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Introc uction
“"To understand the Universe, you must understand the language in

which it's written, the language of Mathematics” Galileo Galilei

This is a Galileo’s quotation which has been proved over time and with
the development of the mathematical theories. Thus we can describe
more and more phenomena of the universe whether they are physical,
biological, ecological, economic ... through different laws and
mathematical entities.

Dear student, if you want to become an engineer or a specialist in any
of the university scientific fields, you must have a good achievement in
mathematics in order to pass to the other sciences and to achieve higher

academic degrees.

This handout in General Algebra, Analysis and Linear Algebra
includes chapters that cover the vocabulary of the Mathematics 1
curriculum which a first year student in Science of Technology (ST)
specialty in the first semester. This scientific production can be used as

a reference for undergraduates in the first year Mathematics and other

Experimental Sciences majors as well.

In fact, we have noticed the absence of references on the ministerial
curriculum in the mathematics module in English, for this reason we
provide this work for Algerian and foreign students as an attempt to
overcome the difficulties facing them in English, the contemporary
language of science, and provide them with the common terms to
stimulate their educational activity and scientific research in this

language, as it is the language of the most prominent scientific web sites




and the language of business and international conferences.
The topics were formulated appropriately in a simple linguistic style,
taking into account the necessary accuracy and easiness. All the

concepts were followed by examples and solved exercises.

1. Logic and mathematical reasoning

The first year of university is an essential stage on which the success or
the failure of the coming years depends, as it adopts the integrity of
thinking of the student with mathematical logic which is the basis of
mathematics and is the subject of the first chapter of the program.
Through it, they learn the logical steps of solving a problem with the help
of patterns of proof. Logic is used also in the field of working with

devices such as computers and electrical circuits.

2. Sets, Relations and Applications

The second chapter is devoted to the set theory, starting from the sets
concepts and belonging in the sets, operations and the relations that gave

rise to the concept of applications and functions. Thus, this fundamental

theory is particularly appreciated in physics, for example in the study of

electrical circuits and in chemistry, in the study of atomic orbital’s, and it
also plays a major role in the design and construction of electronic
computers, as it is largely involved in information organization,

management techniques and market studies.




3. Real-valued functions of a real variable

The third chapter presents the real function. Which is an ancient
mathematical concept that appeared with the first human civilizations,
The Babylonians who have the credit for its appearance, used numerical
tables to highlight the relationship between two quantities, for example to
make calculations (tables of squares, square roots, cubes and cubic
roots) or to compile the astronomical calendar for the sun, moon or other

planets.

The concept of function is a universal concept that is largely founded in
all practical scientific disciplines: mathematics, physics, biology,

technology and even in the human sciences...

In this chapter, we will study the limits, continuity, the Intermediate
Value Theorem, differentiability of real functions, the Mean Value
Theorem and L'Hospital's Rule which is used to get us out of sticky

situations with indeterminate limit forms.

4. Finite Expansions

Taylor's series expansion formula is a new concept for first-year

university students. It is used to approximate a differentiable function
locally (that is, near a specific point) with polynomial which can

facilitate many of the calculations performed by mathematicians.

The idea of approximation was generalized even for the function which
is not locally defined or not differentiable to a polynomial. Finite

expansions are the subject of the fourth chapter.




They are useful tools for mathematic analysis and physics. In particular, they

provide a good way to solve some indeterminate forms of limits.

5. Vector Space and Linear Maps

Dear student, you have studied how to solve linear equations system with 2
unknowns and the question now is, what must you do if the number of the
unknowns is more than 2?

This problem was discussed by René Descartes, who has proposed a new
algebraic structure; the vector spaces which is the content of the last
chapter.

The Mathematical Modelling of Natural Phenomena is done with vector spaces
and these models can be used to make effective calculations.

As for nonlinear systems that cannot be modelled by linear algebra and vector
spaces, they are usually used to deal with first-order approximations.

We focus our research on those elementary concepts, which appeared to be
essential: linear combination, independence-dependence, generating sets, bases,

and rank-dimension, linear map.

Appendix

At the end, we presented a summary of the courses translated

into Arabic in the appendices A,B,C,D,E to facilitate the

understanding of the English mathematical terms.




In conclusion, we hope that this publication, in its content, organization

and methodology, will be an effective support for our students, a flexible

support for professors, and a contribution to enriching the Algerian

library.

I found a great pleasure in writing in English. | hope that this fun will
accompany students who focus their interests on seeking knowledge and

ascending to higher levels.

Doctor KESMIA Mounira

The future is for those who believe in

the beauty of their dreams.

Success comes from
GOD
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FAMOUS ISLAMIC MATHEMATICIANS

Muhammad Ibn Musa
Al-Khwarizmi

The basis of Algebra was found by
Al Khwarizmi, He is also known as
the person who introduced the
Western world to the decimal
numerical system, which is the

most widely used number



Let’s REMEMBER

Number Sets
In mathematics very often we study sets whose elements are the real numbers. Some special number sets

which are frequently encountered are defined as follow.

4 N is the set of Natural numbers: N ={0,1,2,3,...}
¢ Z is the set of Integers: Z ={.....,—3,-2,—1,0,1,2,3,...}

¢ D is the set of Decimal numbers: D = {m%,p €Z,nc N}

Example: 1.234 = 1120?14 is a decimal number.

¢ Q is the set of Rational numbers: Q = {%,p €Z,q¢e Z*} )
Rational numbers are numbers that can be expressed as the quotient of two integers (ie a fraction)
with a denominator that is not zero. Note that all terminating decimals or repeating decimals (or

periodic decimal expansion) are rational numbers.
Examples:

1. % = 0.5 (terminating decimals).

2. % =1,28571428571428571428... = 1, 285714 (repeating decimals)

4 R is the set of Real numbers, numbers that can be represented by any decimal expansion,

limited or not.

Example: 123.101001000100001....,etc.

15



¢ C is the set of Complex numbers C = {a + bi | a,b € R}

Recall that a complex number is formed by adding a real number to a real multiple of ¢, where
i=+—1
We have NcZcDcQcRcC

¢ The set of Even numbers contains the elements 0, £2, =4, 46, ... which are those of the
form 2n for some integer n.
4 The set of Odd numbers is the set of integers which are not even. Hence odd numbers are

41,43, £5, ... which can be written as 2n +1 for some integer n.

Absolute value

For real numbers x we define the absolute value of x to be

z if >0
|z| =
—x if <0
Examples: | — 2| = 2, \@\ = /2, and |0] = 0.
Properties:
1. |z| >0
2. Va? = |z

3. |z|* = 22

4 |-yl = =] - [yl

5. o +y| <z + |yl

The greatest integer function

For real numbers x, the greatest integer function [x] gives the greatest integer not greater than x.
Examples: [3.14] = 3, [-3.14] = —4,[0.7] = 0.

16



The general solution to the quadratic equations and inequalities

We only consider here the case a > 0 to which we can always reduce

Solution of the equation Solution of the inequality Solution of the inequality
A=0b>—4ac | ax®> +br+c = 0 ar’ +br+c > 0 ar? +br+c < 0
(a>0)
IfA >0 ryg = —rEviiodac V2l5_4“c (x < z1)V(z > 22) | (71 < &< m2)
(z1 < 22)
If A =0 T = X9 = g—é’ YV 5—; no solution
If A <O no solution Vz € R no solution

Let’s remember that:

l.ax? +br+c=a(x — z1)(z — x2).

Identities and Trigonometric Formulas

__ adjacent
1. cosz = hypotense’
2. tanxy = &L cotx =

cosx’

sin

I = opposite
" hypotense

_1
tanx

3. cos x and sin x defined for all real numbers x € R

4. tanx defined for all z # (2n + 1) T, where n € Z

5. cot x defined for all x # nw, where n € Z

6. -1 <cosz<1l -1<sinzx <1, —oco<tanz <400, —o0o <cotz < +o0

7. sinz? + cosz? =1

17




FAMOUS ISLAMIC MATHEMATICIANS

Abu Al-Hasan was the first person to
efficiently add up the first hundred
numbers. He did a lot of work on the

number theory, and came across theories

based upon perfect numbers. He created

theories linking algebra to geometry.
Abu Al-Hasan



Chapter 1

Logic and mathematical reasoning

Logic is the hygiene the mathematician practices to keep his ideas healthy and strong
“Hermann Weyl”

Mathematical logic is a subfield of mathematics exploring the study of reasoning. It analyzes the structure of
the methods and validity of mathematical deduction and proof.

The principles of logic can be attributed to ARISTOTLE (384-322 B.C.E.), who proposed as formal rules
for correct reasoning. He searched to identify modes of reasoning that are valid by virtue of their structure, not
their content. For example, “1 and 2 are numbers; therefore 2 is a number” and “y/5 and 7 are natural numbers;
therefore 7 is natural number” have the same structure (“A and B, therefore A”), and any reasoning made via

this structure is logically valid. (In particular, the second example is logically sound.)

1.1 Propositional Logic

Definition (Proposition)
A proposition is a statement which has a truth value either true or false.

Notation: Variables are used to represent propositions. The most common variables used are p, ¢, and 7.

18



Examples:

1. p:*2iseven”, ¢ *“2+2=4",r :“2 + 2 =15" are popositions.

2. “x 4 2 = 2x” is not a proposition.

Definition (Negation)
The negation of a proposition p is also called not p, and is denoted by p.

Examples: Give the negation of the following statements.

1. If p: “2is even” then p: “2 is not even”.

2. If p: “2+2="5"then p: “2 + 2 5”.

1.2 Truth table

Definition (Truth-value)

The truth-value is one of the two values, “true” (T) or "false” (F), that can be taken by a given logical
formula in an interpretation (model) considered. Sometimes the truth value T is denoted in the literature by 1,
and F by 0.

Definition (Truth table)

A truth table is a table showing the truth-value of a statement (typically a compound one) given the possible
truth-values of the simple statements of which it is composed.

The truth values of a proposition, p, can be displayed in tabular form as follows:

19



1.3 Logical Connectors

1.3.1 Conjunction

Definition (Conjunction)

If p and q are two propositions then their conjunction is the proposition whose value is true only when both
are true. A conjunction can also be written p A ¢ which is read p and q.

Examples:

1. “A triangle has three sides and a square has four sides” is a conjunction

2. Let p:“2<3”andq:“2%2 < 32", the proposition p A ¢ is true.

1.3.2 Disjunction

Definition (Disjunction)
A compound statement of the form “p or ¢” is known as a disjunction and it is denoted by p V q. The
disjunction of p and ¢ has value false only when both are false.

Examples:

1. “An integer is a number which presents itself as a natural integer to which a positive or negative sign has

been added indicating its position relative to 0 on an oriented axis .

2. pVq:“2> 3"V 22> 3% is a false proposition.

1.3.3 Implication

Definition (Implication)

A conditional statement of the form “If ... then...” is known as a conditional or an implication.

A conditional statement has two components: If p, then ¢. Statement p is called the antecedent (hypothesis,

or premise) and statement ¢ the consequent (or conclusion).

Alternative Phrasings of Conditionals

20



A conditional statement can be written a number of different, but equivalent, ways:

If p, then q.
p implies q.
q if p.
p only if q.
p is sufficient for q.
q is necessary for p.

It is denoted in symbols by: p = gq.

The implication of p and ¢ has value false only when p is true and q is false.

Examples:

1. “If a polygon has three sides, then it is a triangle” is a conditional statement.

2. “If 1 < 3thenl1l+1 < 3+ 17 is atrue implication.

3. “If m and 2 + 37 are real numbers then 2 + 3¢ is real number” is a true implication.

4. “If 2+ 3 =5then 3 x 2+ 3 x 3 = 20” is a false implication because when = = 5, 3x = 15 and 15 # 20.

5. “If (—2)2 = 4 then —2 = /4" is a false implication because /(—2)2 # —2.

Definition (Converse of implication)
The converse of p = q is the proposition ¢ = p.

Example:

Let p : “x is a prime number different from 2” and ¢ : “x is odd”. One has p = ¢ but we do not have ¢ = p.

21



Theorem 1. For all propositions p and g, the following statements are true.

. p=pVgandq=pVyg

2. pANg=pandpAqg=gq

Proof

1. We give a truth table for p = p V q as follows.

pPlqg|pVqg|p=pVgq
1|1]1 1
1101 1
0|11 1
0/0]0 1

Then p = pV q is always true.
The truth table for ¢ = p V ¢ is analogous to the one for p = p V ¢; the conclusion is the same.

2. In order to prove that p A ¢ = p for all propositions p and ¢, we give a truth table forp A ¢ = p

Plqa|pPANqg|PANg=Dp
1111 1
110]0 1
0[1]0 1
0(0/0 1
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Then p A ¢ = p is always true.

The truth table for p A ¢ = ¢ is analogous to the one for p A ¢ = p.

1.3.4 Equivalence

Definition (Equivalence)

Two mathematical statements are equivalent if they have the same truth values.

The statement of the form “p if, and only if, ¢” is called an equivalence or biconditional statement. It is
often abbreviated as p iff ¢ and is written in symbols as p = ¢ or p <= ¢. It is equivalent to the compound
statement “p implies ¢, and ¢ implies p” composed of two CONDITIONAL statements. The truth-values of p

and ¢ must match for the biconditional statement as a whole to be true.
Examples:

1. “A triangle is equilateral if, and only if, it is equiangular” is a biconditional statement.

2. The proposition “(1 = 1) <= (0 = 0)” is true, the proposition “(1 = 0) <= (2 = 0)” is true, whereas

the proposition “(1 = 0) <= (0 = 0)” is false.

3. Forallreal z (x # 0) and y , we have y = 2 <= ¥ = 1 is true.

2 2

4. The equivalence statement (z = y <= 12 = 3?) is not true for all real z and y: for example 2% = (—2)

#2=-2
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The truth-values of the basic connectives are given as follows:

plq|pAqg|pVqg|p=q|p=q
111 1 1 1
1/0[0 1 0 0
0|10 1 1 0
0/0/[0 0 1 1

Exercise 1: Prove the following equivalence by drawing the truth table:

P=q<=DpVg

Solution:
plq|P|pP=q|PVg
1{1]0]|1 1
1{0]0]O0 0
Of1 (1)1 1
01011 1

The truth table establishes that these corresponding pairs of compound statements are logically equivalent.
Definition (Contrapositive)

The contrapositive of p = ¢ is the proposition ¢ = p. It can be shown that these two are equivalent:

(p=q) = (7=D)
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The equivalence can easily be verified using truth table:

Bl

]|

111001 1
1100|110 0
Oj1]1|0]|1 1
001 |1]1 1
Logical Identities
% De Morgan’s laws.
l. pAg<==pV{
2. pVq<=PAG
Both of these laws can easily be verified using truth tables:
pla|pNg|DPV]
1710 0
1101 1
011 1
0101 1

25




plq|pVqg|PAG
1{1]0 0
1100 0
0[1]0 0
001 1

% Idempotence of A and V

P<«~—PAP and P<— PVP

% Commutativity of A and Vv

. pAgq<=qAp

2. pVqg<qVp

% Associativity of A and Vv

I.pA(gAT) <= (pANQ) AT

2.pV(qVr)<= (pVq) Vr

% Distributivity of A over V (and V over A respectively)

l.pA(gVr)<= (pAq)V(pAT)

2.pVigAr) <= (pVag A(pVr)

Y Domination laws

1. PVT «<—T

2. P\NF << F
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% Identity laws

1. PVF <= P

2. P\NT <P

% Negation laws

1. PVP<<T

2. PNP<«—F

% Double negation law

<~ p

p
% Absorption laws

1. PV(PANQ)<= P

2. PA(PVQ) <P

Exercise: Prove by applying the above rules.
Ap=>q=pNq

b)p=qg=pVq

Solution:

a) By applying De Morgan’s laws:

D q <

3
<
S

3
>
By

<~ pAQq

b) By applying the following equivalence statement p = ¢ <= D V ¢, one has:

Vq

3

p= <~

]l

<~ pVgq
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Exercise: True or False. Prove by any method you like.

Ap=(q=r)=p=>q9g=r

byp=(gvr)«=(p=qVp=r)

ApA(g=r1)<=(pNq) = (pAT)

dpVig=r)= (Ve =(pVr)

Solution: For example, demonstrate the equivalence statement of (d) using a truth table (you will demonstrate

the rest in a similar way)

plag|r|g=r|pV(g=r)|pVg|pVr| (Ve =(pVr)
1{1]1]1 1 1 1 1
1{1]0]0 1 1 1 1
1{o]1]1 1 1 1 1
1{o0]o0]1 1 1 1 1
0|1]1]1 1 1 1 1
0|1]/0]0 0 1 0 0
0lo0|1]1 1 0 1 1
0/0]0]1 1 0 0 1

We actually read the same truth values in the fifth and eighth columns.
You’ll notice how we filled in the first three columns. This filling method makes it possible to forget no

situation.

Exercise: If p and ¢ are true and 7 and s are false statements, find the truth value of the following statements:

I. (pAg) VT
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2.pA(r=5)

3. (pVvs)e(gnr)

4. pAT V(qVs)

Solution: Given that p and ¢ are 1 and r and s are 0.

1. pAgVr & (LA1)VO

= 1vO

= 1

¢ truth value of the given statement is true.

2.pAN(r=s) & 1A(0=0)

=4 1A1

= 1

¢ truth value of the given statement is true.

3.(pvs)e(ghr) <& (1V0)<(1A0)

¢ truth value of the given statement is false.

< ovo

¢ truth value of the given statement is false.
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1.4 Predicates and Quantifiers

Definition (Predicate)
A predicate is a statement that contains variables and that may be true or false depending on the values of
these variables.

Examples:

1. Let P(x) : 22 < x is a predicate. One has P(1) : 1 < 1 s false and P(2) : 4 < 2 is even false. But for
z=13,P(3): 1 <3 is true.

2. Let P(x,y) : 22 4+ y? = (x + y)?. Find the values of the following propositions: P(0, 1), P(0,0),

P(1,1). For which (z, y) is the value of P(z,y) true?

A predicate can also be made a proposition by adding a quantifier. There are two quantifiers:

Definition (Universal quantifier)

A universal quantifier is a quantifier meaning “for all”, "for any”, “for each” or “for every”, denoted by V.
Here is a formal way to say that for all values that a predicate variable x can take in a domain A, the predicate

18 true:

for all x belonging to A, P(x) is true

Example: All natural numbers of the form 2n + 1 are odd is written: Vn € N, 2n 4 1 is odd.
Definition (Existential quantifier)
An existential quantifier is a quantifier meaning "there exists”, "there is at least one” or ”for some”.

Here is a formal way to say that for some values that a predicate variable x can take in a domain A, the

predicate is true:

dz €A ,Px)

for some x belonging to A, P(x) is true

Example: There exists a natural number 7 satisfying n xn = n+n can be written: 3n € N: nxn = n+n.
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9 9

Remark: A unique existential quantifier is a quantifier meaning “there is a unique”, “’there is exactly
one” or “’there exists only one”. Here is a formal way to say that for some values that a predicate variable x can

take in a domain A, the predicate is true:

dz €A ,Px)
<~

there exists only one z belonging to A, P(z) is true

Example: Let P(z) : x +2 = 5.
1) Va, P(z): “for all real numbers z, z + 2 = 57, which is false.
2) Jx, P(x): “there is a real number z such that z + 2 = 5”, which is true.

3) Jlz, P(x): “there is a unique real number x such that = + 2 = 5”, which is true.
Predicate Logic and Negating Quantifiers

We observe, at least intuitively, that the negations of 3 and V are correlated in the following manner.

Va,P(r) < 3Juz, P(x)

Jz,P(x) <= Vu,P(x)

Example: There is no natural number n satisfyingn xnxn =n+n+nas: I3n:nx n X n=n+n-+n

Example: Let P(z):x+2=5.

dreZ,“c+2=5" < VereZax+2#5"

Exercise: Write the negations by interchanging 3 and V.
a) There is a real number x such that 2% < 0.

b) Every integer is even.

¢) There is an integer x such that 22 4+ 2z + 3 = 0.

Solution:

a) Iz €R,“22 < 0” <= Vo € R, 22 >0”
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b) There is an integer which is not even.

¢) I eZ, 22 4+20+3=0" <= Ve Zz’>+2x+3#0"

Exercise: Write the following proposition with quantifiers :

f is not increasing on R (where f is a function of R in R).

Solution: By applying the negation of an implication studied above [p = ¢ <= p A g, one has:

V(a,b) eR?/(a<b= f(a) < f(b)) <= F(a,b) €R? (a<b)A(f(a) > f(D)

Exercise: Show that the function sin is not zero.

Solution: 3z = 7,sin(§) = 1 # 0.Then sin # 0.

1.4.1 Nested Quantifiers

Two quantifiers are nested if one is within the scope of the other. The order of existential quantifiers and

universal quantifiers in a statement is important.

B When we have one quantifier inside another, we need to be a little careful.

Example: Consider the following proposition over the integers:

Ve e Z,IyeZ | (x +y =0)

e The proposition is true.
e The existence of y depends on x : if you pick any x, I can find a y that makes x + y = 0 true.

Example: Consider the following proposition over the integers:

Jy e Z,Vxe Z) (x+y =0)

e The proposition is false.

o The existence of y does not depend on x : there is no y that will make z + y = 0 true for every z.
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Example: Consider the following proposition over the integers:

Jy e Z, Ve Z) (x+y =x)

e The proposition is true.

e There is y = 0 that will make x + y = x for every x.

ER)

Example: Suppose we claimed, “For every real number, there’s a real number larger than it.

We’d write this as

VeeR,JyeR:y>zx

e The proposition is true.

B We can exchange the same kind of quantifier (V, J).

These statements are equivalent:

Va,Yy, P(z,y) <= Vy,Vz, P(z,y)

3z, 3y, P(z,y) <= 3y, 3z, P(z,y)

Exercise: Translate the following statement into a logical expression. “Every real number except zero has a
multiplicative inverse.”
Solution:

VyeR* Az eR:ay =1

Exercise: Express that the limit of a real-valued function f at point x( is [ and express its negation:

Ilg;lof(x) =1
Solution:
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In predicate logic:

Ve>0,36>0,VeeR: (|lx — x| <d=|f(x) =1 <e)

its negation is given by: 3& > 0,V0 > 0,3z € R: |z —xo| <0 A |f(x) = 1| > 0.

Exercise: If A = {3,4, 6,8}, determine the truth value of each of the following:

1. 3z cA,x+4=".

2. dx € A, xis odd.

3.VeeA (3—z)e N

Solution:

1. Since x = 3 € A, satisfies x + 4 = 7, the given statement is true. Its truth value is ‘1.

2. Since x = 3 € A, satisfies the given statement, the given statement is true. Its truth value is ‘1°.

3. 3z € A,z =4, do not satisfy 3 — 4 = —1 ¢ N the given statement is false. Its truth value is ‘0’.

1.5 Methods of Proof

Our main interest in quantifiers for the purposes of this course is to develop techniques for proving mathematical
statements.

When faced with a mathematical claim, understanding its quantifier is often a very good strategy for thinking
about how to work out a proof.

Example: If the statement has the form Vz : P(z), then the global outline is likely to have the form:
Consider any possible z, and show that it satisfies the property P(x).

Example: If the statement has the form 3x : P(z), then the global outline is different: One needs to specify

a particular x, and then show it satisfies P(z).

34



1.5.1 Direct Method

We have already seen one way of proving a mathematical statement of the form: If p, then ¢. Based of the fact
that the implication p = q is false only when p is true and q is false, the idea behind the method of proof that
we discussed was to assume that p is true and then to proceed, through a chain of logical deductions, to conclude
that ¢ is true. Here is the outline of the argument:

Suppose that p is true.

p =r

= S

=4

Exercise: Prove the statement: If n is even, then n2 is even.

Solution: Assume that the integer n is even.

Jk€Z,n=2k = n? = (2k)? = 4k?

— n? = 2(2k?)

— n2? =2k  suchthat k' = 2k?

which shows that n? is even.
This is an example of a direct method of proof. In the following section we discuss indirect methods of

proof.

1.5.2 Proof by Contrapositive

The idea behind this method of proof comes from the fact that the implication

4
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is equivalent to the implication

p=4q
Thus, in order to prove p = ¢, it suffices to prove: ¢ = p. Here is the outline of the argument:
Suppose that : ¢ is true

q —7T

Consequently, ¢ = p is true; therefore, p = ¢ is true.

Exercise: Prove that n? is even implies that n is even.

Solution: Suppose that n is not even. It then follows that

Jk€Zn=2k+1 — n? = (2k +1)? = 4k? + 4k + 1

= n? = 2(2k% + 2k) + 1

— n2=2k" +1 suchthat k' = 2k2 + 2k

Thus, n is not even implies that n? is not even, and therefore the contrapositive is true; namely, n? is even

implies that n is even.

1.5.3 Proof by Contradiction (Absurd)

To prove that a proposition p is true we may assume that p is false then p is true. Therefore we show that it
would lead to a contradiction or a false statement.

Exercise: Prove that v/2 is irrational.

Solution: Let p: /2 is irrational. Now assume that p is false then p is true, that is, \/2 is rational. Then

there are some integers a and b with no common factors:
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Ja€Z,3IbeZ :\V2=0a/b = a? = 2b?
= a® is even

= a=2c c€Z

= 4¢? = 2b? (by Substituting)

= 2¢2 = b2
= b2 is even
= b is even

This means that ¢ and b have a common factor 2 which is a contradiction, and so p must be false and p is

true.

1.5.4 Proof by Counter-Example

This proof structure allows us to prove that a property is not true by providing an example where it does not hold.
Thus, in order to prove that the statement V z, P(x) is false, it suffices to prove that the statement 3 z, P(z) is
true.

Exercise: Prove that “all triangles are obtuse” is false.

Solution: We give the following counterexample: the equilateral triangle having all angles equal to sixty. In
this case, there are infinitely many counterexamples. However, it only takes one.

Exercise: Prove that “ If n is an integer and n? is divisible by 4, then n is divisible by 4” is false.

Solution: Consider n = 6. Then n? = 36 is divisible by 4, but n = 6 is not divisible by 4. Thus, n = 6 is a
counterexample to the statement.

Exercise: Prove that “(a + b)? = a? + b*” is not an algebraic identity, where a, b € R.

Solution: If ¢ = 1 and b = 2, then (a + b)?> = 9 and a? + b? = 12 + 22 = 5.

37



1.5.5 Proof by Cases Disjunction

This proof structure is used when one wants to prove a property V x, P(z) depending on a parameter = belonging
to a set A, and the proof depends on the value of x. Hence we decompose the set A into two or more sets
A, Ag, ... and we separate the reasonings following that z € A, x € Ao, ..... This proof is often used to
solve (in) equations with absolute values (the proof depends on the sign of the quantity within the absolute
value), to demonstrate properties in arithmetic (we separate the proof following the parity of some integers, their
congruence modulo n ...).

To prove a proposition by case in the form p = ¢ where p <= r V s we may instead prove both » = ¢ and

s =q.

n(n+1)
t 2

Exercise: Prove that for any integer n,the quotien is an integer.

Solution:

e If n is even, then n is written n = 2k and n + 1 = (2k + 1). We then have % = k(2k + 1) which is

an integer.

e If nis odd, then n is written n = 2k + 1 and n + 1 = 2k + 2. We then have w =Q2k+1)(k+1)

which is also an integer.

Exercise: Prove thatVr € R: |z — 1| < 2% — 2 + 1.

r—1 ifz>1
Solution: |z — 1| =

—z+1 if x <1

r—1<z2—z+1 ifz>1
lr -1 <2’—2+1%

—r+1<z22—z+1 ifzx<l

l.LIfz>1,z—1—224+2—1<0< —z?+ 22 — 2 < 0is true because the discriminant of the equation

22 — 2z + 2 = 0 is negative (A = —4), hence 2> — 2z +2 > 0
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2. Ifae<l,—z4+1—-224+2-1<0s —22 <0is true.

Therefore Vo € R: |z — 1] < 2% —x + 1.

1.5.6 Proof by Mathematical Induction

To prove a proposition in the form Vn € N, n> ng, P(n) where n is a natural number, it suffices to prove it in

two steps:

1. P(np) is true for a certain base step ng. Usually, the base caseisn = 1 orn = 0.

2. P(n) = P(n+1). Thatis, if P(n) is true, then P(n + 1) is true.

Exercise: Prove the following formula for all natural numbers n.

1+3+5+7+9+ ..+ (2n—1) =n%

Solution: Let P(n) : 1 +3+5+ 7+ 9+ ...+ (2n — 1) = n?
We shall prove Vn € N, P(n) in two steps:
1) P(0) : 0 = 0 so this proposition is true.

2)Let P(n):1+3+5+7+9+ ..+ (2n—1)=n?

S 1434547494+ +2n—-1D+2n+1)=n>+2n+1)

=14+3+5+7+9+...+2n—-1)+2n+1) = (n+ 1)

=14+3+5+7+9+..+2n—-1)+2(Mn+1)—1)=(n+1)

= P(n+1)is true

Therefore Vn € N, P(n)
Exercise: is 3" — 1 a multiple of 2 ?

Solution:

1. Show itis true forn = 1, 3' —1 =3 — 1 = 2. One has 2 is a multiple of 2. That was easy. 3' — 1 isa

multiple of 2.
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2. Assume it is true for n and prove that 3" ! — 1 is a multiple of 2?;

3 —1=2k = 3"x3—-1x3=2kx3
= 3"x3—-3=2kx3
= 3t —1=2+4+2kx3
= 3nHL 1 =2(1+ 3k)

= 371 _ 1 =2k suchthat k' =1+ 3k

Therefore Vn € N*, 3" — 1 a multiple of 2
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Chapter 2

Sets, Relations and Applications

2.1 Set Theory

Set is a one of the most basic concept in mathematics, since we almost always have a collection of things we are
trying to study. In particular, mathematical structure arises from operations and relationships, such as addition,
multiplication and in the case of an application. Set is used in all branches of mathematics and computer science.
In analysis branch for example, an understanding of limit points and what is meant by the continuity of a function,

differential and integral calculus are based on set theory.

2.1.1 Relationships between elements and parts of a set

Definition (Set, Element)

A set A is a collection of objects called the elements of the set.

If x is an element of the set A then we write = € A, while the negation is written = ¢ A.

Set is typically specified either explicitly, that is by listing all the elements the set contains, or implicitly,

using a predicate description as seen in predicate logic, of the form {z| P(x)}.

The ordering of the elements is not important and repetition of elements is ignored.

A set may also be empty set (or null set) and it is denoted by () (phi) or {}.

The universe E is the biggest set in which all the other sets we are interested in lie.
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Examples:

—

. The set A given by {1, 2, 3} is an explicit description.

[\

. The set {x, x is a prime number } is implicit.

98]

. {N,Z,Q, R, C} is a set containing five sets.

N

Az 2 e€{2,3,5} and x < 1} is an empty set.

5. {z :x? = —1} is the set of two elements: i and —i.

(@)

Ae,m 1w, 2,1 ={1,2, 7, e}

Definition (Cardinality)

If a set A contains exactly n elements where n is a non-negative integer, then A is a finite set, and n is called
the cardinality of A. We write |A| = n.

Remark: If |A| is finite, A is a finite set; otherwise, A is infinite.

Examples:

1. A={1,2,V7,0},|A| = 4.

2. {z| —2< 2z <5,z € Z}| =6.

3. 10 = 0.

4. Hz|(zed)A(z<—4)} =0.

5. The set of positive integers is an infinite set.

Using set notation with quantifiers

Sometimes, we restrict the domain of a quantified statement explicitly by using set notations.

e WeuseVz e A, (P(x)) to denote that P(z) holds for every = € A.

e Weuse dz € A, (P(x)) to denote that P(z) holds for some x € A.
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Definition (Equality)

Two sets A and B are equal if each element of A is an element of B and vice versa. This is denoted, A = B.

Formally:

A=B&Vr:z€c A& e B 2.1

Examples:

1. {1,2,3} = {2,1,3}.

2. {1,2,3,4} ={z e N,z < 5}.
3. {zeR:22+1=0}=0.

To say that two sets A and B are not equal, inequality is A # B of course. We use the negation from
predicate logic, which is (using the rules we have studied in predicate logic! namely negation of universal

quantifier and De Morgan’s law). One obtains:

Ve:zxeAsreB & Jrx:(r€eA=zeB)AN(xeB=x€cA)

=3 Jrx:(x€eA=ze€B)V(zxeB=x€cA)

& ax;((xeA)v(xeB))v(mv(xeA))
= ax:((xeA)A(xeB))v((xeB)Am)
& Jz:(zeAA(@eB)V((xeB)Al(x¢A)

Definition (Subset)

e A et Ais asubset of B if and only if every element of A is also in B. We use A C B to indicate A is a

subset of B, that means A is included in B. Formally

ACB&eVe:z € A=2€B 2.2)
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e A is a proper subset (or strict subset) of B, A C B,if AC Band A # B.

e Note the difference between z € A and {2} C A: in the first expression, x is an element of A, while in

the second, we consider the subset {x}, which is emphasized by the bracket notation.

e To say that A is not a subset of B, we use the negation of the following statement [Vx : z € A = = € B],

which is:
Ve:zx€eA=zxeB < dx:(x€A)AN(x¢B)
Therfore,
A¢B&edx:(xe A)A(z ¢ B) (2.3)
Examples:

1. {12,43,66) C {12, 43,66}

2. {a, %} C {a,b, %, A}

3. NCZCQCR

4. Let A={V2,i},A¢R;ic Aandi ¢ R

Remark: There is a difference between () and {()}: the first one is an empty set, the second one is a set,
which is not empty since it contains one element: the empty set!

Properties: Notice that A C A and in fact each set is a subset of itself. The empty set () is a subset of any
set O C A.

Exercise: Prove that () C A

Solution: Recall the definition of a subset: all elements of a set A must be also elements of B; Vz : x €
A = x € B. We must show the following implication is true for any A,Vz : = € () = = € A. Since the empty
set does not contain any element, x € () is always False statement. Then the implication is always True.

Venn Diagram

A diagram in which mathematical sets are represented by overlapping circles within a boundary representing

the universal set is called a Venn diagram. Such diagrams provide convenient pictorial representations of
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relations between sets.
Example: In the diagram (See Figure 2.1) a universal set £ is represented by the interior of a rectangle,

and one subset A of E as the interior of one overlapping circle within the rectangle.

Figure 2.1

The Venn diagram in Figure 2.1 shows: A C E,{1,2,3,7} C E, {1,2,3,7} € A, ....

Definition (Power set)

Given a set F, the power set of E is the set of all subsets of E. The power set is denoted by P(F). Formally:

P(E)={A ACE} (2.4)

Examples: Write the power set of the following sets: (), {1}, {1,2},{1,2,3}. If F is a set with |E| =n

then |P(E)| =?

1. P(0) = {0} and | P(0)| = 1.

2. P({1}) = {0, {1}} and [P({1})| = 2.

3. P({1,2}) = {0, {1}, {2}, {1, 2}} and |P({1,2})| = 4.

4. P({1,2,3}) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} and | P({1, 2,3})| = 8.

Property: If E is a set with |E/| = n then |P(E)| = 2".
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2.1.2 Set Operations

There are a number of basic set manipulations, each of which can be depicted with a VENN DIAGRAM.

Definition (Set Intersection)

The intersection of the sets A and B is the set of all elements that are in both A and B. We write A N B.

Formally:
2.9)

ANB = {z,(z€A) N (re€B)}

Venn Diagram of Intersection Operation (See figure 2.2):

Figure 2.2

Example:

1. {1,2,3,4} N {-3,4,5} = {4}

2. {z|z >0} n{x| x> 2} = {z| x > 2}.
3.NNZNR =N

Definition (Set Disjoint)

Two sets A and B are disjoint if AN B = ().

Examples:
1. {2,4,6} N {8,10,12} = 0, so they are disjoint.
2. {1,2,3} N {3,4,5} # 0, so they are not disjoint.

3. NN Z # (), so they are not disjoint.
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4. {z| z > 1} NZ~ = 0, so they are disjoint.

Definition (Set Union)
The union of two sets A and B, denoted by A U B, is the set that contains exactly all the elements that are

in either A or B (or in both). Formally:

AUuB = {z, (x€A) V (zr€B)} (26)

Venn Diagram of Union Operation (See Figure 2.3):

E

AUB

Figure 2.3

Examples:

1. Let A={0,1,2,3,6}, B={0,1,2,4,6,9}, AU B = {0,1,2,3,4,6,9}.

2. Z-UZT =Z.

3. {z] x>0} U{z|z > -1} = {z|z > —1}.

Lemma (Cardinality of intersection and union)

For any two sets A and B, we have

2.7)
|JAUB| = |A|+|B|-|ANB|
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Theorem 2. If A and B are any sets, then

1. ( AnB)CA and (ANB)CB

2. AC(AUB) and BC (AUB)

Proof

1) To prove that AN B C A, we must show thatx € AN B = x € A.

reANB = (xeA)A(xeB) by (2.5)

= z€A by theorem 1

Analogously, we can show that (AN B) C B.

2) To prove that A C AU B, we must show thatz € A = x € AU B:

r€A = (xreA)V(xre B) bytheorem I

= re AUB by (2.6)

Analogously, we can show that B C AU B

Properties: For all subsets A, B and C of the univers F , the following are true.

ANB = BNA
e Commutative laws:

AUB = BUA

(AnNB)NC = An(BNCQC)
e Associative laws:

(AUB)UC = AU(BUC).
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AN(BuUuC) = (ANB)U(ANCO)
Distributive laws:

AU(BNC) = (AUB)N(AUC)

AU = A
o Identity laws:
ANE = A
AUE = F
e Domination laws:
AN = 0
AUA = A
e Idempotent laws:
And = 0

Definition (Set Partition)

A collection of nonempty sets { Ay, Ao, ..., A,} is a partition of a set A if and only if

1. A=A, U AbU... U A,.

2. Ay, Ag, -+, A, are mutually disjoint (or pairwise disjoint) : Ai N Aj =0, # j7,4,7 =1,2,..,n.

Example: Consider A = Z, Ay = {z, ziseven}, Ay = {z, zis odd}.
Then A;, A form a partition of A.

Venn Diagram of Set partition (See Figure 2.4):

Definition (Set difference)

The difference of A and B, is the set containing elements that are in A but not in B. Formally:

(2.8)

Venn Diagram of Set difference (See Figure 2.5):
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e

Figure 2.4

B

(2 ) D

Figure 2.5

Examples:

1. {1,2,3} — {3,4,5} = {1,2}.

2. R—{0} ={z| (z e R) A (x #0)}.
3.N—{%,(a€Z)N(beZ")} =N.
Properties: Let A and B subsets of the univers F.
e A-BCA

e A A=0,A-0=A0—-A=0

A—(A-B)=ANB

e A-B=d< ACBHB
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Definition (Set complement)
Let A subset of the universal set E. The complement of set A with respect to £, denoted by Cg‘ or C'A or

A, is the set that contains exactly all the elements that are not in A. Formally:

A = FE-A = {zxe€E/z¢ A} 9

Venn Diagram of Set complement (See Figure 2.6):

CA

Figure 2.6

Examples: Let the universe be R

1. {0} = {z, 2 #0} = R*.

2. R~ ={x, >0} =R+,

3. ]-1,2] = ]—00, ~1] U]2, +o0].

4. R={x, 2 ¢ R} = 0.

Properties: Let A and B subsets of the univers F.

e ACB=—BCA
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DE MORGAN’S LAWS

Explain how set complement interacts with intersections and unions of sets.

'S
)
Ss/
I
|
-
]

|
D
o]

AUB =

\

Exercise: Let A and B are subsets of the universal set £. Show that:

. Cp(C)y=4A=4

2.AcB=—BCA

3.ANB=BUA
4. AUB=BnNA
Solution:

1. Cp(Cf)y=A=47
1e€Cp(Cf)e=a¢(Cp)=r€cA
22ACB=BCA?

ACB <= (Vz,r€ A= x € B)
<— Ve, ¢ B=x ¢ A)
(Vm,xéﬁ:xeﬂ)

BCA
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reANB <~ xz¢ (ANB)
= (r ¢ A)V(z¢B)
> (z€ A)V (z € B)

«— e AUB

xr€e AUB <~ x¢ (AUB)
<~ (z¢ A)A(x ¢ B)
— (:vGZ)/\(xEF)
<~ 2xcANB
Definition (Set Symmetric Difference)

The symmetric difference of set A and set B, denoted by A A\ B, is the set containing those elements in

exactly one of A and B.

Formally:

AAB = (A—B)U(B - A) 10

Venn Diagram of Set difference (See Figure 2.7):

E AAB

Figure 2.7
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Properties: Let A and B subsets of the univers E.

e ANB=BAA

e AND=A

e ANE=F-A

e ANA=1)

e ANB=(AUB) - (AN B)

e ANB=AAB

e (AANBYAC=AN(BAC)

Example: If A = {1,2,3,4,5,10} and B = {0,1,2,3,4,5,7,8,9} ,then A — B = {10} and B — A =

{0,7,8,9} . Hence A A B =1{0,7,8,9,10}

Definition (Ordered tuple)

An ordered n-tuple (x1,x2, ..., x,) has z1 as its first element, x9 as its second element, . .

., Tp, as its

nth element. The order of elements is important in such a tuple. Note that (1, x2) # (22, z1) but {z1, 22} =

{1‘2,1‘1}.

Definition (Set Cartesian product)

The Cartesian product of the sets A and B, denoted by A x B is the set of all ordered pairs (x1, z2), where

.%'1614,.%2631

Ax B=A{(z1,22)) =1 € Axza€ B}

The equality in A x B is defined by: (z1,y1) = (2,y2) <= 1 = T2 A Y1 = Y.

2.11)

Cartesian product can be formed from n sets Ay, As, ..., A, denoted by A; x Ay x---x A, is defined as

the set of ordered tuples (z1, z2, ..., z,) Where x1 € Ay, x9 € Ay, ...,z € A,,. Thatis:

Ay X Ag X - X Ay = {(1,22, ..y n)/ 21 € A1, 29 € Ao, ..,z € A}
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A1:A2:---:An:A - A1XA2X~--XAn:An

2.12)

If we represent a set A x B, then a segment of the horizontal axis is marked off to represent A and a segment

of the vertical axis is marked off to represent B; A x B is the rectangle determined by these two segments (See

Figure 2.8).

. AxB
(ab)
o1 :
I A a
Figure 2.8

Examples: Let A = {—2,3} and B = {0, —4,2}

. Ax B=1{(-2,0),(-2,-4),(-2,2),(3,0),(3,-4),(3,2)}.

—

. Bx A=1{(0,-2),(0,3),(—4,-2),(—4,3),(2,-2),(2,3)}

\S]

W

. Note that A x B # B x A.

4. R xR={(x,y) |r € R,y € R} is the set of point coordinates in the 2D Plane.

5. RxRx R={(z,y,2) |r € R,y € R, z € R} is the set of point coordinates in the 3D Space.

Lemma (Cardinality of Cartesian product)

In general, if A;’s are finite sets, we have:

|A1 x Ay x ... x Ay| = |A1| X |Aa] X ... X |A,]
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Properties: If A and B are any sets, then

e AXB#BxA

QAX@:@XA:@

e ACEANABCF&AXBCEXF

e Ax(BNC)=(AxB)N(AxC)

e AXx(BUC)=(AxB)U(AxCQC)

e AxB=0sA=0VvB=10

e AXB#D &= A+£ODANB#0

Exercise : The sets A = {1,2,z2}, B = {3,4,y} are given. Determine = and y, knowing that {1,3} x
{2,4} CAx B

Solution: We form the sets A x B and C' = {1,3} x {2,4} :

Ax B={(1,3),(1,4),(Ly),(23),(24),(2,9),(z,3),(z,4), (z,9)}

C= {(17 2) :(1,4),(3,2), (3, 4)}

Because {1,3} x {2,4} C A x B, we obtain
(1,2) €C = (1,2) € Ax B= (1,2) = (1,y) => y = 2.

(3,4)eC = (3,4 e Ax B= (3,4) = (z,4) = x=3.

For x = 3 and y = 2, we have (3,2) € A x B.
Therefore: x = 3 and y = 2.

Exercise : Determine the sets A and B that simultaneously satisfy the following conditions:

1. AUB={1,2,3,4,5};

2. ANB = {3,4,5};

3.2¢ (B— A)
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4.1¢ (A— B)

Solution:
1¢(A—-B)& (1¢A)Vv(leB)

l1e(AUB)< (1€ A)V (1€ B)

1¢(A-B)JA[le(AUB) & [1¢A)VAeB)A[leA)V(eB)

= [(1¢A)AN(1eA)]V(1eB)
& Fv(leB)
& 1eB

2¢ (B—A)a (2¢ B)V(2¢€ A)

2€¢(AUB)< (2€ A)V(2€B)

2¢ (B-A)A[2€(AUB)] & [(2¢B)V(2cA)|A[2e AV (2e B)

& [(2¢ B)A(2€ B)]V(2€ A)
& Fv(2eA)
& 2e€e A

Then, A ={2,3,4,5} and B = {1,3,4,5}

2.2 Relations

The notion of relation is omnipresent, in mathematics as in everyday life. The intuitive idea is to understand the
fact that a certain link exists or not between two or more objects.
The concept of relation finds a precise characterization in a mathematical context, the Cartesian product operation

offering in this respect a frame both propitious and fertile.
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2.2.1 Binary Relations

Binary relations are an excellent way for capturing certain structures that appear in computer science.

Definition (Binary Relation)

A binary relation over a nonempty set A is a predicate R that can be applied to ordered pairs (z,y) of
elements = and y given from A.

The representing graph of a relation in A is a graph G C A x A which consists of all the pairs (z, y) such
that the relation between two elements x and y is true. Conversely, if we are given an arbitrary graph G C A x A,
then G defines a relation in A, namely the relation R is true if and only if (z,y) € G.

Notation for Binary Relations

Let R be a binary relation in A . Then

xRy (z,y) € G

Examples:

1. 7x is greater than y ”.

2. 7z and y have the same absolute value”.

3. 77$2+y2:177.
4. ACB.

Example: Suppose A = {1,2,3,4} . We give the graph G C A x A of the following relation:
Ve, yec A: z Ry <= z<uy.

Then, G = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

Example: A relation R is defined on R by:

Vo, yeR: 2Ry <— a2y —23y=6

We show that 1 R 2, because 1 x 22 — 13 x 2 =6

Remark: If R is a binary relation over A and it does not hold for the pair (x,y), then = R y.
Examples: 3 #4,R ¢ Z,4 £ 3.
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Properties of a relation

Let R be a binary relation in A.

e Risreflexiveiff Vo € A: z R x.

e Rissymmetriciff Ve,y€c A:z Ry=y R x.

e Ris anti-symmetriciff Vz,y c A: (x Ry) AN (y Rz) =z =y.
e Ristransitive iff Vz,y,z2€ A: (z Ry)AN(yRz) =z R 2.

Example: Let A = {1,2, 3} and consider three relations R, T, S on A :
Gr= {(17 1)7 (17 2)7 (27 1), (27 2)7 (37 3)}
Gs = {(17 1)7 (17 3)7 (Qa 2)7 (37 2)}

Gr = {(17 2)7 (17 3)7 (2a 3)}

e R is reflexive, symmetric, and transitive, but not anti-symmetric because (1 R 2) A (2 R 1) but 1 # 2.

e S is anti-symmetric, but not reflexive because (3 R 3), not symmetric (1 R 3) but (3 R 1) , and not
transitive (1 R 3) A (3 R 2) but (1 R 2).

e T is anti-symmetric and transitive, but not reflexive (1 R 1) and not symmetric (1 R2 ) but (2 R 1).

2.2.2 Equivalence Relation

Definition (Equivalence Relation)
An equivalence relation is a relation that is reflexive, symmetric and transitive.

Examples:

1. The “equal-to” relation, “ = ”, on R is an equivalence relation.

2. The “less- than -or- equal to ” relation, “<”, on R is not an equivalence relation because it is not symmetric.

For example: 1 < 2but 2 £ 1.

3. The “strictly-less-than” relation, “< ”, on R is not an equivalence relation because it is not reflexive. For
example: 1 £ 1.
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4. The “Line Parallel relation”, “||”, is an equivalence relation.
5. The “Perpendicular Lines” relation, “1”, is symmetric but neither reflexive nor transitive.

6. The “subset” relation “C ”, on P(E) such that E = {1,2, 3}, is not an equivalence relation because it is

not symmetric. For example: {1} C {1,2} but {1,2} ¢ {1}.

Exercise: Let A be the set of all triangles in a plane with R a relation in A given by

VT, Te € A: Th RTy» <= T iscongruentto 75.

Show that R is an equivalence relation.

Solution:

1. R isreflexive, since every triangle is congruent to itself.
2. Th1 R Ty = T is congruent to 7o = T5 is congruent to 77 = T> R T7. Hence, R is symmetric.

3. (T1RT») A (ToR T3) = T is congruent to T and 75 is congruent to 73 = T} is congruent to 75.

Hence, R is transitive.

Therefore, R is an equivalence relation.

Exercise: Consider the binary relation R defined over the set Z:

Ve,y €Z: zRy <= x+yiseven.

Show that R is an equivalence relation.

Solution:

(a) Risreflexive VreZ: x Rx.

1. Letx € Z, the sum x 4 x can be written as 2k for some integer k (namely, ), so x + x is even. Then x R

z holds, as required.
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(b) Rissymmetric<s Ve,ycZ:z Ry=y Rx.

Letx,y € Z,

xRy = dkeZ,x+y=2k
= y+z=x+y=2k (byCommutative Property of Addition)
= Yy + x is even

= y R x, as required
(¢) Ristransitive < Vr,y,z€Z:(x Ry)N(yRz) =z R z.

Letz,y,z € Z,

@RyYA(R2) = 3Jkk ez, (x+y:2k)/\(y+z:2k’)
= THy+y+z=2k+2k
= zx+z=2k+2k —2y=2k" /K =k+E +y
= x + zis even

= x R z, holds, as required.

Therefore, R is an equivalence relation.

2.2.3 Equivalences and Partitions

Definition (Equivalence Relation)

Given a partition Ay, Ao, As, ... of a set A, two elements x and y of A are said to be equivalent, with
respect to that partition, if they belong to the same subset specified by the partition.

Example: The days of the year are partitioned by seven disjoint sets given by the weekday names of the
days. For instance, August 1, 1966, and June 30, 2003, are equivalent in this context since they both belong to

the subset called “Monday.”
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Example: Assuming two words of the English language to be equivalent if they each possess the same
number of vowels is an equivalence relation on the set of all words.

Definition (Equivalence Classes)

Given an equivalence relation R over a set A, for any x € A, the equivalence class of x is the set
[z] ={y, = Ry}

[x] is the set of all elements of A that are related to x by relation R.

Property: If R is an equivalence relation over A, then every x € A belongs to exactly one equivalence class.

Theorem 3. If R is an equivalence relation on a set A, then the collection of its equivalence classes is a

partition of A. Conversely, if P is a partition of A, then the relation defined by
rRy<dSeP:x,ye s

is an equivalence relation, and its equivalence classes are the elements of the partition.

Exercise: Provide a proof.

2.2.4 Order Relation
The notion of order relation on a set aims to define the intuitive idea that an object “precedes” another, ”come

before” it, according to a certain criterion of ordering, of disposition of the objects in question.

Definition (Order Relation)

A binary relation R on a set A is called an order relation if it is reflexive, anti-symmetric, and transitive.
Examples:
1. The “less-than-or-equal-to” relation on the set of integers Z is an order relation.

2. The “strictly-less-than” and “proper-subset” relations are not order relation because they are not reflexive.
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Definition (Total Ordering Relation)

An order relation R on A is called a total ordering if it satisfies one additional proposition:

Vee AVye A: (x Ry)V (y Rx)

Examples:

1. The relation (R, <) is a total order relation.

2. The relation (P(E), C) is not a total order relation because 3 A, B € P(E): (A B)A(B ¢ A).

Example: Show that the relation “Divides” defined on N* is an order relation.
Solution:

1) Risreflexive < Vr e N*: x Rz

We have x divides x, Vo € N*. Therefore, relation “Divides” is reflexive.

2) R is anti-symmetric < Vz,y e N*: (zr Ry) A (yRz) =z =y

Let x,y € N*,

(tRyyN(lyRz) = (x divides y) and (y divides x)

N ahHeNﬁ@:H@A(x:@)

= r=kk'z
- kk' =1
= k=k =1eN*
= =1y

So, the relation is anti-symmetric.
3) Ris transitive & Vz,y,ze N*: (z Ry)AN(yRz) =z R 2.

Let x,y, z € N*,
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@ERYA(WR2) = ak,k’eN*,(y:kx)A(z:ky)

= r=kkuz
= 2=k zl K =kkeN*
= rdivides z = z R 2

Hence, the relation is transitive.

Thus, the relation R being reflexive, anti-symmetric and transitive, the relation “divides” is an order relation.

2.3 Applications

2.3.1 Functional Relation

The concept of a function is one of the most basic mathematical ideas and enters into almost every mathemat-
ical discussion.We focus on the concept of Functional relation which is called an application. We will not
study derivatives or integrals, but rather the notions of injective and surjective applications, how to compose
applications, and when they are invertible.

Definition (Function)

Let F and F be sets. A function is a relation from a set E to another set F, denoted by f : ¥ — F), that
every element x € E assigns at most a unique element y € F satistying « f y. To indicate this relation between

x and y we usually write y = f(x).

v fy<=y=f(z)

We say that:

e y is the image of x (under f ).

x is the pre-image of y (under f ).

e f maps z onto y, and symbolize this statement by x L> in

FE is the starting set of f.
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e [F'is the arrival set or codomain of f.

e G is the graph of the function f, givenby: Gy = {(z,y) € Ex F /y = f(x)}

Note that

fi+ B — F

Definition ( Domain Definition )

The Domain D of a function f of E in F'is the set of elements = € E satisfying: there is one and only one
element y € F such that y = f(z).

Definition (Range)

We call range of a function f the subset of £’ with preimages.

Definition (Application)

An application f is a function of F in I whose domain definition Dy is equal to E.

Definition (Application)

An application from a set E to a another set ' is a relation which to every element x € E assigns a unique

element y € F'. Formally, using predicate logic:

1) VeeFE, JyeF: y=f(x)
f Application &

2) Va1, 20 € E:x) =20 = f(x1) = f(x2)

\

we can write also,

f Application &vVz e E, lye F: y= f(z)

An application (or function) is a triplet f = (F, F, R), where E and F' are two sets and G ¢

C E x F'is a functional relation (See Figure 2.9).
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Figure 2.9

Example: Consider the assignmentrule f : £ = {1,2, 3,4} — F = {x,y, z} which is defined by:

L G={(1,2),2,9), (3, 2), (4,2)}

2. G={(1,2),(2,7),(3,2), (4,9)}

3. G={(1,2),(2,9),3,2)}

4. G ={(Ly),(2,7),3,9),(3,2), (4, 2)}

The first two relations are applications and the third relation is function with Dy is {1, 2, 3} but not the last
one.
2.3.2 Equality - Extension - Restriction

Definition (The equality of applications)

Two applications f and g are called equal if and only if they have the same domain F, the same codomain F’
and the same graphic Gy = Gg. If f,g : E — F, the equality f = g is equivalent to f(x) = g(x), Vx € E,

that is to say:

f=g9g=VzeE, f(zx) =g
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Definition ( Extension of an application-Restriction of an application)
Let f : E — F be an application and X and Y be sets such that £ C X and F' C Y. An extension of f to
X is an application g : X — Y such that f(z) = g(z) for all z € E. Alternatively, g is an extension of f to X

if f is the restriction of g to F.

2.3.3 Image and Inverse Image of a Subsets

Often in mathematics, particularly in analysis and topology, one is interested in finding the set of image points or
inverse image of an application acting on a given set, which brings us to the two following definitions that are
waiting to be understood.

Definition ( Image of a Subset)

Let f : E — F and consider the subset A C E. The image of the subset A under f , which we write

f(A), is the subset of F' that consists of the images of the elements of A (See Figure 2.10)

ye f(A)<=3Jzxec A y=f(x)

Definition (Inverse Image of a Subset)
Let f : E — F and consider the subset B C F'. The inverse image of the subset B under f, which we

write f~!(B) is the subset of F that consists of the pre-images of elements in B (See Figure 2.10)

f7H(B) ={=, f(x) € B}

Example: Let £ = {1,2,3,4} and F' = {a,b,c} and define an application f : F — F such that f
(1) = f(2) =a, f(3) = f(4) = c. Let A C E, A = {1,2,3}. Then f(A) = {a,c}. Also for example

FHEY =0, 7 ({a. ) = A, f7H({b,c}) = {3}
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Figure 2.10

Properties
Given an application f : E — F where A, B, are subsets of F and C, D, are subsets of I, we have the
following properties. Notice how the inverse image always preserves unions and intersections, although not

always true for the image of an application. Then the images of intersections and unions satisfy:

L f(AnB)C f(A)Nf(B).

2. f(AUB) =f(A)U[f(B).

3. FHANB) = fL(A)N F1(B).
4. f7H(AuB) = fH (AU (B).
5. AC B = f(A) C f(B).

6. C C D= f~1(C) C f-YD).

7. f7HC) = fHO).

Exercise: Let f(x) = 1 + 2°. Find the following:

1. f({-1,1}).
2. f([-2,2]).
3. f([-2,3]).

4. f~1({1,5,10}).
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5. f~1([0,1]).
6. f~1([2,5]).

Solution:

L f{=1,13) ={2}.

2. f([=22]) = f([=2,0]U [0,2]) = F([-2,0)) U f([0,2]) = [1,5].
3. f([=2,3]) = f([-2,00U[0,3]) = f£([-2,0]) U £([0,3]) = [1,10] .
4. f~1({1,5,10}) = {0,2,-2,3, -3} .

5. f7H([0,1]) = {0}

6. f~1([2,5]) = [-2,—-1]U[L,2].

2.3.4 Injective, Surjective and Bijective Applications

Definition (Injective)
An injective application (or one-to-one application) f : F — F', is an application for which every element

of the range of the application corresponds to exactly one element of the domain. Formally:

Vay, 9 € E:x1 # o = f(21) # f(x2)

f Injective <— or

Vay, z2 € B f(r1) = f(22) = 21 = 22

\

In words, this says that all elements in the domain of f have different images (See Figure 2.11)

Example. Consider an application f : R — R, f(x) = 4z — 1. We want to know whether each element of
R has a different image. In fact, this function is a line, so one may ”see” that two distinct elements have distinct

images, but let us try a proof of this.
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Injective

Figure 2.11

f(l‘l) = f(.%‘g) — 41— 1=4x9—1

= dx1 = 4xo

Therefore f is injective.

Example. Consider an application g : R — R, g(z) = 2%. A property of injectivity of g is not true
by providing an example where it does not hold. The two elements x; = 1 and z3 = —1 are both sent to
g(@1) = g(x2) = 1.

The other definition that always comes in pair with that of injective is that of surjective.

Definition (Surjective)
An application f : E — F is surjective (or onto) if and only if for every element y € F, there is an

element x € E withy = f(z):

Vye F, 3z e E:y= f(x)

In words, each element in the co-domain of f has a pre-image (See Figure 2.12)
Example. Consider again f : R — R, f(z) = 42 — 1. We want to know whether each element of R has a

preimage.
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Surjective

Figure 2.12

Therefore f is surjective.
Example. Consider again g : R — R, g(z) = 2. A property of surjectivity of g is not even true by

providing an example where it does not hold. If y = —1, there is no # € R such that g(z) = 22 = —1.
Exercise: The function f is defined by: f : R — R : x — 22 — 62

1. Give an example to show that f is not injective.

2. Give an example to show that f is not surjective.
Solution:

1. f(6) = f(0) = 0 but 6 # 0, therefore the application is not injective.

2. f(z) =262 = (v —3)2 -9
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lety = —10 then f(z)=-10 = (r—-3)2-9=-10

— (x —3)2= -1

There is no real number, x such that f(x) = —10 the application is not surjective.

Or the range of the application is y > 2. The range of the function is not R (the codomain), therefore the
application is not surjective.

We next combine the definitions of an application which is injective and surjective, to get:

Definition 1 (Bijective)

An application f : E — F'is bijective if and only if it is both injective and surjective (See Figure 2.13)

Definition 2 (Bijective)

An application f : EE — F'is bijective if and only if for every element y € F, there is a unique element

xz € Ewithy = f(x):

Vye F,lz € E:y= f(x)

Bijective

Figure 2.13

Example: Consider the application f : R — R, f(x) = 4z — 1, which we have just studied in two
previous examples. We know it is both injective and surjective, therefore it is a bijection.

Bijections have a special feature: they are invertible, formally:
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Definition 1 (Inverse Application)

Let f : E — F be a bijection. Then the inverse application of f , f~! : I — E is defined elementwise
by: f~1(y) is the unique element x € E such that f(x) = y. We say that f is invertible.

Example: Let us consider again at our two previous examples, namely, f(z) = 42 — 1 and g(z) = 2.

Then, the application g is not a bijection, so it cannot have an inverse. Now f is an application bijective, so we

can compute its inverse.

y=f(z) <= y=4dz-1

Property: Let f : E — F be a bijective application , then f~! : F — F is a bijective application.

2.3.5 Examples of Applications

o Identity Application. Let A be a set; by the identity application on A we mean the application /4 : A —

A given by

Iy(x) ==

* [, isinjective, [4(x) = I4(y) = x =y (La(x) = x and I4(y) = y); thus the injection holds.
* [ 4 is surjective because, obviously, the range of 14 is A.

* Thus I 4 is bijective.

e Constant Application. Let A and B be sets, and let b be an element of B. By the constant application f3

we mean the application f;, : A — B given by:

folx)=0bVr e A

73



e Characteristic Application. The characteristic application of a set is used to solve some difficult
problems of set theory found in undergraduate studies. Let’s consider A C F # () (a universal set), then

fa: E — {0,1}, where the application

1, z€A
fa(z) =

is called the characteristic application of the set A.

2.3.6 Operations on Applications

Given two applications, it may be possible to combine them in different ways to create more complicated
applications. If the domains and codomains of the two applications agree and if the codomain supports

arithmetic, we may define arithmetic operations on the applications by point-wise operations on their images.

Arithmetic Operations on Applications

Let f: E — F and g : E — F be two applications sharing a common domain F and let « be a real number.

Then f +g, f — g, a-f, f-g,and f/g (g(z) # 0) denote the following applications from E to F :

(f +9)(x) = f(2) + 9().
(f = 9)(@) = f(z) — g(x).

(o f) (x) = a f(2).

(f-9)(x) = f(z) - g(x).

(f/9)(@) = f(x)/g(x), provided g(z) # 0.

Exercise: Find counter-examples to each of these statements for f : R — Rand g : R — R:
(a) If f and g are surjective, then (f + g) is surjective.

Suppose f(z) = z and g(x) = —x. Then (f + g) () =x — 2 = 0.

(b) If f and g are surjective, then f-g is surjective.
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The same f(z) = z and g(z) = —2 from above work; (f-g) (x) = —2, which is not surjective.

Composition of Applications

In addition to arithmetic operations on applications, there is another operation called composition of applications
which is more set-theoretic or algebraic in nature. A composite of two applications is satisfied if the codomain
of the first application agrees with the domain of the second.

If f: FE— Fandg:F — G are applications in which the codomain of f equals the domain of g, then the
assignment h(x) = g(f(x)) defines an application h : E — G. For, given any x € F, there is a unique y € F’
such that y = f(x), since f is an application. Similarly, since g is an application, g(f(z)) is a unique image in
G. Thus each element x from F yields a unique image z = ¢g(f(z)) in G, guaranteeing that / is an application
from F into G. This legitimizes the following definition.

Definition (Composite Applications)

If f: E— Fandg:F — G, then the composite application f followed by g is the application g o f such

that:

gof: E — G

= (gof)(x) =g(f(2))
Example: If f(x) = —4x + 9 and g(x) = 22 — 7, find (f o g)(x) and (g o f) (z)

(fog)z) = fg(z))

= —4g(z) +9

= —4Q2z-T7)+9

= —8z+28+9

= —8x + 37

Thus, (f o g)(x) = —8z= + 37.
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(go fl(x) = 9(f ()

= 2f(z)-T

= 2(—4x+4+9) -7

= —8xr+18—-7

= -8z + 11
Thus, (g o f)(z) = —8x + 37.

We remark that (f o g)(z) and (g o f)(x) produced different answers.

Properties: Suppose f, g, and h are application that can be composed in the order given.

3. Composition is not Commutative: go f # fog.

[\

. If f and g are both injective applications, then sois g o f.

(98]

. If f and g are both surjective applications, then so is g o f.
4. If f and g are both bijective applications, then sois g o f .
5. Composition is associative: (hog)o f=ho(go f).
Definition 2 (Inverse Applications)

If f:EF— Fandg: F — FE, then f and g are inverse applications of one another relative to composition
iff
gof=Igand fog=Ip.
Example: Show that the application g : R — R defined by g(z) = :”Tfl is an inverse for the application g :

R — R defined by f(z) = 2z + 1.

o) = Hg= = B =

flg) = 29(@)+1 = 2(33)+1 = =
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Thus g is f s inverse.

Properties: Let f: £ — Fandg: F - G

1. If f has an inverse, then it is unique.

2. The composition g o f of two invertible applications f and g is invertible. Moreove , the composition of

the inverses in the reverse order

(gof)~t=f"tog™

Example: Let an application f : £ — F.

Determine the inverse application for f(x) = 747~ Assume that f is defined for as inclusive a set of real
numbers as possible and that the codomain of f is its range.

The equation y = %5 defines an application on £ = R — {—1}.

We will check its codomain after we determine which values y can be. Solving y = xiﬂ for x, we get the

following:

= yr+y==zx

= yr—r=-y

Since there are x-values for all y except y = 1, our domain for g and our codomain for f must be taken to
be '=R —{1}.
For these x- and y-values the above solution process is reversible. The inverse application is therefore given

by f~H(y) = 1%
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2.4 The Inverse Trigonometric Application

In this section, we concern ourselves with finding inverses of the (circular) trigonometric applications. Our
immediate problem is that, owing to their periodic nature, none of the circular applications is injective. To

remedy this, we restrict the domains of the circular applications to obtain an injective application.

2.4.1 Arccosine Application

We first consider f(x) = cos(z). Choosing the interval [0, 7] allows us to keep the range as [—1, 1] as well as

the property of being bijective.

sssssslsssssss

i e
"
"
"
-
.
"
~

R e

Figure 2.14

Recall from Subsection 2.3.4 that the inverse of an application f is typically denoted f~!. For this reason,we
can use the notation f~!(z) = cos™!(z) for the inverse of f(x) = cos(z) (See Figures 2.14-2.15)
Remark: It is far too easy to confuse cos ™! (x) with ﬁ(x) so we will not use this notation in our text.

Notation: We use the notation f~1(x) = arccos(x), read “arc-cosine of x”.
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Formally:

=t [-1,1]1 — [0,7]

x —  f71(z) = arccos(x)

We list some important facts about the arccosine applications in the following properties.
Properties

arccos(z) = y if and only if y € [0, 7] and cos(y) = =.

cos(arccos(z)) = x provided x € [—1, 1].

arccos(cos(x)) = x provided z € [0, 7].

2.4.2 Arcsine Application

We restrict f(z) = sin(z) in a similar manner, although the interval of choice is [—%, %] (See Figure 2.16)

It should be no surprise that we call f~!(z) = arcsin(z), which is read “arc-sine of 2”’(See Figure 2.17)
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Figure 2.16

Formally:

x —  f7l(x) = arcsin(x)

We list some important facts about the arcsine applications in the following properties.
Properties

arcsin(z) = y ifand only if y € [—3, ] and sin(y) = z.

sin(arcsin(x)) = x provided z € [—1,1].

arcsin(sin(z)) = x provided z € [-%, 3] .
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Exercise: Find the exact values of the following.

1) arccos(3) 5) arcsin(@)
2) arccos(—@) 6) arcsin(—%)
3) arccos(cos (%)) 7) arccos(cos(14"))

4) cos (arccos(—

[SH[eV]

) 8) sin (arccos(—

[SA{ [V}

)

Solution:

1. To find arccos(%), we need to find the real number y (or, equivalently, an angle measuring y radians)

which verifies y € [0, 7] and with cos(y) = 5 . We know y = I meets these criteria, so arccos(}) = Z.
2. The number y = arccos(—?) € [0, 7] with cos(y) = —@. Our answer is y = 27,

3. Since § € [0, 7], we could simply refer to the properties of arccosine applications to get arccos(cos (%)) =
s
5
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4. One way to simplify cos (arccos(—%)) is to use the properties of arccosine applications directly. Since

)=~

—% € [—1,1], we have cos (arccos(—

Ul
Ul

5. The value of arcsin(%2) is a real number y € [—3, %] with sin(y) = @ The number we seek is

N

y = 7. Hence, arcsin(%5*) = 7.

6. To find arcsin(—3), we seek the number y € [—Z, Z] with sin(y) = —%. The answer is y = —Z so that

arcsin(—3) = —

ol

7. Since 11% does not fall between 0 and 7, the properties of the arcsine applications does not apply. We

are forced to work through from the inside out starting with arccos(cos(1%)) = arccos(@). We know
arccos(@) = 7. Hence, arccos(cos(1™)) = T
2/~ 6 ’ 6/~ %"

8. As in the previous question, we let y = arccos(—%) so that cosy = —% for y € [0, 7]. Since cosy < 0,

we can narrow this down a bit and conclude that § < y < 7. In terms of y, then, we need to find

sin (arccos(—%)) = siny. Using the Pythagorean Identity cos? y+sin? y = 1, we get (—%) 2—ksin2 y=1

SIS

orsiny = i%. We choose siny = 7 . Hence, sin (arccos(—2)) =

The next pair of application we wish to discuss are the inverses of tangent and cotangent, which are named

arctangent and arccotangent, respectively.

2.4.3 Arctangent Application

We restrict f(z) = tan(z) to its fundamental cycle on | —Z, Z | to obtain f~*(z) = arctan(z). Among other

things, note that the vertical asymptotes x = —7 and x = 7 of the graph of f(z) = tan(z) become the
horizontal asymptotes y = —5 and y = 5 of the graph of f~!(z) = arctan(z). We show these graphs on
Figure 2.18.

We list some of the basic properties of the arctangent application.
Properties

arctan(z) = y if and only if y € | -5, % [ and tan(y) = z.
tan(arctan(z)) = x provided = € R.

arctan(tan(z)) = z provided z € | -3, 5 |.
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Figure 2.18

2.4.4 Arccotangent Application

We restrict f(x) = cot(z) to its fundamental cycle on 0, [ to obtain f~!(x) = arccot(zx). Once again, the
vertical asymptotes x = 0 and x = 7 of the graph of f(z) = cot(x) become the horizontal asymptotes y = 0

and y = 7 of the graph of f~!(z) = arccot(x). We show these graphs on Figure 2.19.

We list some of the basic properties of the arccotangent application.
Properties

arccot(z) = y if and only if y € |0, [ and cot(y) = .
cot(arccot(x)) = x provided z € R.

arccot(cot(z)) = x provided x € |0, 7.

Exercise: Find the exact values of the following.

1. arctan(v/3).
2. arccot(—/3).

3. cot(arccot(—5))
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Figure 2.19
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Solution:

1. We know arctan(y/3) is the real number y € |—%, 2| with tan(y) = +/3. We find y = Z, so

arctan(v/3) = Z.

2. The real number y = arccot(—v/3) € ]0, 7| with cot(y) = —v/3. We get arccot(—v/3) = 2Z.

3. We can apply properties of the arccotangent application directly and obtain cot(arccot(—5)) = —5.
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Chapter 3

Real functions of one real variable

Descartes was introducing algebra into geometry. His study to the solutions of equations of degree 3, 4, 5 and
more led to the concept of the function.
In this chapter we shall study limit, continuity and differentiability of real valued functions defined on certain

sets.

3.1 Elementary Functions

In mathematics, an “elementary function” is a function of a single variable composed of particular simple
functions.
Basic examples:

The elementary functions of (z) of mathematics comprise:

Trigonometric functions: x — sinx, cosx, tanx, cot

Exponential functions: x +— expx

Logarithms: x — Inzx

Inverse trigonometric functions: x — arcsinx, arccosx, arctanx, arccotz
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e Hyperbolic functions :

exp (z) + exp (—x) v sinh g = &P (x) — exp (—x)
2 ’ 2

T+ coshx =

e Inverse hyperbolic functions: x +— argchz, x +— arg shx

3.2 Limit of a Function

The notion of a limit is a fundamental concept of calculus. More particularly, limits allow us to look at what

happens in a very, very small region around a point.

Example 1: Values of f(z) = 1;2:24 may be computed near x = 2

T 1.9 1199 | 1.999 — | < 2.001 | 2.01 | 2.1

f(z) | 39399 | 3.999 — | «4.01 | 4.01 | 4.1

limf(z) =4

r—2

Definition (Neighbourhood)

For o € R, an open interval of the form |xo — J, 29 + 0] for some § > 0 is called a neighbourhood of z.

3.2.1 Limit of a function at a point

Definition

A real valued function f : D — R has “limit value L as x tends to a finite value x(” if one can demonstrate
that for any positive number £ (no matter how small), all the values f(z) of the function will eventually be this
close to the value L by restricting x to values very close, but not equal, to xg. That is, one can produce a positive

number ¢ so that if x, different from x(, lies between xg — § and xg + § so then we can be sure that the value
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f(z) lies between L — ¢ and L + . Formally:

Ve>0,30>0,Vzre Dz €lrg—0d,z0+0[= f(x)€|L—¢,L+¢|

or we can write

Ve>0,36>0,VeeD: |z —xo|<d=|flz)—L|<e

If a function f(z) has a limit value L as x approaches a finite value z(, we write:

Example 1: Show that lirr}1 (2x —1) =7. Wehave f(x)=2z— 1,29 =4and L = 7 and the question
T—
we must answer is “how close should z be to 4 if want to be sure that f(z) = 2z — 1 differs less than & from
L=17"7

To figure this out we try to get an idea of how big | f(z) — L| is:

| fle) = L] = |Qe—-1)-7 =2-[z-8|

So,if 2|z — xp| < € then we have | f(x) — L| < e, i.e.

|t —x0| <5 = |f(z)—L|<e.

We can therefore choose § = 5. No matter what € > 0 we are given our § will also be positive,

Ve>0,36>0,VzeD : j[z—4]<d = |2z—-1)-T|<e

That shows that lim f(z) = 7.
z—4

Definitions (Left limit and right limit)

(i) We say that f has the left limit L € R as z tends to xg iff

Ve>0,30>0,VreD:x€lrg—9d,20[= f(z)€]L—e,L+¢|
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and in that case we write:

liglf(z):L or lim f(x)=1L

T—x(Q =T

(ii) We say that f has the right limit L € R as x tends to xq iff

Ve>0,30>0,Vx € Dz €lrg,x0+ 6] = f(zr) €|]L—e,L+¢]

and in that case we write:

liglf(as) =L or lim f(z)=1L

+
Tz T

Theorem 3 (Existence of the limit)

Let f be a real valued function defined on a set D C R, then lim f(z) exists if and only if:

T—T0

lim f(z) = lir_‘l_l f(x) = lim f(z)

Ty Tz T—To
Example 1:
Let f: [-1,1] — R defined by:
0, -1<x2<0

1, 0<z<1

lim f(x) does not exist because lim f(z) = 0and lim f(z)=1.
T z—0~ z—0t

Example 2:

Let f : R — R defined by:

f(z) = sin (;)

We see in Figure 3.1, that sin (%) oscillates between +1 and —1 as  — 0. This means that f(z) gets close
to any number between +1 and —1 as  — 0, but that the function f(z) never stays close to any particular value

because it keeps oscillating up and down.
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Here again, the limit lin% f(x) does not exist.
T—

Figure 3.1

3.2.2 Limit of a function at infinity

Definition

A function f has limit value L as x becomes large if one can demonstrate that for any positive number &
there exists a positive number A, such that all the values f(z) of the function lies between L — ¢ and L + ¢
for x > A. We write: xgrfoo f(z) = L. One can similarly define the notion of a limit as = becomes large and
negative: zgrjloof(m) = L.

Example 1: Let’s compute

. 5a2 41
lm ——m——
z—oodx? 4+ 3 — 2

We divide the numerator and denominator by 2, and you get

522 + 1 . 5+ 2 5

T —

x1—>Holo4x2—|—3x—2:xl>Hol<>4+%—% T4

Example 2: Compute

z—ooxd® — 2
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We divide numerator and denominator by z°. This leads to

1

povs 0

1 $4 = - =
wll)ngol_x%—l 0.

3.2.3 Properties of the limit

The following properties remain true if one replaces each limit by a one-sided limit, or a limit for x — oo.
Let f and g be two given functions whose limits for x — zg we know,

lim f(z) = L1, lim g(z) = Lo.

T—T0 T—T0

Then:

1. lim (f+g)(z) = L1 + Lo.

T—T0

2. lim (f-g)(x) = L1 - Lo.

T—T0

3. lim (A-f)(z) = - Ly.

T—T0

4. lim L% = L1 if lim g(z) #0.

a—rxo 9(®) L2 ™ 25

Theorem 4. Suppose that

(for all x) and that

lim f(z) = lim h(x)

Tr—I0 T—T0

Then

lim f(z) = lim g(x) = lim h(z)

T—T0 T—xQ T—T0
Corollary.

If lim f(x) =0 and g is a bounded function. Then

T—T0

lim (f ) (x) =0

T—T0
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Example 3: Compute

1
lim 22 sin <>
x—0 x

Since we have —1 < sin (1) < +1. Then

T

Since
lim — 2% = lim + 22 =0

x—0 z—0

The corollary tells us that

1
lim 22 sin () =0
x—0 i

3.2.4 Indeterminate Forms

Definition. A function f is said to have an indeterminate form at zo(where xz( can be finite or infinite) if:

1. f is continuous on an interval including x, except possibly at xg.

2. When we try to evaluate f at xo we obtain one of the following forms:

olo
g3

.0 00,00 — 00,1, 00, 0

Here 0 and 1 represent variable quantities approaching the respective value, NOT constants with that value.

Some indeterminate forms can be solved by rewriting the limit in an equivalent form by factoring through

elimination, multiplying by the conjugate, by the trigonometric identities or using L’ Hdopital’s rule (See the next

section).
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Example 1: By foctoring

: 22 0
im s 0
. 2_, 9 o . (z—2)(z+1)
Ig@lcﬁﬁz% = xgnjl(x—?))(zﬂ)
_ i (272
- zlifr_ll(x—?’)
- 3
= 1
Example 2: By the conjugate
c VI2 0
alcl_rﬁ mx—4 - 0
VA2 _ gy (E2)(/E42)
ilgi e—4 ilg}x (z—4)(Vz+2)

= lim (z—4)

x—4(x—4) (\/5"‘2)

_ : 1
= I
_ 1
- 4
Example 3: By trigonometric identities
. osin(z) 0
:113% sin(2z) 0
. osin(z) 4. sin(x)
lim &y = Mgty

_ S
- ili%Q cos(x)

N[
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3.3 Continuous Functions

3.3.1 Continuity of a function at a point

Definitions.

e Let f be areal function on a subset of the real numbers. Then f is continuous at z if

1) J?oGDf

2)  lim f(z) = f(zo)

T—T0

o In particular, if the left hand limit, right hand limit and the value of the function at x = x( exist and are

equal to each other, i.e.,
lim f(x) =lim f(z) = f(xo)

CE—):L'O $—>CE0

then f is said to be continuous at = = z.

e A function is continuous if it is continuous at every zg in its domain D.

e If it is not continuous there, i.e. if either the limit does not exist or is not equal to f(zo) we will say that

the function is discontinuous at x.

Example 1: Consider the function

z, x>0
f(x) = |2 =
-z,
This function is continuous at all zy, lim f(z) = lim |z| = |xg| = f(x0).
T—rIT0 T—T0
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Example 2:

Let f : R — R defined by:

Then f is continuous at z = 0, lim f(z) = lim 822 = f£(0) = 1.
z—0 z—0 T

3.3.2 Continuity of a function in an interval

Definition.

1. fis said to be continuous in an open interval a, b] if it is continuous at every point x in this interval.

2. fis said to be continuous in the closed interval [a, b] if

e fis continuous in |a, b[.
e [ isright continuous at a point a , i.e. lim+f(x) = f(a).
T—a
e fis left continuous at a point b, i.e. lim f(x) = f(b).
T—b~
Property. All polynomials, rational functions, trigonometric functions, the inverse trigonometric functions,

the absolute value function, the exponential and logarithm functions are continuous everywhere within its

domain.

Example : The function y = m% is continuous for x > 1 or z < —1 but is not continuous on the interval

—1 < x < 1 (See Figure 3.2).
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y=147

A
I

A 4

Figure 3.2

3.3.3 Continuous Extension at a point

‘We can redefine functions with removable discontinuities to obtain continuous functions.

Proposition.

Let [ be an interval , and = € I. Let f be defined on I — {zo} such that lim f(z) =1 € R.

T—T0
Consider the function f :

f(z) for zel—{xo}

then, the function f is a continuous at .

Example 1: Find a continuous extension of the function f(z)

sin x
== -

The domain of f is Dy = R*, then f is discontinuous at 2 = 0 because f(0) is not defined. Since liH(l) f(x)
T—r

exists, the discontinuity is removable.

We know that lin%) % = 1. For the function to be continuous at zero we need to define f(0) we make
T—
f(0) = lim f (z) = lim 882 = 1,

x—0

z—0
N S‘% for = #0.
and redefine the function: f(z) =
1 for z=0.
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We say f is the continuous extension of f to z = 0.

3.3.4 The Intermediate Value Theorem

It is said that a function is continuous if you can draw its graph without taking your pencil o the paper.
A more precise version of this statement is the intermediate value theorem:

Theorem 5. If a function f is continuous on a closed interval [a, b], and if yo is some number between f(a)

and f(b), then there is a number x in the interval |a,b] such that f(xo) = yo (See Figure 3.3).

A

If\ \I (
[ S AW AR
i

I 1 1 I 1 |

r"r \ " ‘i | I
iR EIE R
gl -7 NN YT
ALY

[ 1 i Rl I I E o i X
BN EBEEIRY
w—»
R Xo b
Figure 3.3

Example: Use the Intermediate Value Theorem to prove z? = 2 has a root.

Consider the function f : R — R defined by: f(z) = 2.

The function f is continuous on a closed interval [1, 2].

One has f(1) = 2 and f(2) = 4. Since f(1) < 2 < f(2), the intermediate value theorem witha = 1, b = 2,
yo = 2 tells us that there is a number x( between 1 and 2 such that f(xg) = 2, i.e. for which x% = 2. So the

theorem tells us that the square root of 2 exists.
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3.3.5 Continuity of composite functions

Definition.

Let f and g be real valued functions such that (f o g) is defined at x. If ¢ is continuous at xy and f is
continuous at g(xg), then (f o g) is continuous at x.

Example: Since both f(z) = 2% + 1 and g(x) = cos x are continuous on R.

Therefore, both
(fog)(z) = cos®x +1, and
(g0 f)(x) = cos(z? +1)

are continuous on R.

3.3.6 Continuity of the algebraic combinations of functions

Definition.

If f and g are both continuous at xg and A is any constant, then each of the following functions is also
continuous at xg: The sum f + ¢, the difference f — g, the constant multiple A f , the product f - ¢ , the quotient
f/g.if g(xo) # 0, the absolute value | f|.

Example: Let f : R — R defined by:

Here is a continuous function on R because

the inverse functionof z, = — % is a continuous on R*.

the sine function z — sin x is a continuous on R.

[ ]
=

the composite functions z — sin ( ) is a continuous on R*

T

the function x — x is a continuous on R.

98



1

e the product function x — x sin (x

) is a continuous on R*.

z—0

p =

e since limasin (1) = £(0), then the function f is a continuous at o = 0.

3.4 Differentiability of Functions

Differential calculus is a branch of CALCULUS deals with notions of SLOPE, rates of change and ratios of

change. For example, a study of VELOCITY, which can be described as the rate of change of position, falls

under the study of differential calculus, as do other concepts that arise in the study of motion
3.4.1 Differentiability of a function at a point

Definition. (Differentiability)

Let f be areal valued function . Then f is said to be differentiable at zo € Dy if

i 1) = f(ao)

T—TQ

=leR
Tr — X

in that case the value [ is called the derivative of f at x.

lim £@)=f(0)

T—rT0

The derivative of f at xg, if exists, is denoted by f / (o) . Which is read as “f prime of z.”

Example 1: The function f : x — +/x is differentiable at 2o = 1.

lim Y2=1

z—1 271

0

0
Jim Y21 — l'm(ﬁil)(\/@rl)
z—1 z—1

z—1 (1*1)(\/E+1)

. 1 _ 1
2B (Varn) ~ 2

Since f is differentiable at o = 1, then f ' (1)

@) —f(z0) oy 2
=

Example 2: The function f : z — % is differentiable at xg = 2.
-0
T—2 z=2 0

bo|
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=

2—x
= lim 2=
z—2 =2 :1:%236_2

= lim3t=-1
12 2% 4

Since f is differentiable at zy = 2, then f ' (2)

=

Definitions (Left Differentiability and Right Differentiability)
o f is left differentiable at a point xg ,i.e. lim

[@)-I0) _ g

_ T—xo L J"O)'
=g

e f isright differentiable at a point z¢ , i.e. lim w = f}'%(:co).

Tz 0
Property. f is differentiable at a point xq iff f is left differentiable and right differentiable at this point, i.e
fr(@o) = fr(wo).

of the changes of the two variables is:

Remark. If a quantity y is a FUNCTION of another quantity o, yo = f(xo) say, then each change in the
xp-variable, z¢o — xo + h, produces a corresponding change in the yg-variable: f(xg) — f(z¢ + h). The ratio

fwo +h) = f(zo)
h

Graphically, this represents the slope of the line segment connecting the two points (g, f(z¢)) and (xg +
h, f(x + h)) on the graph of the curve y = f(x)
Definition.

The function f is said to be differentiable at x(y € D iff

lim f(xo + h) — f(z0)

/
h—0 h

= f (wo0)

f / (xo) represents the slope of the (tangent line to the) graph y = f(z) at position x, or, alternatively, the
instantaneous rate of change of the variable y = f(z) at x

iy L@ th)— /@)

Example 3: The derivative of f(z) = 22 is f (z) = 2z
h—0 h

lim (wth)? —a?
hso N

lim (2o 4 h) = 22
h—0
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Theorem 6. (Differentiability implies continuity)
Suppose f is differentiable at 29 € Dy. Then f is continuous at x.

Proof. Note that

f is differentiable at zg € Dy = limw =f (o)

= lim f(zg + h) — f(xo) =
h—0
= lim f(xo + h) = f(zo)
h—0
= Jim f(x) = f(zo)
= f is continuous at zq

Remark. Every differentiable function is continuous, but the converse is not true.

Example 4: Consider the function

This function is continuous at all x, but it is not differentiable at z = 0.

To see this try to compute the derivative at 0,

T e [V R TN " (0) —
tA e = s st 0=
o lim =0 — gz =1 — fp(0) =1

e note that f/L(O) # f}z(o)-
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3.4.2 Differentiability of a function in an interval

Definition.

1. f is said to be differentiable in an open interval |a, b[ if it is differentiable at every point x in this interval.

2. fissaid to be differentiable in the closed interval [a, b] if

e f is differentiable in ]a, b .

e f is right differentiable at a point @ , i.e. lim [@)=J(o) _ ¢ (a).

z—at TTTO

e f is left continuous at a point b , i.e. lirl? %ﬁ;gxo) = f'(b).
T—0—

3.4.3 Derivative Table of Elementary Functions

!
f(x) [ (@)
/
flz) | f(2)
a® a*Ina
c 0
sinx Cos T
x 1
COS —sinx
1
X 2z
tanx L —14tan?x
cos?
1
n
T n n xn—l
cotx ._21 =—1—cot’x
S~ x
1 _ 1
T 2
arcsin x 1
1—z2
1 —n
IT g+l
arccos —1
1—22
" n.a" !
arctanx L
1422
In|z| | L
xr
sinh x cosh x
expx | expT
cosh x sinh z
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3.4.4 Derivative of inverse function

Definition. If f is a function with inverse function f~!, then

Example: The inverse of the function f(z) = 2% with reduced domain [0, +oo[is f~!(y) = \/y. Use the

/

formula given above to find the derivative of f~!. We have f'(x) = 2z, so that (f_l) (y) = 5= = %

3.4.5 Algebra of derivatives

If f, g are differentiable functions and A is any constant, then

L (f+9) (@) = f(2) + ¢ (x).

2. (f-9) (@) = f' (@) - g(2) + f(x) - g ()

4. (1) (@) = L2ADSD@ g o) 20,

3.4.6 Derivatives of composite functions

Definition. If f and g are differentiable, so is the composition f o g. The derivative of f o g is given by:

Example: The function f(x) = sin 2z is the composition of two simpler functions, namely: f(x) = g(h(x))

where g(u) = sinu and h(z) = 2z. Since g and h are differentiable then ¢’ (u) = cosu and h'(z) = 2.

Therefore the derivative of the composite functions rule implies that

/ ’

f(x)=(g(h(z))) =J(h(x))-h'(z) = (cos2z) -2 = 2cos2z.
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3.4.7 Derivative of some composite Functions

If f is differentiable function and « is any constant, then:

1. (f*) = af fo1, fis strictly positive.

’ /

2. (Vf) = %7 f is strictly positive.

3 (ef )/ = f'el
4 (nf) =1L

5. (sin f)/ = f cos f.

6. (cosf)/ = —f sinf.

/

7. (tan f) =L

cos? f*

3.4.8 Lagrange’s Mean Value Theorem
Let a, b be two real numbers with @ < b. Suppose f is a function such that:

(a) f iscontinuous on [a, b].
(b) f is differentiable on ]a, b].

Then there exists ¢ € |a, b such that

3.4.9 L’Hospital’s Rule

In this section, we will learn how to evaluate functions whose values cannot be found at certain points.

Indeterminate Forms and L’Hospital’s Rule

Consider f and g are differentiable except possibly at 5. Assume that:
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f(b)

Figure 3.4

(a) g/ (x) # 0 at every point except possibly at x.

flz) _ o f) _ oo
(b) lim 55 = G or lim 755 = 2.

£ (@)
(©) xlg]grclog @ exists

Then lim f(@) exists and lim ( ) — lim &
T—T0 g9(x) T—x0 9 ( ) —x0 )

Remark. Note that the rule is also valid for one-sided limits and for limits at infinity or negative infinity.

In fact, for the special case in which f(xg) = g(z9) = 0, f and g are continuous, and gl(xo) #0,itis

easy to see why the rule is true.

(@)= f (=)
lim =2 207
fim L@ [w) _ avm o
s=z0 9 (2) g (z0) lim 2(®)—9(zq)

Tz—ra( T—=TQ

_ iy J@=f(@0)

T—T0 g(:B) 79(10)

= lim £&)

T—x0 g(z)

Inz

Example 1: Find hm =)

lim 2% =

Inz 0
z—1%7 z—1 0

Thus, we can apply 1’Hospital’s Rule:
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lim £, — limi(hw), = lim

T—T0 g (z) z—1(z—1) x—17%

= 1
Then,
lim £(&) lim oz 1
T—T0 g(z) =121

Example 2: Find lim ZB%
z—+o0 T

T
r—+oo T o0

Thus, we can apply 1’Hospital’s Rule:

f/(:c) o . (exp :L")/ . . exXpT __ oo

T—x0 9, ()

x—400 (m2)/ T—too 2T o0

However, a second application of I’Hospital’s Rule gives:

"

lim L% = lim (expf)/ — lim ©RT — 4o
x—=z0g () r—+oo (2.7) T—+00
Then,

lim 22— lim eRr —

w0 9(&) T—too T ’

sinx
l—cosz

Example 3: Find lim

T—T

: sinz _
zl_lg_l, l—cosx

olo

If we blindly attempted to use I’Hospital’s rule, we would get:

!

!
i 4 (@ o, _(sinzm) g cosa
xlig’l g/(m) - hmf (l—cosm)l B hmf sinz 0
0 T—T =T
Then,
lim L& = fim s =
sz 9() Do SIDT
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3.4.10 Higher derivatives

If the derivative f'(x) of some function f exists for all z in the domain of f, then we have a new function,

this function is called the derivative function of f, and it is denoted by f ". Now that we have agreed that

the derivative of a function is a function, we can repeat the process and try to differentiate the derivative.

The result, if it exists, is called the second derivative of f. It is denoted f . The derivative of the second
"

derivative is called the third derivative, written f , and so on. The n-th derivative of f is denoted f{").

Thus

’ !/

JO=f fO = fO=(f) e = ()

Example 1: If f(z) = 22 — 2 + 1 then

f(x) = 22-22+3
f(z) = 2 — 2
) = 2
) = 0
fM@ = 0

Example 2: If f(z) = expz then

fD(z)=expz, fO (z)=expz,.., f =expuz.
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Example 3. If f(z) = sin x then

f(x) = cosx
f(#) = —sinz
fW (r) = —cosz

fW(z) = sinz

fOz) = cosx

fOz) = —sinz
FfD(z) = —cosz
It’s easy to find that,
. (n) . nm
sin' ’/ xr = sin (x + 7)
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Sharaf Al-din dedicated most of his work to
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founded algebraic identities such as
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define the different degrees of equations
Sharaf Al-Din and solve them. His contributions have
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Chapter 4

Finite Expansions

4.1 Approximating functions by Taylor polynomials

4.1.1 First degree Taylor polynomials

If we know the function value at some point f(zg) and the value of the derivative at the same point f (z¢), we

can use these to find the tangent line, and then use the tangent line to approximate f(z) for other points x.

The tangent line approximation of f for x near xg is called the first degree Taylor polynomial of f and is:
f(@) = f(xo) + f (w0) (& — 0). (¢

The statement that a complicated function behaves like a simpler function f for z near zy can be made more

precise by use of the “O” notation. For example, we can replace the weak statement (4) by the stronger version,
F(@) = f(xo) + [ (o) (& — o) + O(x — o)

This means that there exists a function (z) such that:

lim (x — x0).e(x)
z—zo  (x — x0)

=0
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we write then

(x —xp).e(x) = O(x — x0)

Example 1: Consider the function f(z) = sin x. We want the first degree Taylor polynomial of this function

near the point x9 = 7 and 29 = 0.
e Since sin(}) = g and (sin)/ (4) = cos(7) = @, the approximation of f for z near rg = 7 is
given by:
2 2
I T

4

e Since sin(0) = 1 and (sin)/ (0) = cos 0 = 1, the approximation of f for = near =y = 0 is given by:

sinz =x 4+ O(z), limO(x) =0

z—0

Example 2: Consider the function f(xz) = /x. We want the first degree Taylor polynomial of this function

near the point ¢ = 1 and an evaluation of +/1.002

the approximation of f for x near xg = 1 is given by:
1 .
Ve=1+=(z—1)+O0(x—1), limO(z—1)=0
2 z—0

then

1
V002 = 14 7 (1.002 — 1) + 0(0.002) = 1.001 + 0(0.002), 1imO(0.002) = 0.
Tr—r

Higher order Taylor polynomials

The approximations of the function f by the Taylor polynomial of degree n, denoted by P, (x — x¢) for

17

near o using more derivatives f (o), f  (20), ..., f™ (xo) is given by: f(z) = P,(z — z0) + R (z — x0)

for lim R, (z — zo) = 0.
T—T0

Note that R,, (x — x¢) is called remainder term which is the approximation error when approximating f
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with its Taylor polynomial. Using the “O” notation, the statement in Taylor polynomial reads as

Ry (z —x0) = O ((z — x0)")

/

1 (n)
Fle) = fxo) + L809 (2 — 2g) + L4590 (2 — )% + . + L2 (2 — 20)" + O (& — z0)™)

n!

Example 1:

Consider the function f(x) = In x. We want a polynomial approximation of this function near the point zy = 1.

The first few derivatives of f are

flz) =Inz

fla)=1
@) =3
fla =2
Fw) =3

The derivatives evaluated at xg = 1 are

By Taylor’s polynomial we have,

_1)\2 7 — 3 T — 4 r—1)"
lnx:(:c—l)—(x 21) +( 31) —( 41) +...—|—(—1)"‘1(nl)+0((m—1)”)
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4.1.2 Mac-Laurin Polynomials

The approximations of f by the Taylor polynomial of degree n for x near zg = 0 is called the approximations of

f by Mac-Laurin polynomial and is given by:

Example: Consider the function f(z) = cos x. We want Mac-Laurin polynomial of this function near the point

xg = 0. The first few derivatives of f are

f(z) = cosz
f(#) = —sinz
f (@) = —cosz
@) = sinz
fP(z) = coszx
fP2) = —sinw

It’s easy to find that,

cos" (x) = cos <x + %)

Since cos(0) = 1 and sin(0) = 0 the Maclaurin polynomials of the cosine is,

1,2 564 xQn

1 _ = - _1\2n ¥ 2n+1
cosz =1 oy Tt +(—1) 2n!—|—0(:ﬁ )

The polynomial approximation of degree 4 is given by:

2?2zt

COSZE:1—§+E+O($4)
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The polynomial approximation of degree 5 is given by:

2 4
B z x 5
cosx—l—a—i—ﬂ—i—O(m)

The first statement informs us that there are terms of order 2* in the expansion. The second statement is stronger

as it informs us that there are no terms of order z°.

4.2 Finite expansions at zero

Definition.

Let f be areal valued function. We said that the function f is represented by a finite expansion at zero if there

exist real numbers ag a1, ..., a, and a real valued function € such that

f(x) = ap+ a1x + azx® + ... + apx™ + 2"e(7), lig(l)g(x) =0.
X

Then the function f is represented by the polynomial approximation of degree n, denoted by P, (x) for x near

zero, which is called the main part of finite expansions at zero, such that: P, (z) = ag+a1x+ ag 22+ . apx”.
Remark: Note that 2"e(z) = O (") .

Example. Using the euclidean division by increasing power order, one has the finite expansion at zero of

flz) =5
1 n+1
o lqatat bt D —ldata® . tat a2 ).
1-2z 1—2z 1-2z
in this case e(x) = {=-. We generally do not try to determine the function £(x).
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Properties.

(a) If the function f can be expanded at zero, then this expansion is unique.

(b) If the function f can be expanded at zero, then lin}) f(z) exists and equal to ag. This criterion is
T—

generally used to demonstrate that a function does not admit an expansion.

Example. The function f(z) = In z does not have an expansion at zero, because lim+ f(x) = —o0.
z—0

4.2.1 Basic finite expansions of elementary functions

expr | =145+ + 5+ L+ L +0@").

1+2)* | =1+ax+ a(agi,l)ﬁ +...+ a(a_l)”"(g!_("_l))xn + 0 (2").
= =l-z+4+2? -3 +a2t+ .+ (-1)"2"+0(z").

+ =l+az+2®2+23+2r 4. 42" +0 ("),

cos —1— ooy G L O (),

sin x :x—§+‘g—?—w—?+ ......... +%+O(x2n+l).

2 3 4 -1 n+1l_n
m(l+z) | =z-S 42—z 4 EVT 4 0 n)
2 3 4 n
In(l—-z) | =—2-%5 -5 -5 —..— 2 +0(")
g _=x La2% _ 13 2%  135z7 1.3.5...(2n—1). z(2n+1) 2n+1
arccos® | =5 —T = 5.3 T 345 2467 - 246.2n ‘(@D T 0 (9” )
: _ 1 2%, 1.3 2° | 13527 1.3.5...(2n—1). £(@n+1) In+1

aresmz | =x+ 3.3+ 355 T35 7ttt T246.9n c@nr) T 0 (33 ) :

_ 23 z° z7 z(2n+1) 2n+1
arctang —x—?—?—7+—m—|—0(l‘ )
cosh z —1+ﬁ+ﬁ+ +ﬂ+0($2n)

= or T g T e 2nl
. 3 5 2n+1
sinh =+ A+ F —1—%4—0(:1:2"“‘1).




4.3 Algebraic combinations of finite expansions

Definition.

If f and g can both be expanded at zero and A is any constant, then each of the following functions is also can

be expanded at zero: The sum f + ¢, the difference f — g, the constant multiple Af , the product f - g , the
quotient f/g , if g(xo) # 0.

Consider the finite expansions at zero of f and g:

f(x) =ag+a1r + a2x2 + ... +az"+ 0O (Jjn)

9(x) = bo + b1z + bax® + ... + bpa” + O (™)

% The finite expansion at zero of the sum f + g is:

(f+9)(x) = (ag+Dbo)+ (a1 +b1)x+ (ag +bo) x> + ... 4+ (an + by) 2" + O (z")
iig(l)»s(:c) = 0.

% The finite expansion at zero of the f - g is obtained by the product and keeping only the monomials of

degree less than n in the product

(ao + a4 ar® + ...+ anac”) (b() + b+ bor® + ...+ bnx”)

% The finite expansion at zero of the quotient f/g is obtained by the euclidean division of

(ao +ajz+asr®+ ...+ anz") by (bo + bz +box?+ ...+ bnm”) by increasing power order.
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Example 1: Find the finite expansion at zero of f(x) = sinh x of the degree 4.

sinh x

exp x — exp(—x)

2

1 T T
= B 1+ '+7+7+

1!

2 x?)

3!

3

3

— 24240

3!

1
5 <2x + 23|> + O (934)

(=) -

$4 1 —T xr —X
LS TR TR TR}

2 3

Example 2: Find the finite expansion at zero of f(x) = cosx - sin x of the degree 5.

We have cosxz =1 —

Example 3: Find the finite expansion at zero of f(x) =

flz) =

cosz -sinx

%-I—%—FO(&:E’)and sinx:x—%?—#-

.732 4 x3
@‘m*m)( 3

Note that lin% cos z # 0 then the quotient f(z) =
T—r

Letsinx = x —

,—|—O( %) and cosz =1 —

22

Z of

Ccos T

Cos T

‘+O($3).

%+O(m5).

25
+ 5,>+O(x5).

the degree 3.

L can be expanded at zero.

Using the euclidean division by increasing power order we obtain:

Example 4: Find the finite expansion at zero of f(z) =

Since sinx = x —

flz) =

1n(1+:c)

%? + O (2*) we have lim sinz = 0.

z—0
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Note that the function f can be expanded at zero of the degree 3 if the finite expansions at zero of In (1 + x)
and sin x are given of the degree 4.

flz) = In(1+ )

sin T
2 3 4
o a1ty
T — ’g—? + O (z4)

2 3
1-5+5 -5 +0(2%)
1— 2+ 0 (a3)

Since lim
z—0

(1 — 3—? +0 (x3)> = 0 the function f can be expanded in this case.

In(1+x) _ 17%+%27%3+0(933)
sin x 1—‘%?%—0(3:3)
2 3
r x®
-1 T 3 |
2+6 12+O($)

4.4 Composite of finite expansions

Definition.

If g can be expanded at zero of degree n and if f can be expanded at g(0) of degree n such that g(0) = 0. Then
the composite function (f o g) can be expanded at zero of degree n by replacing the finite expansion of g in the

finite expansion of f and by keeping only the monomials of degree < n.

Example 1: Find the finite expansion at zero of f(z) = exp (cos x) of the degree 3.
If g(x) = cosz note that g(0) # 1

Weknowthatexpa::1+%—|—%+%?+O(w3)

2

and cosz =1— % + O (2%). Soif g(z) = cosz — 1 =
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*%? + O (2®) in this case g(0) = 0.

f(x) = exp(cosz)
= exp(l—1+cosx)
= expl-exp(—1-+cosz)

2
= expl-exp [— +0 (ac3)}

2!
Q?Q
(%) . 00
= expl. |1+ 1 —i—O(a:)
= expl—eXp1x2+O(x3).

Example 2: Prove that the finite expansion at zero of f(z) = exp (sinx) is given by f(z) = exp (sinz) =

l+a+5 +0(2%).

4.5 Finite expansions at a point

We said that the function f : x — f(x) can be represented by a finite expension at point z if the function

F : X — F(X) can be represented by finite expension at zero Xy = 0 such that F'(X) = f (zo + X) and

F(X) = a0+ aX +aX? + . 40, X"+ 0(X"), lim O (X") =0.
—

f(x) =ag+a (& —x0) +ag (x — x0)* + ... +an (@ —20)" + O ((x — 20)"),

and lim O ((z — z)") = 0.

T—T0
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Example 1: Find the finite expansion at a point zy = 1 of f(x) = exp x of the degree 3 .

(2 — 1)’

FX) = f(zo+X)
= exp(1+X)
= expl-expX
= eXpl-[1+i+)§+)§+O(X3)]
= expl- 1—1—(30;1)4- 91

L& ;!1)3 +0((e- 1)3)]

Example 2: Find the finite expansion at a point xy = 2 of f(x) = Inx of the degree 2 .

F(X) = f(wo+X)

= In(2+X)

o o)
= waem(ie )

1 1
= 1n2+§X—7X2+O

8

(X%)

= 1n2+1(:c—2)—%(m—2)2+0((:v—2)2>.

2

4.6 Finite expansions at Infinity

We said that the function f : x — f(x) can be represented by a finite expension at infinity if the function

F : X —— F(X) can be represented by finite expension at zero Xy = 0 such that F(X) = f (%) and

F(X)=ao+mX +aX*+ .. +a,X" + O(X"), lim O(X") =0.
—00

ai as an, 1
f(m):a0—|—$+x2+...—|—$n—|—0< >

Example 1: Find the finite expansion at infinity of f(x) = cos
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Let X = % and thus:

cos— = cosX=1——+—+..... +
T !

4.7 Using finite expansions to evaluate limits

The finite expansions provide a good way to understand the behaviour of a function near a specified point and
so are useful for solving some indeterminate forms. When taking a limit as x — 0, we can often simplify the

statement by substituting in finite expansions that we know.

= ... 1. exp(2z)sin 3z
Example 1: Find the limit ili% —smh(=2z)

exp(2z)sin3z . (14 2z)-(3z) + O(x) 3
m — = lim ==,
2—0 sinh (—2x) z—0 —2z + O(x) 2
Example 2: Find the limit lim 16952
x—0 s~ x
. 1—cosz . %2 O(z) 1
im——— = lim—=———5 = =
=0 sin?z z—0 (1} + O(IL’))Q 2
1 g2
Example 3: Find the limit lim 22" *— 2
z—0 z
2 3
x x 3
exple—i—ﬁ—Fa—i—ﬁ—FO(x)
We get expx—l—x—%zﬁ—?—i—()(ﬁ)
and consequently
expac—l—az:—%2 363—?4-0(953)
3 - 3
1
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FAMOUS ISLAMIC MATHEMATICIANS

Abu Reyhan Al-Biruni

Al-Biruni is considered one of Islamic
mathematical genius. He discovered
mathematical techniques to determine
exactly the beginnings of the season. He
also wrote about the sun and its
movements and the eclipse. He combined
trigonometry and algebra to achieve this

very numerical feat.



Chapter 5

Vector Space and Linear Maps

5.1 Vector Space

Underlying every vector space (to be defined shortly) is a scalar field K.

A field is a set of elements where the four basic operations +, —, X, + are defined, with their usual properties
(commutativity, associativity, distributivity). Examples of fields include the rational numbers (QQ, the real numbers
R, and the complex numbers C. However, N is not a field (we cannot subtract or divide) and Z is not a field (we

cannot divide).
Definition. (Vector space)
A vector space over a field K is a nonempty set V' of objects, called vectors, on which are defined two operations:

1) An internal operation (vector addition)

+: VxV — Vv

(u,v) +— u+wv
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2) An external operation (scalar multiplication)

KxV — V

(a,u) +— au

such that the following properties are satisfied:

(@ Yu,veV,u+v=v+u.

(b) Vu,v,weV:(ut+v)+w=u+(v+w).
(¢) Yu € V: u+ 0y = u (Oy is the zero vector).
d) YueV,3(—u) e V: u+(—u)=0y.

(e) Vu,v e V,Va e K : a(u+v) = au+ av.
(f) Yu e V\Va, B € K : (a+ B)u = au + fu.
(2) Vue VVa,p € K: (af)u=a(fu).

(h) VueV:1lu=u.

Examples:

() K™ = {(z1,x2,..,2n) /z; € R;i=1,..,n} is a vector space over the field K and K is any field
(typically K = R or K = C) with the vector addition and scalar multiplication defined as follows

for all (1, z2, .., ) and (y1,y2, .., yn) from K™ and o € K :

(.’L’l,$2, ..,.’En) + (y17y27 7yn) = (x1+y1,x2+y2, oy T+ yn>

a(xy,x9, .., xn) = (axi,azy,..,az,)

(b) Theset Plz] = {>°" , aja’/ a; € R,i =1,..,n} of all polynomials over a field IR is a vector space
over R with the vector addition and scalar multiplication defined as follows for all p(z) = > | a2

and g(z) = > I, bjz" from Pz] and @ € R :
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Vp(x),q(x) € Pla]:plx)+q@) = (ai+b)a’
=1

Vp(z) € Plz],VaeR:ap(x)= Z (vay) z"

i=1

(c) The set V of all real valued continuous (differentiable or integrable) functions defined on the closed
interval [a, b] is a real vector space with the vector addition and scalar multiplication defined as

follows:

(f+9)x) = flz)+g(z)

Forall f,g € V and a € R.

5.1.1 Subspaces of a vector space

Definition 1. (Subspace)

A subspace of a vector space V' is a nonempty subset F' of V' that has two properties:

(a) F is closed under vector addition. That is, Vu,v € F :u+v € F.

(b) F'is closed under multiplication by scalars. That is, Vu € F,Va € K : au € F.

Definition 2. (Subspace)

A subspace of a vector space V' is a a nonempty subset F' of V' if and only if:

Yu,v € F.Va,8 € K : au + v € F.
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Remark 1.

Properties (1) and (2) guarantee that a subspace F' of V' is itself a vector space, under the vector space operations

already defined in V.

Example 1:

e R"~!is a subspace of R"™.
e {0y} is a subspace of V.

e V is asubspace of V.

Example 2: Show that F' = {(0,v, 2) ,y, 2 € R} is a subspace of real vector space R3.

e Ogs € F then F is a nonempty subset of R3.

o Letu = (0,y1,21), v = (0,y2,22) € Fand o, 8 € R. Then,

auv+ v = a(0,y1,21) + B(0,y2, 22)

= (0,ay1 + Bya, az1 + B22) € F.

Hence, F is a subspace of R3.

5.1.2 Linear combinations

Definition. (Linear combination)

Let V be a vector space. We say that the vector v is a linear combination of the vectors vy, vo, .., v, of V if

Jdag,as,..,an € K :u=aivy + asvg + .. + apuy,.

Example: Express u = (—2,3) in R? over R as a linear combination of the vectors v; = (1,1) and v = (1,2).

Let a1, ag be scalars such that
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U = Q1v1 + Q2

= (—2,3) = ai1(1,1) + ao(1,2)

= (—2,3) = (a1 + a2, a1 + 209)

= a1 +ag =—2 and ap +2a9 =3

= ap = —7 and ag =5
Hence, uw = —T7v; + bvy

5.1.3 Linear independence and linear dependence

Definition. (Linear independence)

Let the set S = {vy,v2,..,v,} C V, a vector space. We say that S is linearly independent if all scalars

Qay, s, .., oy are zero for which ayvy + asvg + .. + ayv, = 0y, Thatis

Yoy, ae,..,an € K aqv) +asve + .. + apv, =0y = o =as = .. = a, = 0.

Otherwise we say S is linearly dependent.
Definition. (Linear dependence)

The set S = {v1,va, .., v, } is linearly dependent if there are scalars a1, aa, .., ay, not all zero for which

a1v1 + agvg + .. + vy = Oy

That is:

Jag, a0, .,an € K :a; #0,i € {1,..,n} Aaqvr + agva + .. + apv, = 0y

Example 1: The set S = {(—1,0),(2, 1)} is linearly independent.
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Let aq, a9 € R:

a1 (—1,0) + a2 (2,1) = (0,0) = (—a1 + 2a2,a2) = (0,0).

= —a1 + 209 =0and ay = 0.

= a1 = ag = 0.

Example 2: The set S = {(1,0),(—2,0)} is linearly dependent.

Let o, ap € R:

a1 (1,0) + a2 (=2,0) = (0,0) = (a1 — 2a2,0) = (0,0).

= a] — 200 =0
= a1 = 2a9.
Jar=1ANap =1 A a1 (1,0) 4+ as (—2,0) = (0,0).
2

Remark 2.

e {u} is linearly independent < u # Oy .

e Oy € S={vy,v9,..,v,} => S is linearly dependent.

5.1.4 Generating sets

Definition. (Generating sets)

Given a vector space V/, a finite set of vectors S = {v1,v2,..,v,} C V is called a system of generators if every

vector u € V can be expressed as a linear combination of vectors of .S :

Yu e V,day,an,..,an, € K :u=a1v] + asvs + .. + anvy,.

and we write V' = [S].
Example 1: The set S = {(1,1,1),(2,2,0),(3,0,0)} is a system of generators of R3.
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Let u = (x,y, z) be a vector, we check the scalars «, 3,7 € R such that

( (
r=a+28+3y a=2z
= y:a+26 = ﬁ:ygz
s-a v

- u:z(l,l,l)—1—%(2,2,0)4—%(3,0,0)

Example 2: Find generating set of the vector space R? over the field R

(x,y) = (170) +ty (07 1) = R? = [{(170) ) (07 1)}]

5.1.5 Bases of a vector space

Definition. (Bases)

Given a vector space V, a finite set of vectors S = {vy,v9,..,v,} C V is called a basis of V' if has two

properties:

(a) S is linearly independent.

(b) Sis a generator of V, thatis V' = [S].

Examples: Let R" be a vector space over R.

o If n =1, the basis of R is the set S; = {1}.
— Since Vz € R : x = 1.z then R is generated by 5.
- Va € R:a.l =0= a=0. Thus the set 5] is linearly independent.
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e If n = 2, the basis of R? is the set So = {(1,0),(0,1)}.
- R? is generated by S5.

- Vo, €R:a.(1,0) + 5.(0,1) = (e, 8) = (0,0) = o = = 0. Thus the set S5 is linearly

independent.
e If n = 3, the basis of R? is the set S3 = {(1,0,0),(0,1,0),(0,0,1)}.

— Clearly S3 is linearly independent and is a system of generators of R?.

Property. If S is a basis, every vector can be written as a linear combination of its elements in a unique way.

Example 1. Let the set S = {(1,0), (1, 1)}, we can write any vector of R? as a linear combination of (1,0) and

(1,1) in a unique way.

Example 2. The set S = {(1,0), (0,1),(1,1)} is not a basis but it is a system of generators. In this case any
of the three vectors can be removed because it can be expressed as a combination of the other two. The linear
combinations are not unique:

(2,3) = 1.(1,0) +2.(0,1) + 1.(1,1)

5.1.6 Dimension of a vector space

Definition. (Dimension)

If a vector space V' has a basis with finite number of elements, then every other basis of V' has the same number

of elements. This number is called the dimension of V. We write

dimV =n

Properties. if we know that a vector space has dimension n (dim V' = n), then:

e Every basis consists of exactly n vectors (but not every set of n vectors is a basis!).
e Every system of generators has to contain at least n vectors.

e If a system of generators consists of n vectors, then it is a basis.
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o If a set of n vectors is linearly independent, then it is a basis.

Proposition. Let V' be a vector space of dimension n, and let F’ is a subspace of a vector space V' then dim F' <

dim V. Furthermore, if dim F' = dim V then F' = V.

Example 1: R" is a vector space of dimension n. A particular basis is the canonical basis:

er = (1,0,0,..,0)

es = (0,1,0,..,0)

en = (0,0,0,..,1)

Example 2: The set of three vectors {(1,2),(—1,2),(3,1)} is not a basis of R? because 3 > dimR? = 2.

Example 3:

e dim {0\/} =0.
e Let C be a vector space over R, then dim C = 2.

e Let P, be a vector space of polynomial over R, then dim(P,) =n + 1.

5.2 Linear Maps

Definition. (Linear map)

A linear map f from a vector space V' into a vector space W over the same field K is a rule that assigns to each

vector x in V' a unique vector f(x) in W, such that:

iV — W
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(@) Vor, 22 € Vi f(x1 4+ 22) = f(21) + f(202).

(b) Vx e V\Va € K : f (ax) = af(x).

Or Vxy1,22 € V,Va, B € K : f (axy + Bag) = af (z1) + Bf(z2).

Example 1: The map f : R? — R3 defined as f(z,y) = (562, T+, 1) is not linear. We can easily find vectors

for which the condition is false. For example:
f((1,0)+(0,0)) = f(1,0)=(1,1,1)

f(@1,00+ f(0,0) = (1,1,1)+(0,0,1) =(1,1,2)

Hence, f((1,0)+(0,0)) # f(1,0)+ f(0,0)

Example 2: f : R? — R3 defined as f(z,y) = (32 — v, 0, 2y) is linear map:
@ f((z1,91) + (z2,92)) = f (122, y1+y1) = (3 (21 +22),0,2 (Y1 +y2)) = (321 — 91,0, 2y1)+

(Bxa — y2,0,2y2) = f ((x1,y1) + (x2,92)) = f(z1,91) + [ (22, 92) .

®) f(a(z,y)) = f(az,ay) = (3(az) - (ay),0,2 (ay)) = a. 3z —y,0,2y) = af(z,y).

Properties. Here are some simple properties of linear maps f: V — W .

@ f(Ov)=Ow.

b) f(=z) = —f(2).

(c) If V] is a subspace of V, then f(V7) is a subspace of .

(d) If W7y is a subspace of W, then f~1(W) is a subspace of V.

(e) The composite map of two linear maps is a linear map.
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5.2.1 Linear maps and dimension

The kernel of a linear map

Definition. ( Kernel )

The kernel (or null space) of such a f , denoted by ker f, is the set of all z in V' such that f(x) = Oy (the zero

vector in W ):

ker f = {z €V, f(z)=0w} = f({0w})

The image of a linear map

Definition. (Image)

The image of f , denoted by I'mf, is the set of all vectors in W of the form f(z) for some = in V.

Imf ={f(x),zeV}=f(V)

Properties. Let f : V' — W be a linear map.

(a) The kernel of f is a subspace of V.

(b) The image of f is a subspace of W.

Proposition. Let f : V' — W be a linear map.

(a) f isinjective if and only if ker f = {0y }.

(b) f is surjective if and only if Imf = W.

Example: The map f : R?* — R? defined as f(z,y, z) = (2 + y, z) is not injective and surjective.

e fisinjective < ker f = {Os}.
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ker f = {X e R, f(X) = (0,0)}

= {(z,y,2) €R?, f(z,y,2) = (0,0)}

= {(z,y,2) €R3 (z+y,2) =(0,0)}

= {(a:,y,z)ER?’,ery:Oandz:O}

= {(x,y,z) eR3z = —yandz:O}

= {(_yvyvo)hyeR}

For example: (—1,1,0) € ker f = ker f # {Ogs} . Hence f is not injective.

e fissurjective & Imf = {f(z),z € R3} =R

Imf = {f(X),X e R?}

= {(w+y,2):2,y,z € R}

= {z(1,0)+y(1,0)+2(0,1) : z,y,2 € R}

Hence, Imf is generated by two vectors (1,0), (1,0) which are the canonical basis of R%. Then Imf = R?

and f is surjective.

Proposition. Let f : V — W be a linear map, with V finite-dimensional. Then:

f bijective < f injective < f surjective

Proposition. Let f : V' — W be a linear map, with V finite-dimensional. Then:

dimV = dimker f 4+ dim I'm f
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The rank of a linear map

Definition. (Rank)

The rank of a linear map f is the dimension of its image, written rank f :

rankf = dim Im f

Example: Find ker f, Imf and rankf of the map f : R* — R3 defined as:

ker f

Hence ,

Imf

Hence ,

flx,y,z,t) = (z—y,z+t,c —y+2).

= {X eRY, f(X)=(0,0,0)}

— {(z,y,2,t) € RY, f(z,y,2t) = (0,0,0)}

= {(z,y,z,t) eRY (z —y, 2+ t, . —y + 2) = (0,0)}
= {(z,y,2,t) eERLz—y=0A2+t=0Az—y+2=0}
— {(z,y,2) ER®, 2=y A 2=t=0}

= {(z,2,0,0), ze€R}={x.(1,1,0,0),z € R }

ker f = [{(17 1’0’0)}] .

- {f(l',y,z,t)/ iL',y,Z,tGR}
= {z—y,z+t,z—y+2)/ z,y,2,t €R}

= {(x—y9).(1,0,1)+¢.(0,1,0) + 2(0,1,1) / z,y,2,t € R}

Imf =[{(1,0,1),(0,1,0),(0,1,1)}]

Let a1, as, ag € R:
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a1 (1,0,1) + a2 (0,1,0) + a3 (0,1,1) = (0,0,0) = (a1, + as,a; +agz) =(0,0,0).

a1 =0.
= as + ag = 0.
a; + a3z =0.
= ar =as = a3 =0.

Therefore, the set {(1,0,1),(0,1,0),(0,1,1)} is linearly independent and it is the basis of Im f.

rankf = dim Imf = 3.
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Vector Space and Linear Maps translated
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