverse trigonometric functions: x 7→ arcsinx, arccosx, arctanx, arccotx

• Hyperbolic functions :

x 7→ coshx =
exp (x) + exp (−x)

2
, x 7→ sinhx =

exp (x)− exp (−x)

2

• Inverse hyperbolic functions: x 7→ arg chx, x 7→ arg shx .
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4.1 Limit of a Function

The notion of a limit is a fundamental concept of calculus. More particularly,
limits allow us to look at what happens in a very, very small region around
a point.

Example 1: Values of f(x) = x2−4
x−2 may be computed near x = 2

x 1.9 1.99 1.999→ ← 2.001 2.01 2.1

f(x) 3.9 3.99 3.999→ ← 4.01 4.01 4.1

lim
x→2

f(x) = 4

Definition (Neighbourhood)
For x0 ∈ R, an open interval of the form ]x0 − δ, x0 + δ[ for some δ > 0

is called a neighbourhood of x0.

4.1.1 Limit of a function at a point

Definition
A real valued function f : D → R has “limit value L as x tends to a

finite value x0” if one can demonstrate that for any positive number ε (no
matter how small), all the values f(x) of the function will eventually be
this close to the value L by restricting x to values very close, but not equal,
to x0. That is, one can produce a positive number δ so that if x, different
from x0, lies between x0−δ and x0 +δ so then we can be sure that the value
f(x) lies between L− ε and L+ ε. Formally:

∀ε > 0, ∃ δ > 0,∀x ∈ D : x ∈ ]x0 − δ, x0 + δ[⇒ f(x) ∈ ]L− ε, L+ ε[

or we can write

∀ε > 0,∃ δ > 0, ∀x ∈ D : |x− x0| < δ ⇒ | f(x)− L| < ε

If a function f(x) has a limit value L as x approaches a finite value x0,
we write:

lim
x→x0

f(x) = L

Example 1: Show that lim
x→4

(2x− 1) = 7. We have f(x) = 2x − 1,

x0 = 4 and L = 7 and the question we must answer is ”how close should x
be to 4 if want to be sure that f(x) = 2x−1 differs less than ε from L = 7?”

To figure this out we try to get an idea of how big | f(x)− L| is:
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| f(x)− L| = |(2x− 1)− 7| = 2 · |x− 8|
So, if 2 · |x− x0| < ε then we have | f(x)− L| < ε , i.e.
|x− x0| < ε

2 =⇒ |f(x)− L| < ε.
We can therefore choose δ = ε

2 . No matter what ε > 0 we are given our
δ will also be positive,

∀ε > 0, ∃ δ > 0 , ∀x ∈ D : |x− 4| < δ =⇒ |(2x− 1)− 7| < ε

That shows that lim
x→4

f(x) = 7.

Definitions (Left limit and right limit)

(i) We say that f has the left limit L ∈ R as x tends to x0 iff

∀ε > 0,∃ δ > 0,∀x ∈ D : x ∈ ]x0 − δ, x0[⇒ f(x) ∈ ]L− ε, L+ ε[

and in that case we write:

lim
<

x→x0

f(x) = L or lim
x→x−0

f(x) = L

(ii) We say that f has the right limit L ∈ R as x tends to x0 iff

∀ε > 0,∃ δ > 0,∀x ∈ D : x ∈ ]x0, x0 + δ[⇒ f(x) ∈ ]L− ε, L+ ε[

and in that case we write:

lim
>

x→x0

f(x) = L or lim
x→x+0

f(x) = L

Theorem (Existence of the limit)

Let f be a real valued function defined on a set D ⊂ R, then lim
x→x0

f(x)

exists if and only if:

lim
x→x−0

f(x) = lim
x→x+0

f(x) = lim
x→x0

f(x)

Example 1:
Let f : [−1, 1]→ R defined by:

f(x) =

{
0, −1 ≤ x ≤ 0
1, 0 < x ≤ 1
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lim
x→x0

f(x) does not exist because lim
x→0−

f(x) = 0 and lim
x→0+

f(x) = 1.

Example 2:
Let f : R→ R defined by:

f(x) = sin

(
1

x

)
We see in Figure 4.1, that sin

(
1
x

)
oscillates between +1 and −1 as x→ 0.

This means that f(x) gets close to any number between +1 and −1 as x→ 0,
but that the function f(x) never stays close to any particular value because
it keeps oscillating up and down.

Here again, the limit lim
x→0

f(x) does not exist.

Figure 4.1

4.1.2 Limit of a function at infinity

Definition
A function f has limit value L as x becomes large if one can demonstrate

that for any positive number ε there exists a positive number A, such that
all the values f(x) of the function lies between L − ε and L + ε for x > A.
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We write: lim
x→+∞

f(x) = L. One can similarly define the notion of a limit

as x becomes large and negative: lim
x→−∞

f(x) = L.

Example 1: Let’s compute

lim
x→∞

5x2 + 1

4x2 + 3x− 2

We divide the numerator and denominator by x2, and you get

lim
x→∞

5x2 + 1

4x2 + 3x− 2
= lim

x→∞

5 + 1
x2

4 + 3
x −

2
x2

=
5

4
.

Example 2: Compute

lim
x→∞

x

x5 − 2

We divide numerator and denominator by x5. This leads to

lim
x→∞

1
x4

1− 2
x5

=
0

1
= 0.

4.1.3 Properties of the limit

The following properties remain true if one replaces each limit by a one-sided
limit, or a limit for x→∞.

Let f and g be two given functions whose limits for x→ x0 we know,

lim
x→x0

f(x) = L1, lim
x→x0

g(x) = L2.

Then:

1. lim
x→x0

(f + g) (x) = L1 + L2.

2. lim
x→x0

(f · g) (x) = L1 · L2.

3. lim
x→x0

(λ · f) (x) = λ · L1.

4. lim
x→x0

f(x)
g(x) = L1

L2
, if lim

x→x0
g(x) 6= 0.

Theorem. Suppose that

f(x) ≤ g(x) ≤ h(x)
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(for all x) and that

lim
x→x0

f(x) = lim
x→x0

h(x)

Then
lim
x→x0

f(x) = lim
x→x0

g(x) = lim
x→x0

h(x)

Corollary.

If lim
x→x0

f(x) = 0 and g is a bounded function. Then

lim
x→x0

(f · g) (x) = 0

Example 3: Compute

lim
x→0

x2 sin

(
1

x

)

Since we have −1 ≤ sin
(
1
x

)
≤ +1 .Then

−x2 ≤ x2 · sin
(
1
x

)
≤ +x2,

Since
lim
x→0
− x2 = lim

x→0
+ x2 = 0

The corollary tells us that

lim
x→0

x2 sin

(
1

x

)
= 0

4.1.4 Indeterminate Forms

Definition. A function f is said to have an indeterminate form at x0(where
x0 can be finite or infinite) if:

1. f is continuous on an interval including x0, except possibly at x0.

2. When we try to evaluate f at x0 we obtain one of the following forms:

0

0
,
∞
∞
, 0 · ∞,∞−∞, 1∞,∞0, 0∞
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Here 0 and 1 represent variable quantities approaching the respective
value, NOT constants with that value. Some indeterminate forms can be
solved by rewriting the limit in an equivalent form by factoring through
elimination, multiplying by the conjugate, by the trigonometric identities or
using L’Hôpital’s rule (See the next chapter).

Example 1: By foctoring

lim
x→−1

x2−x−2
x2−2x−3 = 0

0

lim
x→−1

x2−x−2
x2−2x−3 = lim

x→−1
(x−2)(x+1)
(x−3)(x+1)

= lim
x→−1

(x−2)
(x−3)

= 3
4

Example 2: By the conjugate

lim
x→4

√
x−2
x−4 = 0

0

lim
x→4

√
x−2
x−4 = lim

x→4

(
√
x−2)(

√
x+2)

(x−4)(
√
x+2)

= lim
x→4

(x−4)
(x−4)(

√
x+2)

= lim
x→4

1

(
√
x+2)

= 1
4

Example 3: By trigonometric identities

lim
x→0

sin(x)
sin(2x) = 0

0

lim
x→0

sin(x)
sin(2x) = lim

x→0

sin(x)
2 sin(x) cos(x)

= lim
x→0

1
2 cos(x)

= 1
4

4.2 Continuous Functions

4.2.1 Continuity of a function at a point

Definitions.

• Let f be a real function on a subset of the real numbers. Then f is
continuous at x0 if {

1) x0 ∈ Df

2) lim
x→x0

f(x) = f(x0)
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• In particular, if the left hand limit, right hand limit and the value of
the function at x = x0 exist and are equal to each other, i.e.,

lim
x→x−0

f(x) = lim
x→x+0

f(x) = f(x0)

then f is said to be continuous at x = x0.

• A function is continuous if it is continuous at every x0 in its domain
Df .

• If it is not continuous there, i.e. if either the limit does not exist or is
not equal to f(x0) we will say that the function is discontinuous at
x0.

Example 1: Consider the function

f(x) = |x| =
{

x, x ≥ 0
−x, x

This function is continuous at all x0, lim
x→x0

f(x) = lim
x→x0

|x| = |x0| = f(x0).

Example 2:
Let f : R→ R defined by:

f(x) =

{
sinx
x , x 6= 0
1, x = 0

Then f is continuous at x = 0, lim
x→0

f(x) = lim
x→0

sinx
x = f(0) = 1.

4.2.2 Continuity of a function in an interval

Definition.

1. f is said to be continuous in an open interval ]a, b[ if it is continuous
at every point x0 in this interval.

2. f is said to be continuous in the closed interval [a, b] if

• f is continuous in ]a, b[ .

• f is right continuous at a point a , i.e. lim
x→a+

f(x) = f(a).

• f is left continuous at a point b , i.e. lim
x→b−

f(x) = f(b).

73



Property. All polynomials, rational functions, trigonometric functions,
the inverse trigonometric functions, the absolute value function, the expo-
nential and logarithm functions are continuous everywhere within its do-
main.

Example : The function y = 1
x2

is continuous for x > 1 or x < −1
but is not continuous on the interval −1 < x < 1 (See Figure 4.2).

Figure 4.2

4.2.3 Continuous Extension at a point

We can redefine functions with removable discontinuities to obtain continu-
ous functions.

Proposition.
Let I be an interval , and x0 ∈ I. Let f be defined on I−{x0} such that

lim
x→x0

f (x) = l ∈ R.

Consider the function
∼
f :

∼
f(x) =

{
f(x) for x ∈ I − {x0}
l for x = x0

then, the function
∼
f is a continuous at x0.
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Example 1: Find a continuous extension of the function f(x) = sinx
x .

The domain of f is Df = R∗ , then f is discontinuous at x = 0 because
f(0) is not defined. Since lim

x→0
f (x) exists, the discontinuity is removable.

We know that lim
x→0

sinx
x = 1. For the function to be continuous at zero

we need to define f(0) we make f(0) = lim
x→0

∼
f (x) = lim

x→0

sinx
x = 1.

and redefine the function:
∼
f(x) =

{
sinx
x for x 6= 0.
1 for x = 0.

We say
∼
f is the continuous extension of f to x = 0.

4.2.4 The Intermediate Value Theorem

It is said that a function is continuous if you can draw its graph without
taking your pencil o the paper.

A more precise version of this statement is the intermediate value theo-
rem:

Theorem. If a function f is continuous on a closed interval [a, b], and

if y0 is some number between f(a) and f(b), then there is a number x0 in
the interval [a, b] such that f(x0) = y0 (See Figure 4.3).

Example: Use the Intermediate Value Theorem to prove x2 = 2 has a
root.

Consider the function f : R→ R defined by: f(x) = x2.
The function f is continuous on a closed interval [1, 2].
One has f(1) = 2 and f(2) = 4. Since f(1) ≤ 2 ≤ f(2), the intermediate

value theorem with a = 1, b = 2, y0 = 2 tells us that there is a number x0
between 1 and 2 such that f(x0) = 2, i.e. for which x20 = 2. So the theorem
tells us that the square root of 2 exists.

4.2.5 Continuity of composite functions

Definition.
Let f and g be real valued functions such that (f ◦ g) is defined at x0. If

g is continuous at x0 and f is continuous at g(x0), then (f ◦ g) is continuous
at x0.

Example: Since both f(x) = x2 + 1 and g(x) = cosx are continuous on
R.

Therefore, both
(f ◦ g)(x) = cos2 x +1, and
(g ◦ f)(x) = cos(x2 +1)
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Figure 4.3

are continuous on R.

4.2.6 Continuity of the algebraic combinations of functions

Definition.
If f and g are both continuous at x0 and λ is any constant, then each

of the following functions is also continuous at x0: The sum f + g , the
difference f − g, the constant multiple λf , the product f · g , the quotient
f/g , if g(x0) 6= 0.

Example: Let f : R→ R defined by:

f(x) =

{
x sin

(
1
x

)
, x 6= 0

0, x = 0

Here is a continuous function on R because

• the inverse function of x , x 7→ 1
x is a continuous on R∗.

• the sine function x 7→ sinx is a continuous on R.
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• the composite functions x 7→ sin
(
1
x

)
is a continuous on R∗

• the function x 7→ x is a continuous on R.

• the product function x 7→ x sin
(
1
x

)
is a continuous on R∗.

• since lim
x→0

x sin
(
1
x

)
= f(0), then the function f is a continuous at x0 =

0.

4.3 Differentiability of Functions

4.3.1 Differentiability of a function at a point

Definition. (Differentiability)
Let f be a real valued function . Then f is said to be differentiable at

x0 ∈ Df if

lim
x→x0

f(x)− f(x0)

x− x0
= l ∈ R

in that case the value l is called the derivative of f at x0.
The derivative of f at x0, if exists, is denoted by f

′
(x0) .

Example 1: The function f : x 7−→
√
x is differentiable at x0 = 1.

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→1

√
x−1
x−1 = 0

0

lim
x→1

√
x−1
x−1 = lim

x→1

(
√
x−1)(

√
x+1)

(x−1)(
√
x+1)

= lim
x→1

x−1
(x−1)(

√
x+1)

= lim
x→1

1

(
√
x+1)

= 1
2

Since f is differentiable at x0 = 1, then f
′
(1) = 1

2 .
Example 2: The function f : x 7−→ 1

x is differentiable at x0 = 2.

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→2

1
x
− 1

2
x−2 = 0

0

lim
x→2

1
x
− 1

2
x−2 = lim

x→2

2−x
2x
x−2

= lim
x→2

−1
2x = −1

4

Since f is differentiable at x0 = 2, then f
′
(2) = −1

4 .
Definitions (Left Differentiability and Right Differentiability)

• f is left differentiable at a point x0 , i.e. lim
x→x−0

f(x)−f(x0)
x−x0 = f

′
L(x0).
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• f is right differentiable at a point x0 , i.e. lim
x→x+0

f(x)−f(x0)
x−x0 = f

′
R(x0).

Property. f is differentiable at a point x0 iff f is left differentiable and
right differentiable at this point, i.e. f

′
L(x0) = f

′
R(x0).

Definition.
The function f is said to be differentiable at x0 ∈ Df iff

lim
h→0

f(x0 + h)− f(x0)

h
= f

′
(x0)

Example 3: The derivative of f(x) = x2 is f
′
(x) = 2x.

lim
h→0

f(x+h)−f(x)
h = lim

h→0

(x+h)2−x2
h

= lim
h→0

(2x+ h) = 2x

Theorem. (Differentiability implies continuity)
Suppose f is differentiable at x0 ∈ Df . Then f is continuous at x0.
Proof. Note that
f is differentiable at x0 ∈ Df ⇒ lim

h→0

f(x0+h)−f(x0)
h = f

′
(x0)

⇒ lim
h→0

f(x0 + h)− f(x0) = lim
h→0

h · f ′ (x0)
⇒ lim

h→0
f(x0 + h)− f(x0) = 0

⇒ lim
h→0

f(x0 + h) = f(x0)

⇒ lim
x→x0

f(x) = f(x0)

⇒ f is continuous at x0

Remark. Every differentiable function is continuous, but the converse
is not true.

Example 4: Consider the function

f(x) = |x| =
{

x, x ≥ 0
−x, x < 0

This function is continuous at all x, but it is not differentiable at x = 0.
To see this try to compute the derivative at 0,

• lim
x→0−

|x|−|0|
x−0 = lim

x→0−
−x
x = −1 =⇒ f

′
L(0) = −1.

• lim
x→0+

|x|−|0|
x−0 = lim

x→0+
x
x = 1 =⇒ f

′
R(0) = 1.

• note that f
′
L(0) 6= f

′
R(0).
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4.3.2 Differentiability of a function in an interval

Definition.

1. f is said to be differentiable in an open interval ]a, b[ if it is differen-
tiable at every point x0 in this interval.

2. f is said to be differentiable in the closed interval [a, b] if

• f is differentiable in ]a, b[ .

• f is right differentiable at a point a , i.e. lim
x→a+

f(x)−f(x0)
x−x0 = f

′
(a).

• f is left continuous at a point b , i.e. lim
x→b−

f(x)−f(x0)
x−x0 = f

′
(b).

4.3.3 Algebra of derivatives

If f , g are differentiable functions and λ is any constant, then

1. (f + g)
′
(x) = f

′
(x) + g

′
(x).

2. (f · g)
′
(x) = f

′
(x) · g(x) + f(x) · g′(x)

3. (λ · f)
′
(x) = λ · f ′(x).

4.
(
f
g

)′
(x) = f

′
(x)·g(x)+f(x)·g′ (x)

(g(x))2
, if g(x) 6= 0.

4.3.4 Derivatives of composite functions

Definition. If f and g are differentiable, so is the composition f ◦ g. The
derivative of f ◦ g is given by:

(f ◦ g)
′
(x) = f ′(g(x)) · g′(x).

Example: The function f(x) = sin 2x is the composition of two simpler
functions, namely: f(x) = g(h(x)) where g(u) = sinu and h(x) = 2x. Since
g and h are differentiable then g

′
(u) = cosu and h

′
(x) = 2.

Therefore the derivative of the composite functions rule implies that

f
′
(x) = (g(h(x)))

′
= g′(h(x)) · h′(x) = (cos 2x) · 2 = 2 cos 2x.
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4.3.5 Derivative of inverse function

Definition. If f is a function with inverse function f−1, then(
f−1

)′
(y) =

1

f ′(x)

Example: The inverse of the function f(x) = x2 with reduced domain
[0,+∞[ is f−1(y) =

√
y. Use the formula given above to find the derivative

of f−1. We have f
′
(x) = 2x, so that

(
f−1

)′
(y) = 1

2x = 1
2
√
y .

4.3.6 Table of Derivatives

f(x) f
′
(x)

ax ax lnx

sinx cosx

cosx − sinx

tanx 1
cos2 x

= 1 + tan2 x

cotx −1
sinx = −1− cot2 x

arcsinx 1√
1−x2

arccosx −1√
1−x2

arctanx 1
1+x2

f(x) f
′
(x)

c 0

x 1√
x 1

2
√
x

n
√
x 1

n.
n√
xn−1

1
x − 1

x2
1
xn

−n
xn+1

xn n.xn−1

ln |x| 1
x

expx expx

4.3.7 Indeterminate Forms and L’Hospital’s Rule

In this section, we will learn how to evaluate functions whose values cannot
be found at certain points.

L’Hospital’s Rule

Consider f and g are continuous functions on [a, b] which are differentiable
at every point in ]a, b[, except possibly at x0 ∈ [a, b]. Assume that:

1. g(x) 6= 0 and g
′
(x) 6= 0 at every point in [a, b].

2. lim
x→x0

f(x)
g(x) = 0

0 or lim
x→x0

f(x)
g(x) = ∞

∞ .

3. lim
x→x0

f
′
(x)

g′ (x)
exists

Then lim
x→x0

f(x)
g(x) exists and lim

x→x0
f
′
(x)

g′ (x)
= lim

x→x0
f(x)
g(x)
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Remark. Note that the rule is also valid for one-sided limits and for
limits at infinity or negative infinity.

In fact, for the special case in which f(x0) = g(x0) = 0, f
′

and g
′

are
continuous, and g

′
(x0) 6= 0, it is easy to see why the rule is true.

lim
x→x0

f
′
(x)

g′ (x)
= f

′
(x0)

g′ (x0)
=

lim
x→x0

f(x)−f(x0)
x−x0

lim
x→x0

g(x)−g(x0)
x−x0

= lim
x→x0

f(x)−f(x0)
g(x)−g(x0)

= lim
x→x0

f(x)
g(x)

Example 1: Find lim
x→1

lnx
x−1

lim
x→1

lnx
x−1 = 0

0

Thus, we can apply l’Hospital’s Rule:

lim
x→x0

f
′
(x)

g′ (x)
= lim

x→1

(lnx)
′

(x−1)′
= lim

x→1

1
x

= 1
Then,

lim
x→x0

f(x)
g(x) = lim

x→1

lnx
x−1 = 1

Example 2: Find lim
x→+∞

expx
x2

lim
x→+∞

expx
x2

= ∞
∞

Thus, we can apply l’Hospital’s Rule:

lim
x→x0

f
′
(x)

g′ (x)
= lim

x→+∞
(expx)

′

(x2)
′ = lim

x→+∞
expx
2.x = ∞

∞
However, a second application of l’Hospital’s Rule gives:

lim
x→x0

f
′′
(x)

g
′′
(x)

= lim
x→+∞

(expx)
′

(2.x)
′ = lim

x→+∞
expx
2 = +∞

Then,

lim
x→x0

f(x)
g(x) = lim

x→+∞
expx
x2

= ∞.

Example 3: Find lim
x→π−

sinx
1−cosx

lim
x→π−

sinx
1−cosx = 0

0

If we blindly attempted to use l’Hospital’s rule, we would get:

lim
x→x0

f
′
(x)

g′ (x)
= lim

x→π−
(sinx)

′

(1−cosx)′
= lim

x→π−
cosx
sinx = −∞
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Then,

lim
x→x0

f(x)
g(x) = lim

x→π−
cosx
sinx = −∞.

4.3.8 Higher derivatives

If the derivative f
′
(x) of some function f exists for all x in the domain

of f , then we have a new function, this function is called the derivative
function of f , and it is denoted by f

′
. Now that we have agreed that

the derivative of a function is a function, we can repeat the process and try
to differentiate the derivative. The result, if it exists, is called the second
derivative of f . It is denoted f

′′
. The derivative of the second derivative

is called the third derivative, written f
′′′

, and so on. The n-th derivative
of f is denoted f (n). Thus

f (0) = f, f (1) = f
′
, f (2) =

(
f
′
)′
, ..., f (n) =

(
f
n−1
)′
.

Example 1: If f(x) = x2 − x+ 1 then
f(x) = x2 − 2x+ 3

f
′
(x) = 2x− 2

f
′′

(x) = 2

f
′′′

(x) = 0
.
.

=
=

.

.

f (n) (x) = 0.

Example 2: If f(x) = expx then

f (1)(x) = expx, f (2) (x) = expx, ..., f (n) = expx.

Example 3. If f(x) = sinx then

f
′
(x) = cosx

f
′′
(x) = − sinx

f
′′′

(x) = − cosx

f (4)(x) = sinx

f (5)(x) = cosx

f (6)(x) = − sinx

f (7)(x) = − cosx
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It’s easy to find that ,

sin(n) x = sin
(
x+

nπ

2

)
4.3.9 Approximating functions by Taylor polynomials

First degree Taylor polynomials

If we know the function value at some point f(x0) and the value of the
derivative at the same point f

′
(x0), we can use these to find the tangent

line, and then use the tangent line to approximate f(x) for other points x.

The tangent line approximation of f for x near x0 is called the first
degree Taylor polynomial of f and is:

f(x) ≈ f(x0) + f
′
(x0) (x− x0) . (�)

The statement that a complicated function behaves like a simpler func-
tion f for x near x0 can be made more precise by use of the “O” notation.
For example, we can replace the weak statement (�) by the stronger version,

f(x) = f(x0) + f
′
(x0) (x− x0) +O(x− x0)

This means that there exists a function ε(x) such that:

lim
x→x0

(x− x0).ε(x)

(x− x0)
= 0

we write then
(x− x0).ε(x) = O(x− x0)

Example 1: Consider the function f(x) = sinx. We want the first
degree Taylor polynomial of this function near the point x0 = π

4 and x0 = 0.

• Since sin(π4 ) =
√
2
2 and (sin)

′
(π4 ) = cos(π4 ) =

√
2
2 , the approximation

of f for x near x0 = π
4 is given by:

sinx =

√
2

2
+

√
2

2

(
x− π

4

)
+O(x− π

4
), lim

x→π
4

O(x− π

4
) = 0

• Since sin(0) = 1 and (sin)
′
(0) = cos 0 = 1, the approximation of f for

x near x0 = 0 is given by:

sinx = x+O(x), lim
x→0

O(x) = 0
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Example 2: Consider the function f(x) =
√
x. We want the first

degree Taylor polynomial of this function near the point x0 = 1 and an
evaluation of

√
1.002

the approximation of f for x near x0 = 1 is given by:

√
x = 1 +

1

2
(x− 1) +O(x− 1), lim

x→0
O(x− 1) = 0

then

√
1.002 = 1+

1

2
(1.002− 1)+O(0.002) = 1.001+O(0.002), lim

x→0
O(0.002) = 0.

Higher order Taylor polynomials

The approximations of the function f by the Taylor polynomial of
degree n, denoted by Pn(x − x0) for x near x0 using more derivatives
f
′
(x0), f

′′
(x0), ..., f

(n)(x0) is given by: f(x) = Pn(x − x0) + Rn (x− x0)
for lim

x→x0
Rn (x− x0) = 0.

Note that Rn (x− x0) is called remainder term which is the approx-
imation error when approximating f with its Taylor polynomial. Using
the “O” notation, the statement in Taylor polynomial reads as

Rn (x− x0) = O ((x− x0)n)

f(x) = f(x0) + f
′
(x0)
1! (x− x0) + f

′′
(x0)
2! (x− x0)2 + ...+ f

(n)
(x0)
n! (x− x0)n +O ((x− x0)n)

Example 1:

Consider the function f(x) = lnx. We want a polynomial approximation
of this function near the point x0 = 1. The first few derivatives of f are

f(x) = lnx

f
′
(x) = 1

x

f
′′
(x) = −1

x2

f
′′′

(x) = 2
x3

f
(4)

(x) = −3
x4

The derivatives evaluated at x0 = 1 are

f(0) = 0, f
(n)

(0) = (−1)n−1 (n− 1)!
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By Taylor’s polynomial we have,

lnx = (x− 1)−(x− 1)2

2
+

(x− 1)3

3
−(x− 1)4

4
+...+(−1)n−1

(x− 1)n

n
+O ((x− 1)n)

4.3.10 Mac-Laurin Polynomials

The approximations of f by the Taylor polynomial of degree n for x near
x0 = 0 is called the approximations of f by Mac-Laurin polynomial and
is given by:

f(x) = f(0) + f
′
(0)
1! x+ f

′′
(0)
2! x2 + ...+ f

(n)
(0)

n! .xn +O (xn) , lim
x→0

O (xn) = 0.

Example: Consider the function f(x) = cosx. We want Mac-Laurin
polynomial of this function near the point x0 = 0. The first few derivatives
of f are

f
′
(x) = cosx

f
′′
(x) = − sinx

f
′′′

(x) = − cosx

f
(4)

(x) = sinx

f
(5)

(x) = cosx

f
(6)

(x) = − sinx

It’s easy to find that ,

cosn (x) = cos
(
x+

nπ

2

)
Since cos(0) = 1 and sin(0) = 0 the Maclaurin polynomials of the cosine

is,

cosx = 1− x2

2!
+
x4

4!
+ ......+ (−1)2n

x2n

2n!
+O

(
x2n+1

)
The polynomial approximation of degree 4 is given by:

cosx = 1− x2

2!
+
x4

4!
+O

(
x4
)

The polynomial approximation of degree 5 is given by:
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cosx = 1− x2

2!
+
x4

4!
+O

(
x5
)

The first statement informs us that there are terms of order x4 in the
expansion. The second statement is stronger as it informs us that there are
no terms of order x5.

Basic Mac-Laurin Polynomial

expx = 1 + x
1! + x2

2! + x3

3! + ......+ xn

n! +O (xn) .

sinx = x− x3

3! + x5

5! + .........+ (−1)nx2n+1

2n+1! +O
(
x2n+2

)
.

cosx = 1− x2

2! + x4

4! + ......+ (−1)nx2n
2n! +O

(
x2n+1

)
.

(1 + x)α = 1+ αx+ α(α−1)x2
2! + ...+ α(α−1)....(α−(n−1))xn

n! +O (xn) .

log(1 + x) = x− x2

2 + x3

3 −
x4

4 + ....+ (−1)nxn+1

n +O
(
xn+1

)
.

arccosx = π
2 − x−

1
2 .
x3

3. −
1.3
2.4 .

x5

5 −
1.3.5
2.4.6

x7

7 − ...−
1.3.5...(2n−1).

2.4.6....2n .x
(2n+1)

(2n+1) +O
(
x2n+2

)
.

arcsinx = x+ 1
2 .
x3

3. + 1.3
2.4 .

x5

5 + 1.3.5
2.4.6

x7

7 + ...+ 1.3.5...(2n−1).
2.4.6....2n .x

(2n+1)

(2n+1) +O
(
x2n+2

)
.

arctan g = x− x3

3. −
x5

5 −
x7

7 + ...− x(2n+1)

(2n+1) +O
(
x2n+2

)
.

coshx = 1 + x2

2! + x4

4! + ......+ x2n

2n! +O
(
x2n+1

)
.

sinhx = x+ x3

3! + x5

5! + .........+ x2n+1

2n+1! +O
(
x2n+2

)
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Chapter 5

Finite Expansions

5.1 Finite expansions at zero

Definition.
Let f be a real valued function. We said that the function f is repre-

sented by a finite expansion at zero if there exist real numbers a0,a1,..., an
and a real valued function ε such that

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n + xnε(x), lim
x→0

ε(x) = 0.

Then the function f is represented by the polynomial approximation of
degree n, denoted by Pn(x) for x near zero, which is called the main part of
finite expansions at zero, such that: Pn(x) = a0 + a1x+ a2x

2 + ...+ anx
n.

Remark: Note that xnε(x) = O (xn) .
Example. Using the euclidean division by increasing power order, one

has the finite expansion at zero of f(x) = 1
1−x :

1

1− x
= 1 + x+ x2 + ...+ xn +

xn+1

1− x
= 1 + x+ x2 + ...+ xn + xn.

(
x

1− x

)
.

in this case ε(x) = x
1−x . We generally do not try to determine the

function ε(x).

Properties.

1. If the function f can be expanded at zero, then this expansion is
unique.
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2. If the function f can be expanded at zero, then lim
x→0

f(x) exists and

equal to a0. This criterion is generally used to demonstrate that a
function does not admit an expansion.

Example. The function f(x) = lnx does not have an expansion at zero,
because lim

x→0+
f(x) = −∞.

5.2 Algebraic combinations of finite expansions

Definition.
If f and g can both be expanded at zero and λ is any constant, then

each of the following functions is also can be expanded at zero: The sum
f + g , the difference f − g, the constant multiple λf , the product f · g ,
the quotient f/g , if g(x0) 6= 0.

Consider the finite expansions at zero of f and g:

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n +O (xn)
g(x) = b0 + b1x+ b2x

2 + ...+ bnx
n +O (xn)

F The finite expansion at zero of the sum f + g is:

(f + g) (x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + ...+ (an + bn)xn +O (xn)

lim
x→0

ε(x) = 0.

F The finite expansion at zero of the f · g is obtained by the product and
keeping only the monomials of degree less than n in the product(

a0 + a1x+ a2x
2 + ...+ anx

n
) (
b0 + b1x+ b2x

2 + ...+ bnx
n
)

F The finite expansion at zero of the quotient f/g is obtained by the eu-
clidean division of

(
a0 + a1x+ a2x

2 + ...+ anx
n
)

by
(
b0 + b1x+ b2x

2 + ...+ bnx
n
)

by increasing power order.

Example 1: Find the finite expansion at zero of f(x) = sinhx of the
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degree 4.

sinhx =
expx− exp(−x)

2

=
1

2

[(
1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!

)
−
(

1 +
−x
1!

+
x2

2!
+
−x3

3!
+
x4

4!

)]
+O

(
x4
)

=
1

2

(
2x+ 2

x3

3!

)
+O

(
x4
)

= x+
x3

3!
+O

(
x4
)
.

Example 2: Find the finite expansion at zero of f(x) = cosx · sinx of
the degree 5.

We have cosx = 1− x2

2! + x4

4! +O
(
x5
)

and sinx = x− x3

3! + x5

5! +O
(
x5
)
.

f(x) = cosx · sinx

=

(
1− x2

2!
+
x4

4!

)
·
(
x− x3

3!
+
x5

5!

)
+O

(
x5
)
.

=

(
1− x2

2
+
x4

24

)
·
(
x− x3

6
+

x5

120

)
+O

(
x5
)
.

= x− 2

3
x3 +

2

15
x5 +O

(
x5
)
.

Example 3: Find the finite expansion at zero of f(x) = sinx
cosx of the

degree 3.
Note that lim

x→0
cosx 6= 0 then the quotient f(x) = sinx

cosx can be expanded

at zero.
Let sinx = x− x3

3! +O
(
x3
)

and cosx = 1− x2

2! +O
(
x3
)
.

Using the euclidean division by increasing power order we obtain:

f(x) =
sinx

cosx

=
x− x3

3!

1− x2

2!

+O
(
x3
)

= x+
1

3
x3 +O

(
x3
)
.

Example 4: Find the finite expansion at zero of f(x) = ln(1+x)
sinx of the

degree 3.
Since sinx = x− x3

3! +O
(
x3
)

we have lim
x→0

sinx = 0.
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Note that the function f can be expanded at zero of the degree 3 if the
finite expansions at zero of ln (1 + x) and sinx are given of the degree 4.

f(x) =
ln (1 + x)

sinx

=
x− x2

2 + x3

3 −
x4

4 +O
(
x4
)

x− x3

3! +O (x4)

=
1− x

2 + x2

3 −
x3

4 +O
(
x3
)

1− x2

3! +O (x3)

Since lim
x→0

(
1− x2

3! +O
(
x3
))

= 0 the function f can be expanded in

this case.

ln (1 + x)

sinx
=

1− x
2 + x2

3 −
x3

4 +O
(
x3
)

1− x2

3! +O (x3)

= 1− x

2
+
x2

6
− x3

12
+O

(
x3
)
.

5.3 Composite of finite expansions

Definition.
If g can be expanded at zero of degree n and if f can be expanded at

g(0) of degree n such that g(0) = 0. Then the composite function (f ◦ g)
can be expanded at zero of degree n by replacing the finite expansion of g
in the finite expansion of f and by keeping only the monomials of degree ≤
n.

Example 1: Find the finite expansion at zero of f(x) = exp (cosx) of
the degree 3.

If g(x) = cosx note that g(0) 6= 1.

We know that expx = 1+ x
1!+

x2

2! +x3

3! +O
(
x3
)

and cosx = 1−x2

2! +O
(
x3
)
.
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So if g(x) = cosx− 1 = −x2

2! +O
(
x3
)

in this case g(0) = 0.

f(x) = exp (cosx)

= exp (1− 1 + cosx)

= exp 1 · exp (−1 + cosx)

= exp 1 · exp

[
−x

2

2!
+O

(
x3
)]

= exp 1.

1 +

(
−x2

2!

)
1!

+O
(
x3
)

= exp 1− exp 1

2
x2 +O

(
x3
)
.

Example 2: Prove that the finite expansion at zero of f(x) = exp (sinx)

is given by f(x) = exp (sinx) = 1 + x+ x2

2 +O
(
x3
)
.

5.4 Finite expansions at a point

We said that the function f : x 7−→ f(x) can be represented by a finite
expension at point x0 if the function F : X 7−→ F (X) can be represented
by finite expension at zero X0 = 0 such that F (X) = f (x0 +X) and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +O (Xn) , lim
X→0

O (Xn) = 0.

f(x) = a0 + a1 (x− x0) + a2 (x− x0)2 + ...+ an (x− x0)n +O ((x− x0)n) ,

and lim
x→x0

O ((x− x0)n) = 0.

Example 1: Find the finite expansion at a point x0 = 1 of f(x) = expx
of the degree 3 .

F (X) = f (x0 +X)

= exp (1 +X)

= exp 1 · expX

= exp 1 ·
[
1 +

X

1!
+
X2

2!
+
X3

3!
+O

(
X3
)]

= exp 1 ·

[
1 +

(x− 1)

1!
+

(x− 1)2

2!
+

(x− 1)3

3!
+O

(
(x− 1)3

)]
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Example 2: Find the finite expansion at a point x0 = 2 of f(x) = lnx
of the degree 2 .

F (X) = f (x0 +X)

= ln (2 +X)

= ln

[
2 ·
(

1 +
X

2

)]
= ln 2 + ln

(
1 +

X

2

)
= ln 2 +

1

2
X − 1

8
X2 +O

(
X2
)

= ln 2 +
1

2
(x− 2)− 1

8
(x− 2)2 +O

(
(x− 2)2

)
.

5.5 Finite expansions at Infinity

We said that the function f : x 7−→ f(x) can be represented by a finite
expension at infinity if the function F : X 7−→ F (X) can be represented by
finite expension at zero X0 = 0 such that F (X) = f

(
1
x

)
and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +O(Xn), lim
X→∞

O(Xn) = 0.

f(x) = a0 +
a1
x

+
a2
x2

+ ...+
an
xn

+O

(
1

xn

)
.

Example 1: Find the finite expansion at infinity of f(x) = cos 1
x .

Let X = 1
x and thus:

cos
1

x
= cosX = 1− X2

2!
+
X4

4!
+ ......+

(−1)nX2n

2n!
+O

(
X2n

)
= 1− 1

2!x2
+

1

4!x4
+ ......+

(−1)n

2n!x2n
+O

(
1

x2n

)

5.6 Using finite expansions to evaluate limits

The finite expansions provide a good way to understand the behaviour of a
function near a specified point and so are useful for solving some indeter-
minate forms. When taking a limit as x → 0 , we can often simplify the
statement by substituting in finite expansions that we know.
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Example 1: Find the limit lim
x→0

exp(2x) sin 3x
sinh(−2x)

lim
x→0

exp(2x) sin 3x

sinh (−2x)
= lim

x→0

exp (2x) · (3x+O(x))

−2x+O(x)
= −2

3
.

Example 2: Find the limit lim
x→0

1−cosx
sin2 x

lim
x→0

1− cosx

sin2 x
= lim

x→0

x2

2 +O(x)

(x+O(x))2
=

1

2
.

Example 3: Find the limit lim
x→0

expx−1−x−x
2

2
x3

expx = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+O

(
x3
)

We get expx− 1− x− x2

2 = x3

3! + x4

4! +O
(
x4
)

and consequently

expx− 1− x− x2

2

x3
=

x3

3! + x4

4! +O
(
x4
)

x3

=
1

3!
+
x

4!
+O (x)

so

lim
x→0

expx− 1− x− x2

2

x3
= lim

x→0

1

3!
+
x

4!
+O (x) =

1

6
.
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Chapter 6

Vector Space and Linear
Maps

6.1 Vector Space

Underlying every vector space (to be defined shortly) is a scalar field K.
A field is a set of elements where the four basic operations +,−,×,÷

are defined, with their usual properties (commutativity, associativity, dis-
tributivity). Examples of fields include the rational numbers Q, the real
numbers R, and the complex numbers C. However, N is not a field (we
cannot subtract or divide) and Z is not a field (we cannot divide).

Definition. (Vector space)
A vector space over a field K is a nonempty set V of objects, called

vectors, on which are defined two operations:
1) An internal operation (vector addition)

+ : V × V −→ V
(x, y) 7−→ x+ y

2) An external scalar (scalar multiplication)

· : K × V −→ V
(α, x) 7−→ αx

such that the following properties are satisfied:

1. ∀u, v ∈ V, u+ v = v + u.

2. ∀u, v, w ∈ V : (u+ v) + w = u+ (v + w) .
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3. ∀u ∈ V,∃ 0V ∈ V : u+ 0 = u (0V is the zero vector).

4. ∀u ∈ V , ∃ (−u) ∈ V : u+ (−u) = 0V .

5. ∀u, v ∈ V , ∀α ∈ K : α (u+ v) = αu+ αv.

6. ∀u ∈ V,∀α, β ∈ K : (α+ β)u = αu+ βu.

7. ∀u ∈ V,∀α, β ∈ K : (αβ)u = α (βu) .

8. ∀u ∈ V : 1u = u.

Examples:

1. Kn = {(x1, x2, .., xn) /xi ∈ R, i = 1, .., n} is a vector space over the
field K and K is any field (typically K = R or K = C) with the
vector addition and scalar multiplication defined as follows for all
(x1, x2, .., xn) and (y1, y2, .., yn) from Kn and α ∈ K :

(x1, x2, .., xn) + (y1, y2, .., yn) = (x1+y1, x2+y2, .., xn + yn)

α (x1, x2, .., xn) = (αx1, αx2, .., αxn)

2. The set P [x] =

{
n

i=1
aix

i/ ai ∈ R, i = 1, .., n

}
of all polynomials over

a field R is a vector space over R with the vector addition and scalar
multiplication defined as follows for all p(x) = n

i=1
aix

i and q(x) =

n

i=1
bix

i from P [x] and α ∈ R :

∀p(x), q(x) ∈ P [x] : p(x) + q(x) = n

i=1
(ai + bi)x

i

∀p(x) ∈ P [x],∀α ∈ R : αp(x) = n

i=1
(αan)xn

3. The set V of all real valued continuous (differentiable or integrable)
functions defined on the closed interval [a, b] is a real vector space with
the vector addition and scalar multiplication defined as follows:

(f + g)(x) = f(x) + g(x)

(αf)(x) = αf(x)

For all f, g ∈ V and α ∈ R.
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6.1.1 Subspaces of a vector space

Definition 1. (Subspace)
A subspace of a vector space V is a nonempty subset F of V that has

three properties:

1. 0V ∈ F.

2. F is closed under vector addition. That is, ∀u, v ∈ F : u+ v ∈ F .

3. F is closed under multiplication by scalars. That is, ∀u ∈ F,∀α ∈ K :
αu ∈ F.

Definition 2. (Subspace)
A subspace of a vector space V is a a nonempty subset F of V if and

only if:
∀u, v ∈ F,∀α, β ∈ K : αu+ βv ∈ F.

Remark 1.
Properties (1), (2), and (3) guarantee that a subspace F of V is itself a

vector space, under the vector space operations already defined in V .
Example 1:

• Rn−1 is a subspace of Rn.

• {0V } is a subspace of V.

• V is a subspace of V.

Example 2: Show that F = {(0, y, z) , y, z ∈ R} is a subspace of real
vector space R3.

• 0R3 ∈ F then F is a nonempty subset of R3.

• Let u = (0, y1, z1), v = (0, y2, z2) ∈ F and α, β ∈ R. Then,

αu+ βv = α (0, y1, z1) + β (0, y2, z2)

= (0, αy1 + βy2, αz1 + βz2) ∈ F.

Hence, F is a subspace of R3.
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6.1.2 Linear combinations

Definition. (Linear combination)
Let V be a vector space. We say that the vector u is a linear combi-

nation of the vectors v1, v2, .., vn of V if

∃ α1, α2, .., αn ∈ K : u = α1v1 + α2v2 + ..+ αnvn.

Example: Express u = (−2, 3) in R2 over R as a linear combination of
the vectors v1 = (1, 1) and v2 = (1, 2).

Let α1, α2 be scalars such that

u = α1v1 + α2v2
⇒ (−2, 3) = α1(1, 1) + α2(1, 2)
⇒ (−2, 3) = (α1 + α2, α1 + 2α2)
⇒ α1 + α2 = −2 and α1 + 2α2 = 3
⇒ α1 = −7 and α2 = 5

Hence, u = −7v1 + 5v2

6.1.3 Linear independence and linear dependence

Definition. (Linear independence)
Let the set S = {v1, v2, .., vn} ⊂ V , a vector space. We say that S is

linearly independent if all scalars α1, α2, .., αn are zero for which α1v1 +
α2v2 + ..+ αnvn = 0V . That is

∀α1, α2, .., αn ∈ K : α1v1+α2v2+..+αnvn = 0V ⇒ α1 = α2 = .. = αn = 0K .

Otherwise we say S is linearly dependent.
Definition. (Linear dependence)
The set S = {v1, v2, .., vn} is linearly dependent if there are scalars

α1, α2, .., αn not all zero for which

α1v1 + α2v2 + ..+ αnvn = 0V

That is:

∃ α1, α2, .., αn ∈ K : αi 6= 0, i ∈ {1, .., n} ∧ α1v1 + α2v2 + ..+ αnvn = 0V .

Example 1: The set S = {(−1, 0) , (2, 1)} is linearly independent.

Let α1, α2 ∈ R:
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α1 (−1, 0) + α2 (2, 1) = (0, 0) ⇒ (−α1 + 2α2, α2) = (0, 0) .
⇒ −α1 + 2α2 = 0 and α2 = 0.
⇒ α1 = α2 = 0.

Example 2: The set S = {(1, 0) , (−2, 0)} is linearly dependent.
Let α1, α2 ∈ R:
α1 (1, 0) + α2 (−2, 0) = (0, 0) ⇒ (α1 − 2α2, 0) = (0, 0) .

⇒ α1 − 2α2 = 0
⇒ α1 = 2α2.

∃α1 = 1 ∧ α2 = 1
2 ∧ α1 (1, 0) + α2 (−2, 0) = (0, 0) .

Remark 2.

• {u} is linearly independent ⇔ u 6= 0V .

• 0V ∈ S = {v1, v2, .., vn} =⇒ S is linearly dependent.

6.1.4 Generating sets

Definition. (Generating sets)
Given a vector space V , a finite set of vectors S = {v1, v2, .., vn} ⊂ V is

called a system of generators if every vector u ∈ V can be expressed as a
linear combination of vectors of S :

∀u ∈ V,∃ α1, α2, .., αn ∈ K : u = α1v1 + α2v2 + ..+ αnvn.

and we write V = [S] .
Example 1: The set S = {(1, 1, 1) , (2, 2, 0) , (3, 0, 0)} is a system of

generators of R3.
Let u = (x, y, z) be a vector, we check the scalars α, β, γ ∈ R such that

u = (x, y, z) = α (1, 1, 1) + β (2, 2, 0) + γ (3, 0, 0)

⇒


x = α+ 2β + 3γ
y = α+ 2β
z = α

⇒


α = z

β = y−z
2

γ = x−y
3

⇒ u = z (1, 1, 1) +
y − z

2
(2, 2, 0) +

x− y
3

(3, 0, 0)

Example 2: Find generating set of the vector space R2 over the field R

(x, y) = x (1, 0) + y (0, 1)⇒ R2 = [{(1, 0) , (0, 1)}]
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6.1.5 Bases of a vector space

Definition. (Bases)
Given a vector space V , a finite set of vectors S = {v1, v2, .., vn} ⊂ V is

called a basis of V if has two properties:

1. S is linearly independent.

2. S is a generator of V , that is V = [S] .

Examples: Let Rn be a vector space over R.

• If n = 1, the basis of R is the set S1 = {1}.

– Since ∀x ∈ R : x = 1.x then R is generated by S1.

– ∀α ∈ R : α.1 = 0 ⇒ α = 0. Thus the set S1 is linearly indepen-
dent.

• If n = 2, the basis of R2 is the set S2 = {(1, 0) , (0, 1)} .

– R2 is generated by S2.

– ∀α, β ∈ R : α. (1, 0) + β. (0, 1) = (α, β) = (0, 0) ⇒ α = β = 0.
Thus the set S2 is linearly independent.

• If n = 3, the basis of R3 is the set S3 = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} .

– Clearly S3 is linearly independent and is a system of generators
of R3.

Property. If S is a basis, every vector can be written as a linear com-
bination of its elements in a unique way.

Example 1. Let the set S = {(1, 0), (1, 1)}, we can write any vector of
R2 as a linear combination of (1, 0) and (1, 1) in a unique way.

Example 2. The set S = {(1, 0), (0, 1), (1, 1)} is not a basis but it is a
system of generators. In this case any of the three vectors can be removed
because it can be expressed as a combination of the other two. The linear
combinations are not unique:

(2, 3) = 1.(1, 0) + 2.(0, 1) + 1.(1, 1)
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6.1.6 Dimension of a vector space

Definition. (Dimension)
If a vector space V has a basis with finite number of elements, then every

other basis of V has the same number of elements. This number is called
the dimension of V . We write

dimV = n

Properties. if we know that a vector space has dimension n (dimV = n),
then:

• Every basis consists of exactly n vectors (but not every set of n vectors
is a basis!).

• Every system of generators has to contain at least n vectors.

• If a system of generators consists of n vectors, then it is a basis.

• If a set of n vectors is linearly independent, then it is a basis.

Proposition. Let V be a vector space of dimension n, and let F is a
subspace of a vector space V then dimF ≤ dimV . Furthermore, if dimF =
dimV then F = V.

Example 1: Rn is a vector space of dimension n. A particular basis is
the canonical basis:

e1 = (1, 0, 0, .., 0)

e2 = (0, 1, 0, .., 0)

.

.

en = (0, 0, 0, .., 1)

Example 2: The set of three vectors {(1, 2) , (−1, 2) , (3, 1)} is not a
basis of R2 because 3 > dimR2 = 2.

Example 3:

• dim {0V } = 0.

• Let C be a vector space over R, then dimC = 2.

• Let Pn be a vector space of polynomial over R, then dim(Pn) = n+ 1.
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6.2 Linear Maps

Definition. (Linear map)
A linear map f from a vector space V into a vector space W is a rule

that assigns to each vector x in V a unique vector f(x) in W , such that:

f : V −→ W
x 7−→ f(x)

1. ∀x1, x2 ∈ V : f(x1 + x2) = f(x1) + f(x2).

2. ∀x ∈ V,∀α ∈ R : f (αx) = αf(x).

Example 1: The map f : R2 → R3 defined as f(x, y) =
(
x2, x+ y, 1

)
is not linear. We can easily find vectors for which the condition is false. For
example:

f ((1, 0) + (0, 0)) = f (1, 0) = (1, 1, 1)
f (1, 0) + f (0, 0) = (1, 1, 1) + (0, 0, 1) = (1, 1, 2)

Hence, f ((1, 0) + (0, 0)) 6= f (1, 0) + f (0, 0)
Example 2: f : R2 → R3 defined as f(x, y) = (3x− y, 0, 2y) is linear

map:

1. f ((x1, y1) + (x2, y2)) = f (x1+x2, y1+y1) = (3 (x1 + x2) , 0, 2 (y1 + y2)) =
(3x1 − y1, 0, 2y1)+(3x2 − y2, 0, 2y2)⇒ f ((x1, y1) + (x2, y2)) = f(x1, y1)+
f (x2, y2) .

2. f (α.(x, y)) = f (α.x, α.y) = (3 (αx)− (αy) , 0, 2 (α.y)) = α. (3x− y, 0, 2y) =
αf(x, y).

Properties. Here are some simple properties of linear maps f : V →
W .

1. f(0V ) = 0W .

2. f(−x) = −f(x).

3. If V1 is a subspace of V , then f(V1) is a subspace of V.

4. If W1 is a subspace of W , then f−1(W1) is a subspace of W.

5. The composite map of two linear maps is a linear map.
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6.2.1 Linear maps and dimension

The kernel of a linear map

Definition. ( Kernel )
The kernel (or null space) of such a f , denoted by ker f , is the set

of all x in V such that f(x) = 0W (the zero vector in W ):

ker f = {x ∈ V, f(x) = 0W } = f−1({0W })

The image of a linear map

Definition. (Image)
The image of f , denoted by Imf , is the set of all vectors in W of the

form f(x) for some x in V .

Imf = {f(x), x ∈ V } = f(V )

Properties. Let f : V →W be a linear map.

1. The kernel of f is a subspace of V .

2. The image of f is a subspace of W .

Proposition. Let f : V →W be a linear map.

1. f is injective if and only if ker f = {0V } .

2. f is surjective if and only if Imf = W.

Example: The map f : R3 → R2 defined as f(x, y, z) = (x+ y, z) is
not injective and surjective.

• f is injective ⇔ ker f = {0R3} .

ker f =
{
X ∈ R3, f(X) = (0, 0)

}
=

{
(x, y, z) ∈ R3, f(x, y, z) = (0, 0)

}
=

{
(x, y, z) ∈ R3, (x+ y, z) = (0, 0)

}
=

{
(x, y, z) ∈ R3, x+ y = 0 and z = 0

}
=

{
(x, y, z) ∈ R3, x = −y and z = 0

}
= {(−y, y, 0) , y ∈ R}

For example: (−1, 1, 0) ∈ ker f ⇒ ker f 6= {0R3} . Hence f is not
injective.
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• f is surjective ⇔ Imf =
{
f(x), x ∈ R3

}
= R2.

Imf =
{
f(X), X ∈ R3

}
= {(x+ y, z) : x, y, z ∈ R}
= {x (1, 0) + y (1, 0) + z (0, 1) : x, y, z ∈ R}

Hence, Imf is generated by two vectors (1, 0) , (1, 0) which are the canon-
ical basis of R2. Then Imf = R2 and f is surjective.

Proposition. Let f : V → W be a linear map, with V finite-
dimensional. Then:

dimV = dim ker f + dim Imf

The rank of a linear map

Definition. (Rank)
The rank of a linear map f is the dimension of its image, written rankf

:
rankf = dim Imf

Example: Find ker f, Imf and rankf of the map f : R4 → R3 defined
as f(x, y, z, t) = (x− y, z + t, x− y + z) .

ker f =
{
X ∈ R4, f(X) = (0, 0, 0)

}
=

{
(x, y, z, t) ∈ R4, f(x, y, z, t) = (0, 0, 0)

}
=

{
(x, y, z, t) ∈ R4, (x− y, z + t, x− y + z) = (0, 0)

}
=

{
(x, y, z, t) ∈ R4, x− y = 0 ∧ z + t = 0 ∧ x− y + z = 0

}
=

{
(x, y, z) ∈ R3, x = y ∧ z = t = 0

}
= {(x, x, 0, 0) , x ∈ R} = {x. (1, 1, 0, 0) , x ∈ R }

Hence , ker f = [{(1, 1, 0, 0)}] .

Imf = {f(x, y, z, t)/ x, y, z, t ∈ R}
= {(x− y, z + t, x− y + z) / x, y, z, t ∈ R}
= {(x− y) . (1, 0, 1) + t. (0, 1, 0) + z (0, 1, 1) / x, y, z, t ∈ R}

Hence , Imf = [{(1, 0, 1) , (0, 1, 0) , (0, 1, 1)}]
Let α1, α2, α3 ∈ R:
α1 (1, 0, 1) + α2 (0, 1, 0) + α3 (0, 1, 1) = (0, 0, 0) ⇒ (α1, α2 + α3, α1 + α3) = (0, 0, 0) .

⇒


α1 = 0 .

α2 + α3 = 0.
α1 + α3 = 0.

⇒ α1 = α2 = α3 = 0.

103



Therefore, the set {(1, 0, 1) , (0, 1, 0) , (0, 1, 1)} is linearly independent and
it is the basis of Imf.

rankf = dim Imf = 3.

...
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