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“To understand the Universe, you must understand the language in 

which it's written, the language of Mathematics” Galileo Galilei 

This is a Galileo’s quotation which has been proved over time and with 

the development of the mathematical theories. Thus we can describe 

more and more phenomena of the universe whether they are physical, 

biological, ecological, economic ... through different laws and 

mathematical entities. 

Dear student, if you want to become an engineer or a specialist in any 

of the university scientific fields, you must have a good  achievement in 

mathematics in order to pass to the other sciences and to achieve higher 

academic degrees. 

This handout in General Algebra, Analysis and Linear Algebra 

includes chapters that cover the vocabulary of the Mathematics 1 

curriculum which a first year student in Science of Technology (ST( 

specialty in the first semester. This scientific production can be used as 

a reference for undergraduates in the first year Mathematics and other 

Experimental Sciences majors as well.  

In fact, we have noticed the absence of references on the ministerial 

curriculum in the mathematics module in English, for this reason we 

provide this work for Algerian and foreign students as an attempt to 

overcome the difficulties facing them in English, the contemporary 

language of science, and provide them with the common terms to 

stimulate their educational activity and scientific research in this 

language, as it is the language of the most prominent scientific web sites 
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and the language of  business and international conferences.   

The topics were formulated appropriately in a simple linguistic style, 

taking into account the necessary accuracy and easiness. All the 

concepts were followed by examples and solved exercises. 

 

1.   Logic and mathematical reasoning 

The first year of university is an essential stage on which the success or 

the failure of the coming years depends, as it adopts the integrity of 

thinking of the student with mathematical logic which is the basis of 

mathematics and is the subject of the first chapter of the program. 

Through it, they learn the logical steps of solving a problem with the help 

of patterns of proof.  Logic is used  also in the field of working with 

devices such as computers and electrical circuits.  

 

2. Sets, Relations and Applications 

The second chapter is devoted to the set theory, starting from the sets 

concepts and belonging in the sets, operations and the relations that gave 

rise to the concept of applications and functions. Thus, this  fundamental 

theory is particularly appreciated in physics, for example in the study of 

electrical circuits and in chemistry, in the study of atomic orbital’s, and it 

also plays a major role in the design and construction of electronic 

computers, as it is largely involved in information organization, 

management techniques and market studies. 
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3. Real-valued functions of a real variable  

The third chapter presents the real function. Which is an ancient 

mathematical concept  that appeared with the first human civilizations, 

The Babylonians who have the credit for its appearance, used numerical 

tables to highlight the relationship between two quantities, for example to 

make calculations (tables of squares, square roots, cubes and cubic 

roots) or to compile the astronomical calendar for the sun, moon or other 

planets. 

The concept of function is a universal concept that is largely founded in 

all practical scientific disciplines: mathematics, physics, biology, 

technology and even in the human sciences... 

In this chapter, we will study the limits, continuity, the Intermediate 

Value Theorem, differentiability of real functions,  the Mean Value 

Theorem and  L'Hospital's Rule which  is used to get us out of sticky 

situations with indeterminate limit forms. 

4. Finite Expansions 

Taylor's series expansion formula is a new concept for first-year 

university students. It is used to approximate a differentiable function 

locally (that is, near a specific point) with polynomial which can 

facilitate many of the calculations performed by mathematicians. 

The idea  of approximation was generalized even for the function which 

is not locally defined or not differentiable to a polynomial.  Finite 

expansions are the subject of the fourth chapter.  
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They are useful tools for mathematic analysis and physics. In particular, they 

provide a good way to solve some indeterminate forms of limits. 

 

5. Vector Space and Linear Maps 

Dear student, you have studied how to solve linear equations system with 2 

unknowns and the question now is, what must you do if the number of  the 

unknowns is more than 2? 

This problem was discussed by René Descartes, who has proposed a new 

algebraic structure; the vector spaces which is the content of the last 

chapter.  

The Mathematical Modelling of Natural Phenomena is done with vector spaces 

and these models can be used to make effective calculations. 

 As for nonlinear systems that cannot be modelled by linear algebra and vector 

spaces, they are usually used to deal with first-order approximations. 

We focus our research on those elementary concepts, which appeared to be 

essential: linear combination, independence-dependence, generating sets, bases, 

and rank-dimension, linear map. 

 

Appendix 

 

      At the end, we presented a summary of the courses translated 

into Arabic in the appendices A,B,C,D,E to facilitate the 

understanding of the English mathematical terms. 
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In conclusion, we hope that this publication, in its content, organization 

and methodology, will be an effective support for our students, a flexible 

support for professors, and a contribution to enriching the Algerian 

library. 

 

I found a great pleasure in writing in English. I hope that this fun will 

accompany students who focus their interests on seeking knowledge and 

ascending to higher levels. 

 

 

Doctor KESMIA Mounira 
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  غاميليوغاميلي"  مفيم امكون ، يجب أ ن ثفيم انلغة امتي كُتب بها ، مغة امرياضيات"

لى امتحلق بمرور اموكت ومع ثعور امنظريات ىذه الملولة  مغاميلي من  وبامتالي نتمكن. امرياضياثية ثؤول  ا 

من خلال ... وصف المزيد والمزيد من ظواىر امكون سواء كاهت فيزيائية أ و بيوموجية أ و بيئية أ و اكتصادية 

 .مختلفة وكيانات رياضياثية كواهين

ذا أ ردت غزيزي امعامب أ ن ثصبح مهندسا أ و متخصصا في أ ي من المواد امؼلمية الجامؼية لابد من تحصيل   فا 

لى تحليق مراثب ػلمية ػامية  لى امؼلوم امتجريبية وا   .رياضياتي  جيد نلؼبور ا 

ن ىذه المعبوػة في الجبر  1 فصول ثغعي مفردات منهاج رياضيات  ثتضمنالخعيامؼام وامتحليل والجبر  ا 

 في امسداسي ال ول  (ST) وفلا نلمنهاج اموزاري الملرر الذي يدرسو ظلاب امس نة ال ولى ػلوم امتكنوموجيا 

. وكذلك ظلاب شؼبة امرياضيات وباقي امؼلوم امتجريبية

وضع ىذا ارثأ ينا  ,  اموزاري في ملياس امرياضيات الا نجليزية نلمنهاج بانلغة وهظرا لملاحظتنا غياب مراجع

محاولة منا متذميل غلبة مغة امؼلم ,  ال جاهبامؼمل المتواضع بين أ يدي ظلبتنا ال غزاء من أ بناء اموظن و

فييي مغة أ برز , بهذه انلغة لهم وامبحثي امتؼليمي امنشاط متحفيزالمؼاصرة وتزويد ظلابنا بالمصعلحات المتداولة 

هترهت  .  و مغة ال غمال والملتليات الدومية, المواكع امؼلمية الموجهة ػبر الا 

ىذه المعبوػة مهيكلة في فصول بصورة مناس بة ومصاغة بأ سلوب مغوي بس يط مع مراػاة الدكة املازمة وسيلة 

. الاس تؼمال بحيث اثبؼت امفلرات بأ مثلة وتمارين محلولة
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 المنطق الرياضي وأنماط البرهان1.  

ذ أ هو خلاميا تبنى ,  تؼتبر امس نة أ ولى جامؼي مرحلة أ ساس ية يتوكف ػليها نجاح أ و فشل امس نوات الملبلة ا 

 امفصل ال ول  سلامة امتفكير غند امطامب بالمنطق امرياضي الذي يؼتبر أ ساس امرياضيات وىو موضوع

ويساػد ػلى اكتساب من خلاله يتؼلم الخطوات المنطلية لحل مسأ لة بالاس تؼاهة بأ نماط امبرىان . من المنهاج

يس تخدم المنطق في مجال امؼمل مع ال جهزة مثل  كما. مهارات امتفكير وامتحليل المنطلي والاس تنتاج امؼلمي

  .أ جهزة امكمبيوتر والدوائر امكيربائية

 العلاقات والتطبيقات, المجموعات2. 

امؼمليات في المجموػات  , مفاىيم المجموػة والاهتماء بدءًا من  , فيو مكرس منظرية المجموػات امفصل امثاني أ ما

   .وامؼلاكات بين غناصر هفس المجموػة وامؼلاكة من مجموػة نحو أ خرى امتي وشأ  غنها مفيوم امتطبيلات والدوال

 امكيمياء دراسة المدارات  و في دراسة الدارات امكيربائية في امفيزياء مثلاامتي  وجدت  تطبيلات ػديدة  

مكتروهية, الذرية لى حد كبير في , كما تلؼب دورًا كبيًرا في تصميم وبناء أ جهزة امكمبيوتر الا  و تشارك كذلك ا 

دارة ودراسات امسوق . تنظيم المؼلومات وتلنيات الا 

  الدوال الحقيقية بمتغير حقيقي واحد  3.

وساهية ,  الدالة الحليليةامفصل امثامثيؼرض  ىذا المفيوم املديم كدم امرياضيات الذي ظير مع الحضارات الا 

براز امؼلاكة بين ملدارين,  فامبابليون لهم امفضل في ظيوره, ال ولى مثلا , الذين اس تخدموا الجداول امؼددية لا 

أ و متجميع امتلويم امفلكي  (جداول المربؼات والجذور امتربيؼية والمكؼبات والجذور امتكؼيبية)لا جراء الحسابات 

لى حد كبير موجود في جميع  .نلشمس واملمر أ و امكواكب ال خرى  يؼد مفيوم الدالة مفيومًا ػالميًا ا 

وساهية : امتخصصات امؼلمية عمليًا  ... امرياضيات وامفيزياء و امبيوموجيا وامتكنوموجيا ومكن أ يضًا في امؼلوم الا 
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لى اهنهايات  ة امليم المتوسطة,  الاس تمرار, في ىذا امفصل هتطرق ا  ة امتزاًدات المنتهَة , الاش تلاق, هظرً هظرً

زالة بؼض حالات ػدم امتؼَين وحساب اهنهايات .  نلدوال الحلِلِةو كاػدة موبُتال امتي تمكننا من ا 

  

   النشر المنتهي أو النشر المحذود.4
 

با لدالة كابلة الاش تلاق ,  مطلاب امس نة أ ولى جامؼي هلدمووشر تاًوور ًؼد مفيوما جدًدا لا ثلرً والذي ماىو ا 

بكثير حدود من شأ هو  أ ن ٌسيل امكثير من الحسابات امتي ًلوم بها , من رثب ػوَا في جوار هلطة مؼَنة

 . امرياضَون

لى تم ثؼميم فكرة امنشر  با  ن كاهت ىذه الدالة غير مؼرفة أ و غير  كابلة  ثلرً دالة في الحالة امؼامة حتى وا 

لى , الاش تلاق في جوار هلطة مؼَنة امفصل وىو موضوع  كثير حدود ٌسمى امنشر المنتهيي أ و امنشر المحدودا 

 ػدم حالات ٌسمح امنشر المحدود برفع كما.  بحَث ًؼتبر أ داة فؼالة في امتحوَل امرياضي وامفيزياء,امرابع

 .امتؼَين في امؼبارات امتي نجدىا مثلا في دراسة الدوال أ و امبحث غن اهنهايات

 

 الفضاء الشعاعي و التطبيقات الخطية. 5

زي امطامب كَفِة حل جمل مؼادلات خطَة ذات  فما ىو , وامسؤال المطروح الآن, مجيومينملد درست غزٍ

ذا كان ػدد المجاىَل اكبر من ذلك؟   الحل في حالة ما ا 

ة نِو دٍكارت  ًفكر في بنِة جبًر جدًدة  فكاهت امفضاءات امشؼاغَة محتوى  ىذه الا شكامَة  جؼوت  رً

لى باقي امؼووم فييي وس َلة ممتازة هنمذجة امظواىر امطبَؼَة امفصل ال خير لا ا  ويمكن  امتي وجدت طرً

وفيما ًتؼوق بال هظمة غير الخطَة امتي لا يمكن نمذجتها غن , اس تخدام ىذه امنماذج لا جراء حسابات فؼالة

ق الجبر الخطي و  بِة من , امفضاءات امشؼاغَةطرً هو ًتم اس تخدامها ػادةً نوتؼامل مع امتلدٍرات امتلرً فا 
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الجملة , حيث نلدم المفاهيم الأومية كالمزج الخطي, ونتناول في هذا امفصل امتعريف بهذه امبنية  .الدرجة الأولى

 .امتطبيلات الخطية و امرتبة, الأبعاد, الأسس, الاس تللال والارتباط الخطي, المولدة

 

 الملحقات

لى امعربية في مترجمة نوفصول موخصًا كدمنا اهنهاية،في   ضياتية متسهيل فهم المصطوحات امرياالموحلات ا 

. بالانجويزية

 وفي الختام نرجو أأن تكون مطبوعتنا هذه في محتواها وتنظيمها ومنهجيتها س ندا فعالا مطوبتنا الأعزاء وس ندا 

ثراء المكتبة الجزائرية سهاما في ا  ساتذة وا  . مرنا ملأ

امطوبة الذين يركزون اهتماماتهم , ونتمنى أأن ترافق هذه المتعة . بالانجويزية المتعة المتزايدة عند تأأميفها ناملد وجد

لى الدرجات امعلى  .على طوب امعلم والارتلاء ا 

 

 الدكتورة قسمية منيرة
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Let’s REMEMBER

Number Sets

In mathematics very often we study sets whose elements are the real numbers. Some special number sets

which are frequently encountered are defined as follow.

� N is the set of Natural numbers: N = {0, 1, 2, 3, ...}

� Z is the set of Integers: Z = {.....,−3,−2,−1, 0, 1, 2, 3, ...}

� D is the set of Decimal numbers: D =
{ p
10n , p ∈ Z, n ∈ N

}
Example: 1.234 = 1234

104
is a decimal number.

� Q is the set of Rational numbers: Q =
{
p
q , p ∈ Z, q ∈ Z

∗
}
.

Rational numbers are numbers that can be expressed as the quotient of two integers (ie a fraction)

with a denominator that is not zero. Note that all terminating decimals or repeating decimals (or

periodic decimal expansion) are rational numbers.

Examples:

1. 1
2 = 0.5 (terminating decimals).

2. 9
7 = 1, 28571428571428571428... = 1, 285714 (repeating decimals)

� R is the set of Real numbers, numbers that can be represented by any decimal expansion,

limited or not.

Example: 123.101001000100001....,etc.

15



� C is the set of Complex numbers C = {a+ bi | a, b ∈ R}

Recall that a complex number is formed by adding a real number to a real multiple of i, where

i =
√
− 1.

We have N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C

� The set of Even numbers contains the elements 0,±2,±4,±6, ... which are those of the

form 2n for some integer n.

� The set of Odd numbers is the set of integers which are not even. Hence odd numbers are

±1,±3,±5, ... which can be written as 2n +1 for some integer n.

Absolute value

For real numbers x we define the absolute value of x to be

|x| =


x if x ≥ 0

−x if x < 0

Examples: | − 2| = 2, |
√

2| =
√

2, and |0| = 0.

Properties:

1. |x| ≥ 0

2.
√
x2 = |x|

3. |x|2 = x2

4. |x · y| = |x| · |y|

5. |x+ y| ≤ |x|+ |y|

The greatest integer function

For real numbers x, the greatest integer function [x] gives the greatest integer not greater than x.

Examples: [3.14] = 3, [−3.14] = −4, [0.7] = 0.
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The general solution to the quadratic equations and inequalities

We only consider here the case a > 0 to which we can always reduce

∆ = b2 − 4ac
(a > 0)

Solution of the equation

ax2 + bx+ c = 0
Solution of the inequality

ax2 + bx+ c > 0
Solution of the inequality

ax2 + bx+ c < 0

If ∆ > 0 x1,2
(x1 < x2)

= −b±
√
b2−4ac
2a (x < x1) ∨ (x > x2) (x1 < x < x2)

If ∆ = 0 x1 = x2 = −b
2a ∀x 6= −b

2a no solution

If ∆ < 0 no solution ∀x ∈ R no solution

Let’s remember that:

1. ax2 + bx+ c = a (x − x1) (x − x2) .

2.


x1 + x2 = −b

a

x1 · x2 = c
a

Identities and Trigonometric Formulas

1. cosx = adjacent
hypotense , sinx = opposite

hypotense

2. tanx = sinx
cosx , cotx = 1

tanx

3. cosx and sinx defined for all real numbers x ∈ R

4. tanx defined for all x 6= (2n+ 1) π2 , where n ∈ Z

5. cotx defined for all x 6= nπ, where n ∈ Z

6. −1 ≤ cosx ≤ 1, −1 ≤ sinx ≤ 1, −∞ ≤ tanx ≤ +∞, −∞ ≤ cotx ≤ +∞

7. sinx2 + cosx2 = 1
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Chapter 1

Logic and mathematical reasoning

Logic is the hygiene the mathematician practices to keep his ideas healthy and strong

“Hermann Weyl”

Mathematical logic is a subfield of mathematics exploring the study of reasoning. It analyzes the structure of

the methods and validity of mathematical deduction and proof.

The principles of logic can be attributed to ARISTOTLE (384–322 B.C.E.), who proposed as formal rules

for correct reasoning. He searched to identify modes of reasoning that are valid by virtue of their structure, not

their content. For example, “1 and 2 are numbers; therefore 2 is a number” and “
√

5 and π are natural numbers;

therefore π is natural number” have the same structure (“A and B, therefore A”), and any reasoning made via

this structure is logically valid. (In particular, the second example is logically sound.)

1.1 Propositional Logic

Definition (Proposition)

A proposition is a statement which has a truth value either true or false.

Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.
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Examples:

1. p :“2 is even”, q :“2 + 2 = 4”, r :“2 + 2 = 5” are popositions.

2. “x+ 2 = 2x” is not a proposition.

Definition (Negation)

The negation of a proposition p is also called not p, and is denoted by p̄.

Examples: Give the negation of the following statements.

1. If p: “2 is even” then p̄: “2 is not even”.

2. If p: “2 + 2 = 5” then p̄: “2 + 26= 5”.

1.2 Truth table

Definition (Truth-value)

The truth-value is one of the two values, ”true” (T) or ”false” (F), that can be taken by a given logical

formula in an interpretation (model) considered. Sometimes the truth value T is denoted in the literature by 1,

and F by 0.

Definition (Truth table)

A truth table is a table showing the truth-value of a statement (typically a compound one) given the possible

truth-values of the simple statements of which it is composed.

The truth values of a proposition, p, can be displayed in tabular form as follows:

p

1

0
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1.3 Logical Connectors

1.3.1 Conjunction

Definition (Conjunction)

If p and q are two propositions then their conjunction is the proposition whose value is true only when both

are true. A conjunction can also be written p ∧ q which is read p and q.

Examples:

1. “A triangle has three sides and a square has four sides” is a conjunction

2. Let p : “2 ≤ 3” and q : “22 ≤ 32” , the proposition p ∧ q is true.

1.3.2 Disjunction

Definition (Disjunction)

A compound statement of the form “p or q” is known as a disjunction and it is denoted by p ∨ q. The

disjunction of p and q has value false only when both are false.

Examples:

1. “An integer is a number which presents itself as a natural integer to which a positive or negative sign has

been added indicating its position relative to 0 on an oriented axis ”.

2. p̄ ∨ q̄ : “2 > 3” ∨ “22 > 32” is a false proposition.

1.3.3 Implication

Definition (Implication)

A conditional statement of the form “If . . . then. . . ” is known as a conditional or an implication.

A conditional statement has two components: If p, then q. Statement p is called the antecedent (hypothesis,

or premise) and statement q the consequent (or conclusion).

Alternative Phrasings of Conditionals
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A conditional statement can be written a number of different, but equivalent, ways:

If p, then q.

p implies q.

q if p.

p only if q.

p is sufficient for q.

q is necessary for p.

It is denoted in symbols by: p⇒ q.

The implication of p and q has value false only when p is true and q is false.

Examples:

1. “If a polygon has three sides, then it is a triangle” is a conditional statement.

2. “If 1 ≤ 3 then 1 + 1 ≤ 3 + 1” is a true implication.

3. “If π and 2 + 3i are real numbers then 2 + 3i is real number” is a true implication.

4. “If 2 + 3 = 5 then 3× 2 + 3× 3 = 20” is a false implication because when x = 5, 3x = 15 and 15 6= 20.

5. “If (−2)2 = 4 then −2 =
√

4” is a false implication because
√

(−2)2 6= −2.

Definition (Converse of implication)

The converse of p⇒ q is the proposition q ⇒ p.

Example:

Let p : “x is a prime number different from 2” and q : “x is odd”. One has p⇒ q but we do not have q ⇒ p.
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Theorem 1. For all propositions p and q, the following statements are true.

1. p⇒ p ∨ q and q ⇒ p ∨ q

2. p ∧ q ⇒ p and p ∧ q ⇒ q

Proof

1. We give a truth table for p⇒ p ∨ q as follows.

p q p ∨ q p⇒ p ∨ q

1 1 1 1

1 0 1 1

0 1 1 1

0 0 0 1

Then p⇒ p ∨ q is always true.

The truth table for q ⇒ p ∨ q is analogous to the one for p⇒ p ∨ q; the conclusion is the same.

2. In order to prove that p ∧ q⇒ p for all propositions p and q, we give a truth table for p ∧ q⇒ p

p q p ∧ q p ∧ q ⇒ p

1 1 1 1

1 0 0 1

0 1 0 1

0 0 0 1
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Then p ∧ q ⇒ p is always true.

The truth table for p ∧ q ⇒ q is analogous to the one for p ∧ q ⇒ p.

1.3.4 Equivalence

Definition (Equivalence)

Two mathematical statements are equivalent if they have the same truth values.

The statement of the form “p if, and only if, q” is called an equivalence or biconditional statement. It is

often abbreviated as p iff q and is written in symbols as p ≡ q or p ⇐⇒ q. It is equivalent to the compound

statement “p implies q, and q implies p” composed of two CONDITIONAL statements. The truth-values of p

and q must match for the biconditional statement as a whole to be true.

Examples:

1. “A triangle is equilateral if, and only if, it is equiangular” is a biconditional statement.

2. The proposition “(1 = 1)⇐⇒ (0 = 0)” is true, the proposition “(1 = 0)⇐⇒ (2 = 0)” is true, whereas

the proposition “(1 = 0)⇐⇒ (0 = 0)” is false.

3. For all real x (x 6= 0) and y , we have y = x⇐⇒ y
x = 1 is true.

4. The equivalence statement (x = y ⇐⇒ x2 = y2) is not true for all real x and y: for example 22 = (−2)2

; 2 = −2.
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The truth-values of the basic connectives are given as follows:

p q p ∧ q p ∨ q p⇒ q p⇐⇒ q

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 1 1 0

0 0 0 0 1 1

Exercise 1: Prove the following equivalence by drawing the truth table:

p⇒ q ⇐⇒ p ∨ q

Solution:

p q p p⇒ q p ∨ q

1 1 0 1 1

1 0 0 0 0

0 1 1 1 1

0 0 1 1 1

The truth table establishes that these corresponding pairs of compound statements are logically equivalent.

Definition (Contrapositive)

The contrapositive of p⇒ q is the proposition q̄⇒ p̄. It can be shown that these two are equivalent:

(p⇒ q)⇐⇒ (q̄ ⇒ p̄)
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The equivalence can easily be verified using truth table:

p q p̄ q̄ p⇒ q q̄ ⇒ p̄

1 1 0 0 1 1

1 0 0 1 0 0

0 1 1 0 1 1

0 0 1 1 1 1

Logical Identities

F De Morgan’s laws.

1. p ∧ q ⇐⇒ p̄ ∨ q̄

2. p ∨ q ⇐⇒ p̄ ∧ q̄

Both of these laws can easily be verified using truth tables:

p q p ∧ q p̄ ∨ q̄

1 1 0 0

1 0 1 1

0 1 1 1

0 0 1 1
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p q p ∨ q p̄ ∧ q̄

1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 1

F Idempotence of ∧ and ∨

P ⇐⇒ P ∧ P and P ⇐⇒ P ∨ P

F Commutativity of ∧ and ∨

1. p ∧ q ⇐⇒ q ∧ p

2. p ∨ q ⇐⇒ q ∨ p

F Associativity of ∧ and ∨

1. p ∧ (q ∧ r)⇐⇒ (p ∧ q) ∧ r

2. p ∨ (q ∨ r)⇐⇒ (p ∨ q) ∨ r

F Distributivity of ∧ over ∨ ( and ∨ over ∧ respectively)

1. p ∧ (q ∨ r)⇐⇒ (p ∧ q) ∨ (p ∧ r)

2. p ∨ (q ∧ r)⇐⇒ (p ∨ q) ∧ (p ∨ r)

F Domination laws

1. P ∨ T ⇐⇒ T

2. P ∧ F ⇐⇒ F
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F Identity laws

1. P ∨ F ⇐⇒ P

2. P ∧ T ⇐⇒ P

F Negation laws

1. P ∨ P̄ ⇐⇒ T

2. P ∧ P̄ ⇐⇒ F

F Double negation law

p ⇐⇒ p

F Absorption laws

1. P ∨ (P ∧Q)⇐⇒ P

2. P ∧ (P ∨Q)⇐⇒ P

Exercise: Prove by applying the above rules.

a) p⇒ q ⇐⇒ p ∧ q̄

b) p̄⇒ q̄ ⇐⇒ p ∨ q̄

Solution:

a) By applying De Morgan’s laws:

p⇒ q ⇐⇒ p ∨ q

⇐⇒ p ∧ q̄

⇐⇒ p ∧ q̄

b) By applying the following equivalence statement p⇒ q ⇐⇒ p ∨ q, one has:

p̄⇒ q̄ ⇐⇒ p ∨ q̄

⇐⇒ p ∨ q̄
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Exercise: True or False. Prove by any method you like.

a) p⇒ (q ⇒ r)⇐⇒ (p⇒ q)⇒ r

b) p⇒ (q ∨ r)⇐⇒ (p⇒ q) ∨ (p⇒ r)

c) p ∧ (q ⇒ r)⇐⇒ (p ∧ q)⇒ (p ∧ r)

d) p ∨ (q ⇒ r)⇐⇒ (p ∨ q)⇒ (p ∨ r)

Solution: For example, demonstrate the equivalence statement of (d) using a truth table (you will demonstrate

the rest in a similar way)

p q r q ⇒ r p ∨ (q ⇒ r) p ∨ q p ∨ r (p ∨ q)⇒ (p ∨ r)

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 1 1 1 1 1

1 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0

0 0 1 1 1 0 1 1

0 0 0 1 1 0 0 1

We actually read the same truth values in the fifth and eighth columns.

You’ll notice how we filled in the first three columns. This filling method makes it possible to forget no

situation.

Exercise: If p and q are true and r and s are false statements, find the truth value of the following statements:

1. (p ∧ q) ∨ r
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2. p ∧ (r ⇒ s)

3. (p ∨ s)⇔ (q ∧ r)

4. p ∧ r ∨ ( q ∨ s)

Solution: Given that p and q are 1 and r and s are 0.

1. (p ∧ q) ∨ r ⇔ (1 ∧ 1) ∨ 0

⇔ 1 ∨ 0

⇔ 1

� truth value of the given statement is true.

2. p ∧ (r ⇒ s) ⇔ 1 ∧ (0⇒ 0)

⇔ 1 ∧ 1

⇔ 1

� truth value of the given statement is true.

3. (p ∨ s)⇔ (q ∧ r) ⇔ (1 ∨ 0)⇔ (1 ∧ 0)

⇔ 1⇔ 0

⇔ 0

� truth value of the given statement is false.

4. p ∧ r ∨ ( q ∨ s) ⇔ 1 ∧ 0 ∨ ( 1 ∨ 0)

⇔ 0 ∨ 0

⇔ 0

� truth value of the given statement is false.
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1.4 Predicates and Quantifiers

Definition (Predicate)

A predicate is a statement that contains variables and that may be true or false depending on the values of

these variables.

Examples:

1. Let P (x) : x2 < x is a predicate. One has P (1) : 1 < 1 is false and P (2) : 4 < 2 is even false. But for

x = 1
2 , P (12) : 1

4 <
1
2 is true.

2. Let P (x, y) : x2 + y2 = (x + y)2. Find the values of the following propositions: P (0, 1), P (0, 0),

P (1, 1). For which (x, y) is the value of P (x, y) true?

A predicate can also be made a proposition by adding a quantifier. There are two quantifiers:

Definition (Universal quantifier)

A universal quantifier is a quantifier meaning ”for all”, ”for any”, ”for each” or ”for every”, denoted by ∀.

Here is a formal way to say that for all values that a predicate variable x can take in a domainA, the predicate

is true:

∀ x︸︷︷︸ ∈ A , P (x)

for all x belonging to A, P (x) is true

Example: All natural numbers of the form 2n+ 1 are odd is written: ∀ n ∈ N, 2n+ 1 is odd.

Definition (Existential quantifier)

An existential quantifier is a quantifier meaning ”there exists”, ”there is at least one” or ”for some”.

Here is a formal way to say that for some values that a predicate variable x can take in a domain A, the

predicate is true:

∃ x︸︷︷︸ ∈ A , P (x)

for some x belonging to A, P (x) is true

Example: There exists a natural number n satisfying n×n = n+n can be written: ∃ n ∈ N : n×n = n+n.
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Remark: A unique existential quantifier is a quantifier meaning ”there is a unique”, ”there is exactly

one” or ”there exists only one”. Here is a formal way to say that for some values that a predicate variable x can

take in a domain A, the predicate is true:

∃! x︸︷︷︸ ∈ A , P (x)

there exists only one x belonging to A, P (x) is true

Example: Let P (x) : x+ 2 = 5.

1) ∀x, P (x): “for all real numbers x, x+ 2 = 5”, which is false.

2) ∃x, P (x): “there is a real number x such that x+ 2 = 5”, which is true.

3) ∃!x, P (x): “there is a unique real number x such that x+ 2 = 5”, which is true.

Predicate Logic and Negating Quantifiers

We observe, at least intuitively, that the negations of ∃ and ∀ are correlated in the following manner.

∀ x, P (x) ⇐⇒ ∃ x, P (x)

∃ x, P (x) ⇐⇒ ∀ x, P (x)

Example: There is no natural number n satisfying n×n×n = n+n+n as: ∃ n : n× n× n = n+ n+ n

Example: Let P (x) : x+ 2 = 5.

∃x ∈ Z, “x+ 2 = 5” ⇐⇒ “∀x ∈ Z, x+ 2 6= 5”

Exercise: Write the negations by interchanging ∃ and ∀.

a) There is a real number x such that x2 < 0.

b) Every integer is even.

c) There is an integer x such that x2 + 2x+ 3 = 0.

Solution:

a) ∃x ∈ R, “x2 < 0”⇐⇒ “∀x ∈ R, x2 ≥ 0”
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b) There is an integer which is not even.

c) ∃x ∈ Z, “x2 + 2x+ 3 = 0”⇐⇒ “∀x ∈ Z, x2 + 2x+ 3 6= 0”

Exercise: Write the following proposition with quantifiers :

f is not increasing on R (where f is a function of R in R).

Solution: By applying the negation of an implication studied above [p⇒ q ⇐⇒ p ∧ q̄] , one has:

∀ (a, b) ∈ R2/(a ≤ b⇒ f(a) ≤ f(b)) ⇐⇒ ∃ (a, b) ∈ R2, (a ≤ b) ∧ (f(a) > f(b))

Exercise: Show that the function sin is not zero.

Solution: ∃x = π
2 , sin(π2 ) = 1 6= 0.Then sin 6= 0.

1.4.1 Nested Quantifiers

Two quantifiers are nested if one is within the scope of the other. The order of existential quantifiers and

universal quantifiers in a statement is important.

�When we have one quantifier inside another, we need to be a little careful.

Example: Consider the following proposition over the integers:

∀x ∈ Z, ∃y∈ Z / (x+ y = 0)

• The proposition is true.

• The existence of y depends on x : if you pick any x, I can find a y that makes x+ y = 0 true.

Example: Consider the following proposition over the integers:

∃y ∈ Z, ∀x∈ Z/ (x+ y = 0)

• The proposition is false.

• The existence of y does not depend on x : there is no y that will make x+ y = 0 true for every x.
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Example: Consider the following proposition over the integers:

∃y ∈ Z, ∀x∈ Z/ (x+ y = x)

• The proposition is true.

• There is y = 0 that will make x+ y = x for every x.

Example: Suppose we claimed, “For every real number, there’s a real number larger than it.”

We’d write this as

∀x ∈ R,∃y ∈ R : y > x

• The proposition is true.

�We can exchange the same kind of quantifier (∀,∃).

These statements are equivalent:

∀x,∀y, P (x, y) ⇐⇒ ∀y,∀x, P (x, y)

∃x,∃y, P (x, y) ⇐⇒ ∃y,∃x, P (x, y)

Exercise:Translate the following statement into a logical expression. “Every real number except zero has a

multiplicative inverse.”

Solution:

∀y ∈ R∗, ∃x ∈ R : xy = 1

Exercise: Express that the limit of a real-valued function f at point x0 is l and express its negation:

lim
x→x0

f(x) = l.

Solution:
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In predicate logic:

∀ε > 0, ∃ δ > 0,∀x ∈ R : (|x− x0| < δ ⇒ |f(x)− l| < ε)

its negation is given by: ∃ ε > 0,∀δ > 0,∃ x ∈ R : |x− x0| < δ ∧ |f(x)− l| ≥ 0.

Exercise: If A = {3, 4, 6, 8}, determine the truth value of each of the following:

1. ∃ x ∈ A, x+ 4 = 7.

2. ∃ x ∈ A, x is odd.

3. ∀ x ∈ A, (3− x) ∈ N.

Solution:

1. Since x = 3 ∈ A, satisfies x+ 4 = 7, the given statement is true. Its truth value is ‘1’.

2. Since x = 3 ∈ A, satisfies the given statement, the given statement is true. Its truth value is ‘1’.

3. ∃ x ∈ A, x = 4, do not satisfy 3− 4 = −1 /∈ N,the given statement is false. Its truth value is ‘0’.

1.5 Methods of Proof

Our main interest in quantifiers for the purposes of this course is to develop techniques for proving mathematical

statements.

When faced with a mathematical claim, understanding its quantifier is often a very good strategy for thinking

about how to work out a proof.

Example: If the statement has the form ∀x : P (x), then the global outline is likely to have the form:

Consider any possible x, and show that it satisfies the property P (x).

Example: If the statement has the form ∃x : P (x), then the global outline is different: One needs to specify

a particular x, and then show it satisfies P (x).
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1.5.1 Direct Method

We have already seen one way of proving a mathematical statement of the form: If p, then q. Based of the fact

that the implication p =⇒ q is false only when p is true and q is false, the idea behind the method of proof that

we discussed was to assume that p is true and then to proceed, through a chain of logical deductions, to conclude

that q is true. Here is the outline of the argument:

Suppose that p is true.

p ⇒ r

⇒ s

⇒ ..

⇒ q

Exercise: Prove the statement: If n is even, then n2 is even.

Solution: Assume that the integer n is even.

∃ k ∈ Z, n = 2k =⇒ n2 = (2k)2 = 4k2

=⇒ n2 = 2(2k2)

=⇒ n2 = 2k
′

such that k
′

= 2k2

which shows that n2 is even.

This is an example of a direct method of proof. In the following section we discuss indirect methods of

proof.

1.5.2 Proof by Contrapositive

The idea behind this method of proof comes from the fact that the implication

q̄ ⇒ p̄
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is equivalent to the implication

p⇒ q

Thus, in order to prove p⇒ q, it suffices to prove: q̄ ⇒ p̄. Here is the outline of the argument:

Suppose that : q̄ is true

q̄ =⇒ r

=⇒ s

=⇒ ...

=⇒ p̄.

Consequently, q̄ ⇒ p̄ is true; therefore, p⇒ q is true.

Exercise: Prove that n2 is even implies that n is even.

Solution: Suppose that n is not even. It then follows that

∃ k ∈ Z, n = 2k + 1 =⇒ n2 = (2k + 1)2 = 4k2 + 4k + 1

=⇒ n2 = 2(2k2 + 2k) + 1

=⇒ n2 = 2k
′

+ 1 such that k
′

= 2k2 + 2k

Thus, n is not even implies that n2 is not even, and therefore the contrapositive is true; namely, n2 is even

implies that n is even.

1.5.3 Proof by Contradiction (Absurd)

To prove that a proposition p is true we may assume that p is false then p̄ is true. Therefore we show that it

would lead to a contradiction or a false statement.

Exercise: Prove that
√

2 is irrational.

Solution: Let p:
√

2 is irrational. Now assume that p is false then p̄ is true, that is,
√

2 is rational. Then

there are some integers a and b with no common factors:
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∃ a ∈ Z,∃ b ∈ Z∗ :
√

2 = a/b ⇒ a2 = 2b2

⇒ a2 is even

⇒ a = 2c, c ∈ Z

⇒ 4c2 = 2b2 (by Substituting)

⇒ 2c2 = b2

⇒ b2 is even

⇒ b is even

This means that a and b have a common factor 2 which is a contradiction, and so p̄ must be false and p is

true.

1.5.4 Proof by Counter-Example

This proof structure allows us to prove that a property is not true by providing an example where it does not hold.

Thus, in order to prove that the statement ∀ x, P (x) is false, it suffices to prove that the statement ∃ x, P (x) is

true.

Exercise: Prove that “all triangles are obtuse” is false.

Solution: We give the following counterexample: the equilateral triangle having all angles equal to sixty. In

this case, there are infinitely many counterexamples. However, it only takes one.

Exercise: Prove that “ If n is an integer and n2 is divisible by 4, then n is divisible by 4” is false.

Solution: Consider n = 6. Then n2 = 36 is divisible by 4, but n = 6 is not divisible by 4. Thus, n = 6 is a

counterexample to the statement.

Exercise: Prove that “(a+ b)2 = a2 + b2” is not an algebraic identity, where a, b ∈ R.

Solution: If a = 1 and b = 2, then (a+ b)2 = 9 and a2 + b2 = 12 + 22 = 5.
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1.5.5 Proof by Cases Disjunction

This proof structure is used when one wants to prove a property ∀ x, P (x) depending on a parameter x belonging

to a set A, and the proof depends on the value of x. Hence we decompose the set A into two or more sets

A1, A2, ... and we separate the reasonings following that x ∈ A1, x ∈ A2, ..... This proof is often used to

solve (in) equations with absolute values (the proof depends on the sign of the quantity within the absolute

value), to demonstrate properties in arithmetic (we separate the proof following the parity of some integers, their

congruence modulo n ...).

To prove a proposition by case in the form p⇒ q where p⇐⇒ r ∨ s we may instead prove both r ⇒ q and

s⇒ q.

Exercise: Prove that for any integer n,the quotient n(n+1)
2 is an integer.

Solution:

• If n is even, then n is written n = 2k and n+ 1 = (2k + 1). We then have n(n+1)
2 = k(2k + 1) which is

an integer.

• If n is odd, then n is written n = 2k + 1 and n+ 1 = 2k + 2. We then have n(n+1)
2 = (2k + 1)(k + 1)

which is also an integer.

Exercise: Prove that ∀x ∈ R : |x− 1| ≤ x2 − x+ 1.

Solution: |x− 1| =


x− 1 if x ≥ 1

−x+ 1 if x < 1

|x− 1| ≤ x2 − x+ 1⇔


x− 1 ≤ x2 − x+ 1 if x ≥ 1

−x+ 1 ≤ x2 − x+ 1 if x < 1

1. If x ≥ 1, x− 1− x2 + x− 1 ≤ 0⇔ −x2 + 2x− 2 ≤ 0 is true because the discriminant of the equation

x2 − 2x+ 2 = 0 is negative (4 = −4), hence x2 − 2x+ 2 ≥ 0
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2. If x < 1,−x+ 1− x2 + x− 1 ≤ 0⇔ −x2 ≤ 0 is true.

Therefore ∀x ∈ R : |x− 1| ≤ x2 − x+ 1.

1.5.6 Proof by Mathematical Induction

To prove a proposition in the form ∀n ∈ N, n≥ n0 , P (n) where n is a natural number, it suffices to prove it in

two steps:

1. P (n0) is true for a certain base step n0. Usually, the base case is n = 1 or n = 0.

2. P (n)⇒ P (n+ 1). That is, if P (n) is true, then P (n+ 1) is true.

Exercise: Prove the following formula for all natural numbers n.

1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2.

Solution: Let P (n) : 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2

We shall prove ∀n ∈ N, P (n) in two steps:

1) P (0) : 0 = 02 so this proposition is true.

2) Let P (n) : 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) = n2

⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1)

⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2n+ 1) = (n+ 1)2

⇒ 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) + (2 (n+ 1)− 1) = (n+ 1)2

⇒ P (n+ 1) is true

Therefore ∀n ∈ N, P (n)

Exercise: is 3n − 1 a multiple of 2 ?

Solution:

1. Show it is true for n = 1, 31 − 1 = 3− 1 = 2. One has 2 is a multiple of 2. That was easy. 31 − 1 is a

multiple of 2.
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2. Assume it is true for n and prove that 3n+1 − 1 is a multiple of 2?;

3n − 1 = 2k ⇒ 3n × 3− 1× 3 = 2k × 3

⇒ 3n × 3− 3 = 2k × 3

⇒ 3n+1 − 1 = 2 + 2k × 3

⇒ 3n+1 − 1 = 2(1 + 3k)

⇒ 3n+1 − 1 = 2k
′

such that k
′

= 1 + 3k

Therefore ∀n ∈ N∗, 3n − 1 a multiple of 2
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Chapter 2

Sets, Relations and Applications

2.1 Set Theory

Set is a one of the most basic concept in mathematics, since we almost always have a collection of things we are

trying to study. In particular, mathematical structure arises from operations and relationships, such as addition,

multiplication and in the case of an application. Set is used in all branches of mathematics and computer science.

In analysis branch for example, an understanding of limit points and what is meant by the continuity of a function,

differential and integral calculus are based on set theory.

2.1.1 Relationships between elements and parts of a set

Definition (Set, Element)

A set A is a collection of objects called the elements of the set.

• If x is an element of the set A then we write x ∈ A, while the negation is written x /∈ A.

• Set is typically specified either explicitly, that is by listing all the elements the set contains, or implicitly,

using a predicate description as seen in predicate logic, of the form {x| P (x)}.

• The ordering of the elements is not important and repetition of elements is ignored.

• A set may also be empty set (or null set) and it is denoted by ∅ (phi) or {}.

• The universe E is the biggest set in which all the other sets we are interested in lie.
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Examples:

1. The set A given by {1, 2, 3} is an explicit description.

2. The set {x, x is a prime number } is implicit.

3. {N,Z,Q,R,C} is a set containing five sets.

4. {x : x ∈ {2, 3, 5} and x ≤ 1} is an empty set.

5. {x : x2 = −1 } is the set of two elements: i and −i.

6. {e, π, 1, π, 2, 1} = {1, 2, π, e}

Definition (Cardinality)

If a set A contains exactly n elements where n is a non-negative integer, then A is a finite set, and n is called

the cardinality of A. We write |A| = n.

Remark: If |A| is finite, A is a finite set; otherwise, A is infinite.

Examples:

1. A = {1, 2,
√

7, 0}, |A| = 4.

2. |{x | −2 < x < 5, x ∈ Z}| = 6.

3. |∅| = 0.

4. |{x | (x ∈ ∅) ∧ (x < −4)}| = 0.

5. The set of positive integers is an infinite set.

Using set notation with quantifiers

Sometimes, we restrict the domain of a quantified statement explicitly by using set notations.

• We use ∀ x ∈ A, (P (x)) to denote that P (x) holds for every x ∈ A.

• We use ∃ x ∈ A, (P (x)) to denote that P (x) holds for some x ∈ A.
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Definition (Equality)

Two sets A and B are equal if each element of A is an element of B and vice versa. This is denoted, A = B.

Formally:

A = B ⇔ ∀x : x ∈ A⇔ x ∈ B (2.1)

Examples:

1. {1, 2, 3} = {2, 1, 3}.

2. {1, 2, 3, 4} = {x ∈ N , x < 5}.

3. {x ∈ R : x2 + 1 = 0} = ∅.

To say that two sets A and B are not equal, inequality is A 6= B of course. We use the negation from

predicate logic, which is (using the rules we have studied in predicate logic! namely negation of universal

quantifier and De Morgan’s law). One obtains:

∀x : x ∈ A⇔ x ∈ B ⇔ ∃ x : (x ∈ A⇒ x ∈ B) ∧ (x ∈ B ⇒ x ∈ A)

⇔ ∃ x : (x ∈ A⇒ x ∈ B) ∨ (x ∈ B ⇒ x ∈ A)

⇔ ∃ x :
(

(x ∈ A) ∨ (x ∈ B)
)
∨
(

(x ∈ B) ∨ (x ∈ A)
)

⇔ ∃ x :
(

(x ∈ A) ∧ (x ∈ B)
)
∨
(

(x ∈ B) ∧ (x ∈ A)
)

⇔ ∃ x : ((x ∈ A) ∧ (x /∈ B)) ∨ ((x ∈ B) ∧ (x /∈ A))

Definition (Subset)

• A set A is a subset of B if and only if every element of A is also in B. We use A ⊆ B to indicate A is a

subset of B , that means A is included in B. Formally

A ⊆ B ⇔ ∀x : x ∈ A⇒ x ∈ B (2.2)
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• A is a proper subset (or strict subset) of B, A ⊂ B, if A ⊆ B and A 6= B.

• Note the difference between x ∈ A and {x} ⊆ A: in the first expression, x is an element of A, while in

the second, we consider the subset {x}, which is emphasized by the bracket notation.

• To say that A is not a subset of B, we use the negation of the following statement [∀x : x ∈ A⇒ x ∈ B] ,

which is:

∀x : x ∈ A⇒ x ∈ B ⇔ ∃ x : (x ∈ A) ∧ (x /∈ B)

Therfore,

A * B ⇔ ∃ x : (x ∈ A) ∧ (x /∈ B) (2.3)

Examples:

1. {12, 43, 66} ⊆ {12, 43, 66}

2. {a,F} ⊂ {a, b,F,N}

3. N ⊆ Z ⊆ Q ⊆ R

4. Let A =
{√

2, i
}
, A * R; i ∈ A and i /∈ R

Remark: There is a difference between ∅ and {∅}: the first one is an empty set, the second one is a set,

which is not empty since it contains one element: the empty set!

Properties: Notice that A ⊆ A and in fact each set is a subset of itself. The empty set ∅ is a subset of any

set ∅ ⊆ A.

Exercise: Prove that ∅ ⊆ A

Solution: Recall the definition of a subset: all elements of a set A must be also elements of B; ∀x : x ∈

A⇒ x ∈ B. We must show the following implication is true for any A,∀x : x ∈ ∅ ⇒ x ∈ A. Since the empty

set does not contain any element, x ∈ ∅ is always False statement. Then the implication is always True.

Venn Diagram

A diagram in which mathematical sets are represented by overlapping circles within a boundary representing

the universal set is called a Venn diagram. Such diagrams provide convenient pictorial representations of
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relations between sets.

Example: In the diagram (See Figure 2.1) a universal set E is represented by the interior of a rectangle,

and one subset A of E as the interior of one overlapping circle within the rectangle.

Figure 2.1

The Venn diagram in Figure 2.1 shows: A ⊆ E, {1, 2, 3, π} ⊆ E, {1, 2, 3, π} * A, ....

Definition (Power set)

Given a set E, the power set of E is the set of all subsets of E. The power set is denoted by P (E). Formally:

P (E) = {A, A ⊆ E } (2.4)

Examples: Write the power set of the following sets: ∅, {1}, {1, 2}, {1, 2, 3}. If E is a set with |E| = n

then |P (E)| = ?

1. P (∅) = {∅} and |P (∅)| = 1.

2. P ({1}) = {∅, {1}} and |P ({1})| = 2.

3. P ({1, 2}) = {∅, {1}, {2}, {1, 2}} and |P ({1, 2})| = 4.

4. P ({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and |P ({1, 2, 3})| = 8.

Property: If E is a set with |E| = n then |P (E)| = 2n.
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2.1.2 Set Operations

There are a number of basic set manipulations, each of which can be depicted with a VENN DIAGRAM.

Definition (Set Intersection)

The intersection of the sets A and B is the set of all elements that are in both A and B. We write A ∩B.

Formally:

A ∩B = {x, ( x ∈ A) ∧ (x ∈ B)}
(2.5)

Venn Diagram of Intersection Operation (See figure 2.2):

Figure 2.2

Example:

1. {1, 2, 3, 4} ∩ {−3, 4, 5} = {4}

2. {x| x > 0} ∩ {x| x ≥ 2} = {x| x ≥ 2}.

3. N ∩ Z ∩ R = N

Definition (Set Disjoint)

Two sets A and B are disjoint if A ∩B = ∅.

Examples:

1. {2, 4, 6} ∩ {8, 10, 12} = ∅ , so they are disjoint.

2. {1, 2, 3} ∩ {3, 4, 5} 6= ∅ , so they are not disjoint.

3. N ∩ Z 6= ∅, so they are not disjoint.
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4. {x| x ≥ 1} ∩ Z− = ∅, so they are disjoint.

Definition (Set Union)

The union of two sets A and B , denoted by A ∪B, is the set that contains exactly all the elements that are

in either A or B (or in both). Formally:

A ∪B = {x, (x ∈ A) ∨ (x ∈ B)}
(2.6)

Venn Diagram of Union Operation (See Figure 2.3):

Figure 2.3

Examples:

1. Let A = {0, 1, 2, 3, 6}, B = {0, 1, 2, 4, 6, 9}, A ∪B = {0, 1, 2, 3, 4, 6, 9}.

2. Z− ∪ Z+ = Z.

3. {x| x > 0} ∪ {x| x > −1} = {x| x > −1}.

Lemma (Cardinality of intersection and union)

For any two sets A and B, we have

|A ∪B| = |A|+ |B| − |A ∩B|
(2.7)
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Theorem 2. If A and B are any sets, then

1. (A ∩B) ⊆ A and (A ∩B) ⊆ B

2. A ⊆ (A ∪B) and B ⊆ (A ∪B)

Proof

1) To prove that A ∩B ⊆ A, we must show that x ∈ A ∩B ⇒ x ∈ A.

x ∈ A ∩B ⇒ (x ∈ A) ∧ (x ∈ B) by (2.5)

⇒ x ∈ A by theorem 1

Analogously, we can show that (A ∩B) ⊆ B.

2) To prove that A ⊆ A ∪B, we must show that x ∈ A⇒ x ∈ A ∪B:

x ∈ A ⇒ (x ∈ A) ∨ (x ∈ B) by theorem 1

⇒ x ∈ A ∪B by (2.6)

Analogously, we can show that B ⊆ A ∪B

Properties: For all subsets A, B and C of the univers E , the following are true.

• Commutative laws:


A ∩B = B ∩A

A ∪B = B ∪A

• Associative laws:


(A ∩B) ∩ C = A ∩ (B ∩ C)

(A ∪B) ∪ C = A ∪ (B ∪ C) .
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• Distributive laws:


A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

• Identity laws:


A ∪ ∅ = A

A ∩ E = A

• Domination laws:


A ∪ E = E

A ∩ ∅ = ∅

• Idempotent laws:


A ∪A = A

A ∩ ∅ = ∅

Definition (Set Partition)

A collection of nonempty sets {A1, A2, ..., An} is a partition of a set A if and only if

1. A = A1 ∪ A2 ∪ ... ∪ An.

2. A1, A2, · · · , An are mutually disjoint (or pairwise disjoint) : Ai ∩Aj = ∅, i 6= j, i, j = 1, 2, .., n.

Example: Consider A = Z, A1 = {x, x is even}, A2 = {x, x is odd} .

Then A1, A2 form a partition of A.

Venn Diagram of Set partition (See Figure 2.4):

Definition (Set difference)

The difference of A and B, is the set containing elements that are in A but not in B. Formally:

A−B = {x, (x ∈ A) ∧ (x /∈ B)}
(2.8)

Venn Diagram of Set difference (See Figure 2.5):
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Figure 2.4

Figure 2.5

Examples:

1. {1, 2, 3} − {3, 4, 5} = {1, 2}.

2. R −{0} = {x| (x ∈ R) ∧ (x 6= 0)}.

3. N−
{
a
b , (a ∈ Z) ∧ (b ∈ Z∗)

}
= N.

Properties: Let A and B subsets of the univers E.

• A−B ⊂ A

• A−A = ∅, A− ∅ = A, ∅ −A = ∅

• A− (A−B) = A ∩B

• A−B = Φ⇔ A ⊆ B
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Definition (Set complement)

Let A subset of the universal set E. The complement of set A with respect to E, denoted by CAE or CA or

A, is the set that contains exactly all the elements that are not in A. Formally:

A = E −A = {x ∈ E/ x /∈ A}
(2.9)

Venn Diagram of Set complement (See Figure 2.6):

Figure 2.6

Examples: Let the universe be R

1. {0} = {x, x 6= 0} = R∗.

2. R− = {x, x > 0} = R+.

3. ]−1, 2] = ]−∞,−1] ∪ ]2,+∞[ .

4. R = {x, x /∈ R} = ∅.

Properties: Let A and B subsets of the univers E.

• E = CEE = ∅, ∅ = C∅E = E

• CE
(
CAE
)

= A = A

• A ∪A = E,A ∩A = ∅

• A ⊂ B =⇒ B ⊂ A
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DE MORGAN’S LAWS

Explain how set complement interacts with intersections and unions of sets.


A ∩B = A ∪B

A ∪B = A ∩B

Exercise: Let A and B are subsets of the universal set E. Show that:

1. CE
(
CAE
)

= A = A

2. A ⊂ B =⇒ B ⊂ A

3. A ∩B = B ∪A

4. A ∪B = B ∩A

Solution:

1. CE
(
CAE
)

= A = A ?

x ∈ CE
(
CAE
)
⇐⇒ x /∈

(
CAE
)
⇐⇒ x ∈ A

2. A ⊂ B =⇒ B ⊂ A ?

A ⊂ B ⇐⇒ (∀x, x ∈ A =⇒ x ∈ B)

⇐⇒ (∀x, x /∈ B =⇒ x /∈ A)

(
∀x, x ∈ B =⇒ x ∈ A

)
B ⊂ A

3. A ∩B = B ∪A

52



x ∈ A ∩B ⇐⇒ x /∈ (A ∩B)

⇐⇒ (x /∈ A) ∨ (x /∈ B)

⇐⇒
(
x ∈ A

)
∨
(
x ∈ B

)
⇐⇒ x ∈ A ∪B

4. A ∪B = B ∩A

x ∈ A ∪B ⇐⇒ x /∈ (A ∪B)

⇐⇒ (x /∈ A) ∧ (x /∈ B)

⇐⇒
(
x ∈ A

)
∧
(
x ∈ B

)
⇐⇒ x ∈ A ∩B

Definition (Set Symmetric Difference)

The symmetric difference of set A and set B, denoted by A4B, is the set containing those elements in

exactly one of A and B.

Formally:

A4B = (A−B) ∪ (B −A)
(2.10)

Venn Diagram of Set difference (See Figure 2.7):

Figure 2.7
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Properties: Let A and B subsets of the univers E.

• A4B = B 4A

• A4 ∅ = A

• A4 E = E −A

• A4A = ∅

• A4B = (A ∪B)− (A ∩B)

• A4B = A4B

• (A4B)4 C = A4 (B 4 C)

Example: If A = {1, 2, 3, 4, 5, 10} and B = {0, 1, 2, 3, 4, 5, 7, 8, 9} , then A − B = {10} and B − A =

{0, 7, 8, 9} . Hence A4B = {0, 7, 8, 9, 10}

Definition (Ordered tuple)

An ordered n-tuple (x1, x2, ..., xn) has x1 as its first element, x2 as its second element, . . ., xn as its

nth element. The order of elements is important in such a tuple. Note that (x1, x2) 6= (x2, x1) but {x1, x2} =

{x2, x1}.

Definition (Set Cartesian product)

The Cartesian product of the sets A and B, denoted by A×B is the set of all ordered pairs (x1, x2), where

x1 ∈ A, x2 ∈ B:

A×B = {(x1, x2)/ x1 ∈ A, x2 ∈ B } (2.11)

The equality in A×B is defined by: (x1, y1) = (x2, y2)⇐⇒ x1 = x2 ∧ y1 = y2.

Cartesian product can be formed from n sets A1, A2, ..., An, denoted by A1 × A2 ×···× An, is defined as

the set of ordered tuples (x1, x2, ..., xn) where x1 ∈ A1, x2 ∈ A2, ..., xn ∈ An. That is:

A1 ×A2 × ··· ×An = {(x1, x2, .., xn)/ x1 ∈ A1, x2 ∈ A2, .., xn ∈ An} (2.12)
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A1 = A2 = ··· = An = A =⇒ A1 ×A2 × ··· ×An = An (2.12)

If we represent a set A×B, then a segment of the horizontal axis is marked off to represent A and a segment

of the vertical axis is marked off to represent B; A×B is the rectangle determined by these two segments (See

Figure 2.8).

Figure 2.8

Examples: Let A = {−2, 3} and B = {0,−4, 2}

1. A×B = {(−2, 0), (−2,−4), (−2, 2), (3, 0), (3,−4), (3, 2)}.

2. B ×A = {(0,−2), (0, 3), (−4,−2), (−4, 3), (2,−2), (2, 3)}

3. Note that A×B 6= B ×A.

4. R × R = {(x, y) |x ∈ R, y ∈ R} is the set of point coordinates in the 2D Plane.

5. R × R× R = {(x, y, z) |x ∈ R, y ∈ R, z ∈ R} is the set of point coordinates in the 3D Space.

Lemma (Cardinality of Cartesian product)

In general, if Ai’s are finite sets, we have:

|A1 × A2 × ...× An| = |A1| × |A2| × ...× |An| (2.13)

55



Properties: If A and B are any sets, then

• A×B 6= B ×A

• A× ∅ = ∅ ×A = ∅

• A ⊆ E ∧ B ⊆ F ⇔ A×B ⊆ E × F

• A× (B ∩ C) = (A×B) ∩ (A× C)

• A× (B ∪ C) = (A×B) ∪ (A× C)

• A×B = ∅ ⇔ A = ∅ ∨B = ∅

• A×B 6= ∅ ⇔ A 6= ∅ ∧B 6= ∅

Exercise : The sets A = {1, 2, x}, B = {3, 4, y} are given. Determine x and y, knowing that {1, 3} ×

{2, 4} ⊆ A × B

Solution: We form the sets A × B and C = {1, 3} × {2, 4} :

A × B = {(1, 3) , (1, 4) , (1, y) , (2, 3) , (2, 4) , (2, y) , (x, 3) , (x, 4) , (x, y)}

C = {(1, 2) , (1, 4) , (3, 2), (3, 4)}

Because {1, 3} × {2, 4} ⊆ A × B, we obtain

(1, 2) ∈ C =⇒ (1, 2) ∈ A × B =⇒ (1, 2) = (1, y) =⇒ y = 2.

(3, 4) ∈ C =⇒ (3, 4) ∈ A × B =⇒ (3, 4) = (x, 4) =⇒ x = 3.

For x = 3 and y = 2, we have (3, 2) ∈ A × B.

Therefore: x = 3 and y = 2.

Exercise : Determine the sets A and B that simultaneously satisfy the following conditions:

1. A ∪ B = {1, 2, 3, 4, 5};

2. A ∩B = {3, 4, 5};

3. 2 /∈ (B −A)
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4. 1 /∈ (A−B)

Solution:

1 /∈ (A−B)⇔ (1 /∈ A) ∨ (1 ∈ B)

1 ∈ (A ∪B)⇔ (1 ∈ A) ∨ (1 ∈ B)

[1 /∈ (A−B)] ∧ [1 ∈ (A ∪B)] ⇔ [(1 /∈ A) ∨ (1 ∈ B)] ∧ [(1 ∈ A) ∨ (1 ∈ B)]

⇔ [(1 /∈ A) ∧ (1 ∈ A)] ∨ (1 ∈ B)

⇔ F ∨ (1 ∈ B)

⇔ 1 ∈ B

2 /∈ (B −A)⇔ (2 /∈ B) ∨ (2 ∈ A)

2 ∈ (A ∪B)⇔ (2 ∈ A) ∨ (2 ∈ B)

[2 /∈ (B −A)] ∧ [2 ∈ (A ∪B)] ⇔ [(2 /∈ B) ∨ (2 ∈ A)] ∧ [(2 ∈ A) ∨ (2 ∈ B)]

⇔ [(2 /∈ B) ∧ (2 ∈ B)] ∨ (2 ∈ A)

⇔ F ∨ (2 ∈ A)

⇔ 2 ∈ A

Then, A = {2, 3, 4, 5} and B = {1, 3, 4, 5}

2.2 Relations

The notion of relation is omnipresent, in mathematics as in everyday life. The intuitive idea is to understand the

fact that a certain link exists or not between two or more objects.

The concept of relation finds a precise characterization in a mathematical context, the Cartesian product operation

offering in this respect a frame both propitious and fertile.
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2.2.1 Binary Relations

Binary relations are an excellent way for capturing certain structures that appear in computer science.

Definition (Binary Relation)

A binary relation over a nonempty set A is a predicate R that can be applied to ordered pairs (x, y) of

elements x and y given from A.

The representing graph of a relation in A is a graph G ⊆ A×A which consists of all the pairs (x, y) such

that the relation between two elements x and y is true. Conversely, if we are given an arbitrary graph G ⊆ A×A,

then G defines a relation in A, namely the relation R is true if and only if (x, y) ∈ G.

Notation for Binary Relations

Let R be a binary relation in A . Then

x R y ⇐⇒ (x, y) ∈ G

Examples:

1. ”x is greater than y ”.

2. ”x and y have the same absolute value”.

3. ”x2 + y2 = 1”.

4. A ⊂ B.

Example: Suppose A = {1, 2, 3, 4} . We give the graph G ⊆ A×A of the following relation:

∀ x, y ∈ A : x R y ⇐⇒ x < y.

Then, G = {(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}.

Example: A relation R is defined on R by:

∀ x, y ∈ R : x R y ⇐⇒ xy3 − x3y = 6

We show that 1 R 2 , because 1× 23 − 13 × 2 = 6

Remark: If R is a binary relation over A and it does not hold for the pair (x, y), then x R y.

Examples: 3 6= 4, R * Z, 4 
 3.
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Properties of a relation

Let R be a binary relation in A.

• R is reflexive iff ∀x ∈ A : x R x.

• R is symmetric iff ∀x, y ∈ A : x R y⇒ y R x.

• R is anti-symmetric iff ∀x, y ∈ A : (x R y) ∧ (y R x) =⇒ x = y.

• R is transitive iff ∀x, y, z ∈ A : (x R y) ∧ (y R z) =⇒ x R z.

Example: Let A = {1, 2, 3} and consider three relations R, T, S on A :

GR = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}.

GS = {(1, 1), (1, 3), (2, 2), (3, 2)}.

GT = {(1, 2), (1, 3), (2, 3)}.

• R is reflexive, symmetric, and transitive, but not anti-symmetric because (1 R 2) ∧ (2 R 1) but 1 6= 2.

• S is anti-symmetric, but not reflexive because
(
3 R 3

)
, not symmetric (1 R 3 ) but (3 R 1) , and not

transitive (1 R 3) ∧ (3 R 2) but
(
1 R 2

)
.

• T is anti-symmetric and transitive, but not reflexive
(
1 R 1

)
and not symmetric (1 R 2 ) but (2 R 1) .

2.2.2 Equivalence Relation

Definition (Equivalence Relation)

An equivalence relation is a relation that is reflexive, symmetric and transitive.

Examples:

1. The “equal-to” relation, “ = ”, on R is an equivalence relation.

2. The “less- than -or- equal to ” relation, “6”, onR is not an equivalence relation because it is not symmetric.

For example: 1 6 2 but 2 
 1.

3. The “strictly-less-than” relation, “< ”, on R is not an equivalence relation because it is not reflexive. For

example: 1 ≮ 1.
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4. The “Line Parallel relation”, “‖” , is an equivalence relation.

5. The “Perpendicular Lines” relation, “⊥”, is symmetric but neither reflexive nor transitive.

6. The “subset” relation “⊆ ”, on P (E) such that E = {1, 2, 3} , is not an equivalence relation because it is

not symmetric. For example: {1} ⊆ {1, 2} but {1, 2} * {1} .

Exercise: Let A be the set of all triangles in a plane with R a relation in A given by

∀ T1, T2 ∈ A : T1 R T2 ⇐⇒ T1 is congruent to T2.

Show that R is an equivalence relation.

Solution:

1. R is reflexive, since every triangle is congruent to itself.

2. T1 R T2 =⇒ T1 is congruent to T2 =⇒ T2 is congruent to T1 =⇒ T2 R T1. Hence, R is symmetric.

3. (T1R T2) ∧ (T2R T3) =⇒ T1 is congruent to T2 and T2 is congruent to T3 =⇒ T1 is congruent to T3.

Hence, R is transitive.

Therefore, R is an equivalence relation.

Exercise: Consider the binary relation R defined over the set Z:

∀ x, y ∈ Z : x R y ⇐⇒ x+ y is even.

Show that R is an equivalence relation.

Solution:

(a) R is reflexive⇔ ∀x ∈ Z : x R x.

1. Let x ∈ Z, the sum x+ x can be written as 2k for some integer k (namely, x), so x+ x is even. Then x R

x holds, as required.
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(b) R is symmetric⇔ ∀x, y ∈ Z : x R y⇒ y R x.

Let x, y ∈ Z,

x R y ⇒ ∃k ∈ Z, x+ y = 2k

⇒ y + x = x+ y = 2k (by Commutative Property of Addition)

⇒

⇒

y + x is even

y R x, as required

(c) R is transitive⇔ ∀x, y, z ∈ Z : (x R y) ∧ (y R z) =⇒ x R z.

Let x, y, z ∈ Z,

(x R y) ∧ (y R z) ⇒ ∃ k, k′ ∈ Z, (x+ y = 2k) ∧
(
y + z = 2k

′
)

⇒ x+ y + y + z = 2k + 2k
′

⇒ x+ z = 2k + 2k
′ − 2y = 2k

′′
/ k
′′

= k + k
′
+ y

⇒ x+ z is even

⇒ x R z, holds, as required.

Therefore, R is an equivalence relation.

2.2.3 Equivalences and Partitions

Definition (Equivalence Relation)

Given a partition A1, A2, A3, . . . of a set A, two elements x and y of A are said to be equivalent, with

respect to that partition, if they belong to the same subset specified by the partition.

Example: The days of the year are partitioned by seven disjoint sets given by the weekday names of the

days. For instance, August 1, 1966, and June 30, 2003, are equivalent in this context since they both belong to

the subset called “Monday.”
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Example: Assuming two words of the English language to be equivalent if they each possess the same

number of vowels is an equivalence relation on the set of all words.

Definition (Equivalence Classes)

Given an equivalence relation R over a set A, for any x ∈ A, the equivalence class of x is the set

[x] = {y, x R y}

[x] is the set of all elements of A that are related to x by relation R.

Property: If R is an equivalence relation over A, then every x ∈ A belongs to exactly one equivalence class.

Theorem 3. If R is an equivalence relation on a set A, then the collection of its equivalence classes is a

partition of A. Conversely, if P is a partition of A, then the relation defined by

x R y ⇔ ∃ S ∈ P : x, y ∈ S

is an equivalence relation, and its equivalence classes are the elements of the partition.

Exercise: Provide a proof.

2.2.4 Order Relation

The notion of order relation on a set aims to define the intuitive idea that an object ”precedes” another, ”come

before” it, according to a certain criterion of ordering, of disposition of the objects in question.

Definition (Order Relation)

A binary relation R on a set A is called an order relation if it is reflexive, anti-symmetric, and transitive.

Examples:

1. The “less-than-or-equal-to” relation on the set of integers Z is an order relation.

2. The “strictly-less-than” and “proper-subset” relations are not order relation because they are not reflexive.
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Definition (Total Ordering Relation)

An order relation R on A is called a total ordering if it satisfies one additional proposition:

∀x ∈ A,∀y ∈ A: (x R y) ∨ (y R x)

Examples:

1. The relation (R,6) is a total order relation.

2. The relation (P (E),⊆) is not a total order relation because ∃ A,B ∈ P (E) : (A * B) ∧ (B * A) .

Example: Show that the relation “Divides” defined on N∗ is an order relation.

Solution:

1) R is reflexive⇔ ∀x ∈ N∗ : x R x

We have x divides x, ∀x ∈ N∗. Therefore, relation “Divides” is reflexive.

2) R is anti-symmetric⇔ ∀x, y ∈ N∗ : (x R y) ∧ (y R x) =⇒ x = y

Let x, y ∈ N∗,

(x R y) ∧ (y R x) ⇒ (x divides y) and (y divides x)

⇒ ∃ k, k′ ∈ N∗,
(
y = k

′
x
)
∧ ( x = ky)

⇒ x = kk
′
x

⇒ kk
′

= 1

⇒

⇒

k = k
′

= 1 ∈ N∗

x = y

So, the relation is anti-symmetric.

3) R is transitive⇔ ∀x, y, z ∈ N∗ : (x R y) ∧ (y R z) =⇒ x R z.

Let x, y, z ∈ N∗,
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(x R y) ∧ (y R z) ⇒ ∃ k, k′ ∈ N∗, (y = k x) ∧
(
z = k

′
y
)

⇒ z = k
′
k x

⇒ z = k” x / k” = k
′
k ∈ N∗

⇒ x divides z ⇒ x R z

Hence, the relation is transitive.

Thus, the relation R being reflexive, anti-symmetric and transitive, the relation “divides” is an order relation.

2.3 Applications

2.3.1 Functional Relation

The concept of a function is one of the most basic mathematical ideas and enters into almost every mathemat-

ical discussion.We focus on the concept of Functional relation which is called an application. We will not

study derivatives or integrals, but rather the notions of injective and surjective applications, how to compose

applications, and when they are invertible.

Definition (Function)

Let E and F be sets. A function is a relation from a set E to another set F, denoted by f : E → F, that

every element x ∈ E assigns at most a unique element y ∈ F satisfying x f y. To indicate this relation between

x and y we usually write y = f(x).

x f y ⇐⇒ y = f(x)

We say that:

• y is the image of x (under f ).

• x is the pre-image of y (under f ).

• f maps x onto y, and symbolize this statement by
f

x 7−→ y.

• E is the starting set of f .
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• F is the arrival set or codomain of f.

• Gf is the graph of the function f , given by: Gf = {(x, y) ∈ E × F / y = f(x)}

Note that

f : E −→ F

x 7−→ y

Definition ( Domain Definition )

The Domain Df of a function f of E in F is the set of elements x ∈ E satisfying: there is one and only one

element y ∈ F such that y = f(x).

Definition (Range)

We call range of a function f the subset of F with preimages.

Definition (Application)

An application f is a function of E in F whose domain definition Df is equal to E.

Definition (Application)

An application from a set E to a another set F is a relation which to every element x ∈ E assigns a unique

element y ∈ F . Formally, using predicate logic:

f Application⇔


1) ∀ x ∈ E, ∃ y ∈ F : y = f(x)

2) ∀x1, x2 ∈ E : x1 = x2 ⇒ f(x1) = f(x2)

we can write also,

f Application⇔∀ x ∈ E, ∃! y ∈ F : y = f(x)

An application (or function) is a triplet f = (E,F,R), where E and F are two sets and Gf

⊆ E × F is a functional relation (See Figure 2.9).
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Figure 2.9

Example: Consider the assignment rule f :E = {1, 2, 3, 4}→ F = {x, y, z}which is defined by:

1. G = {(1, x), (2, y), (3, z), (4, x)}

2. G = {(1, x), (2, x), (3, x), (4, y)}

3. G = {(1, z), (2, y), (3, x)}

4. G = {(1, y), (2, x), (3, y), (3, z), (4, x)}

The first two relations are applications and the third relation is function with Df is {1, 2, 3} but not the last

one.

2.3.2 Equality - Extension - Restriction

Definition (The equality of applications)

Two applications f and g are called equal if and only if they have the same domain E, the same codomain F

and the same graphic Gf = Gg. If f, g : E −→ F , the equality f = g is equivalent to f(x) = g(x), ∀x ∈ E,

that is to say:

f = g ⇐⇒ ∀x ∈ E, f(x) = g(x)
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Definition ( Extension of an application-Restriction of an application)

Let f : E → F be an application and X and Y be sets such that E ⊆ X and F ⊆ Y . An extension of f to

X is an application g : X → Y such that f(x) = g(x) for all x ∈ E. Alternatively, g is an extension of f to X

if f is the restriction of g to E.

2.3.3 Image and Inverse Image of a Subsets

Often in mathematics, particularly in analysis and topology, one is interested in finding the set of image points or

inverse image of an application acting on a given set, which brings us to the two following definitions that are

waiting to be understood.

Definition ( Image of a Subset)

Let f : E −→ F and consider the subset A ⊂ E. The image of the subset A under f , which we write

f(A), is the subset of F that consists of the images of the elements of A (See Figure 2.10)

f(A) = {f(x), x ∈ A}

y ∈ f(A)⇐⇒ ∃ x ∈ A, y = f(x)

Definition (Inverse Image of a Subset)

Let f : E −→ F and consider the subset B ⊂ F . The inverse image of the subset B under f, which we

write f−1(B) is the subset of E that consists of the pre-images of elements in B (See Figure 2.10)

f−1(B) = {x, f(x) ∈ B}

Example: Let E = {1, 2, 3, 4} and F = {a, b, c} and define an application f : E −→ F such that f

(1) = f(2) = a, f(3) = f(4) = c. Let A ⊂ E, A = {1, 2, 3}. Then f(A) = {a, c}. Also for example

f−1({b}) = ∅, f−1({a, c}) = A, f−1({b, c}) = {3}.
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Figure 2.10

Properties

Given an application f : E −→ F where A,B, are subsets of E and C,D, are subsets of F , we have the

following properties. Notice how the inverse image always preserves unions and intersections, although not

always true for the image of an application. Then the images of intersections and unions satisfy:

1. f (A ∩B) ⊆ f (A)∩ f (B) .

2. f (A ∪B) = f (A)∪ f (B) .

3. f−1 (A ∩B) = f−1 (A)∩ f−1 (B) .

4. f−1 (A ∪B) = f−1 (A)∪ f−1 (B) .

5. A ⊆ B =⇒ f(A) ⊆ f(B).

6. C ⊆ D =⇒ f−1(C) ⊆ f−1(D).

7. f−1(C) = f−1(C).

Exercise: Let f(x) = 1 + x2. Find the following:

1. f ({−1, 1}) .

2. f ([−2, 2]) .

3. f ([−2, 3]) .

4. f−1 ({1, 5, 10}) .
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5. f−1 ([0, 1]) .

6. f−1 ([2, 5]) .

Solution:

1. f ({−1, 1}) = {2} .

2. f ([−2, 2]) = f ([−2, 0] ∪ [0, 2]) = f([−2, 0]) ∪ f([0, 2]) = [1, 5] .

3. f ([−2, 3]) = f ([−2, 0] ∪ [0, 3]) = f([−2, 0]) ∪ f([0, 3]) = [1, 10] .

4. f−1 ({1, 5, 10}) = {0, 2,−2, 3,−3} .

5. f−1 ([0, 1]) = {0} .

6. f−1 ([2, 5]) = [−2,−1] ∪ [1, 2] .

2.3.4 Injective, Surjective and Bijective Applications

Definition (Injective)

An injective application (or one-to-one application) f : E −→ F , is an application for which every element

of the range of the application corresponds to exactly one element of the domain. Formally:

f Injective⇐⇒



∀x1, x2 ∈ E : x1 6= x2 ⇒ f(x1) 6= f(x2)

or

∀x1, x2 ∈ E : f(x1) = f(x2)⇒ x1 = x2

In words, this says that all elements in the domain of f have different images (See Figure 2.11)

Example. Consider an application f : R −→ R, f(x) = 4x− 1. We want to know whether each element of

R has a different image. In fact, this function is a line, so one may ”see” that two distinct elements have distinct

images, but let us try a proof of this.
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Figure 2.11

f(x1) = f(x2) =⇒ 4x1 − 1 = 4x2 − 1

=⇒ 4x1 = 4x2

=⇒ x1 = x2

Therefore f is injective.

Example. Consider an application g : R −→ R, g(x) = x2. A property of injectivity of g is not true

by providing an example where it does not hold. The two elements x1 = 1 and x2 = −1 are both sent to

g(x1) = g(x2) = 1.

The other definition that always comes in pair with that of injective is that of surjective.

Definition (Surjective)

An application f : E −→ F is surjective (or onto) if and only if for every element y ∈ F , there is an

element x ∈ E with y = f(x):

∀y ∈ F,∃ x ∈ E : y = f(x)

In words, each element in the co-domain of f has a pre-image (See Figure 2.12)

Example. Consider again f : R −→ R, f(x) = 4x− 1. We want to know whether each element of R has a

preimage.

70



Figure 2.12

f(x) = y =⇒ 4x− 1 = y

=⇒ 4x = y + 1

=⇒ x = y+1
4 ∈ R

Therefore f is surjective.

Example. Consider again g : R −→ R, g(x) = x2. A property of surjectivity of g is not even true by

providing an example where it does not hold. If y = −1, there is no x ∈ R such that g(x) = x2 = −1.

Exercise: The function f is defined by: f : R→ R : x 7→ x2 − 6x

1. Give an example to show that f is not injective.

2. Give an example to show that f is not surjective.

Solution:

1. f(6) = f(0) = 0 but 6 6= 0, therefore the application is not injective.

2. f(x) = x2 − 6x = (x− 3)2 −9

71



let y = −10 then f(x) = −10 =⇒ (x− 3)2 − 9 = −10

=⇒ (x− 3)2 = −1

There is no real number, x such that f(x) = −10 the application is not surjective.

Or the range of the application is y ≥ 2. The range of the function is not R (the codomain), therefore the

application is not surjective.

We next combine the definitions of an application which is injective and surjective, to get:

Definition 1 (Bijective)

An application f : E −→ F is bijective if and only if it is both injective and surjective (See Figure 2.13)

Definition 2 (Bijective)

An application f : E −→ F is bijective if and only if for every element y ∈ F , there is a unique element

x ∈ E with y = f(x):

∀y ∈ F,∃! x ∈ E : y = f(x)

Figure 2.13

Example: Consider the application f : R −→ R, f(x) = 4x − 1, which we have just studied in two

previous examples. We know it is both injective and surjective, therefore it is a bijection.

Bijections have a special feature: they are invertible, formally:
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Definition 1 (Inverse Application)

Let f : E −→ F be a bijection. Then the inverse application of f , f−1 : F −→ E is defined elementwise

by: f−1(y) is the unique element x ∈ E such that f(x) = y. We say that f is invertible.

Example: Let us consider again at our two previous examples, namely, f(x) = 4x − 1 and g(x) = x2.

Then, the application g is not a bijection, so it cannot have an inverse. Now f is an application bijective, so we

can compute its inverse.

y = f(x) ⇐⇒ y = 4x− 1

⇐⇒ y + 1 = 4x

⇐⇒ x = y+1
4

⇐⇒ f−1(y) = y+1
4

Property: Let f : E −→ F be a bijective application , then f−1 : F −→ E is a bijective application.

2.3.5 Examples of Applications

• Identity Application. Let A be a set; by the identity application on A we mean the application IA : A→

A given by

IA(x) = x

* IA is injective, IA(x) = IA(y) =⇒ x = y (IA(x) = x and IA(y) = y); thus the injection holds.

* IA is surjective because, obviously, the range of IA is A.

* Thus IA is bijective.

• Constant Application. Let A and B be sets, and let b be an element of B. By the constant application fb

we mean the application fb : A→ B given by:

fb(x) = b,∀x ∈ A
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• Characteristic Application. The characteristic application of a set is used to solve some difficult

problems of set theory found in undergraduate studies. Let’s consider A ⊂ E 6= ∅ (a universal set), then

fA : E → {0, 1} , where the application

fA(x) =


1, x ∈ A

0, x /∈ A

is called the characteristic application of the set A.

2.3.6 Operations on Applications

Given two applications, it may be possible to combine them in different ways to create more complicated

applications. If the domains and codomains of the two applications agree and if the codomain supports

arithmetic, we may define arithmetic operations on the applications by point-wise operations on their images.

Arithmetic Operations on Applications

Let f : E → F and g : E → F be two applications sharing a common domain E and let α be a real number.

Then f + g, f − g, α ·f , f ·g, and f/g (g(x) 6= 0) denote the following applications from E to F :

(f + g)(x) = f(x) + g(x).

(f − g)(x) = f(x)− g(x).

(α·f ) (x) = α·f(x).

(f ·g)(x) = f(x) · g(x).

(f/g)(x) = f(x)/g(x), provided g(x) 6= 0.

Exercise: Find counter-examples to each of these statements for f : R→ R and g : R→ R:

(a) If f and g are surjective, then (f + g) is surjective.

Suppose f(x) = x and g(x) = −x. Then (f + g) (x) = x− x = 0.

(b) If f and g are surjective, then f ·g is surjective.
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The same f(x) = x and g(x) = −x from above work; (f ·g) (x) = −x2, which is not surjective.

Composition of Applications

In addition to arithmetic operations on applications, there is another operation called composition of applications

which is more set-theoretic or algebraic in nature. A composite of two applications is satisfied if the codomain

of the first application agrees with the domain of the second.

If f : E → F and g : F → G are applications in which the codomain of f equals the domain of g, then the

assignment h(x) = g(f(x)) defines an application h : E → G. For, given any x ∈ E, there is a unique y ∈ F

such that y = f(x), since f is an application. Similarly, since g is an application, g(f(x)) is a unique image in

G. Thus each element x from E yields a unique image z = g(f(x)) in G, guaranteeing that h is an application

from E into G. This legitimizes the following definition.

Definition (Composite Applications)

If f : E → F and g : F → G, then the composite application f followed by g is the application g ◦ f such

that:

g ◦ f : E → G

x 7→ (g ◦ f) (x) = g(f(x))

Example: If f(x) = −4x+ 9 and g(x) = 2x− 7, find (f ◦ g)(x) and (g ◦ f) (x)

(f ◦ g)(x) = f(g(x))

= −4g(x) + 9

= −4(2x− 7) + 9

= −8x+ 28 + 9

= −8x+ 37

Thus, (f ◦ g)(x) = −8x+ 37.
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(g ◦ f)(x) = g(f(x))

= 2f(x)− 7

= 2 (−4x+ 9)− 7

= −8x+ 18− 7

= −8x+ 11

Thus, (g ◦ f)(x) = −8x+ 37.

We remark that (f ◦ g)(x) and (g ◦ f)(x) produced different answers.

Properties: Suppose f, g, and h are application that can be composed in the order given.

1.2.3.4.5.1. Composition is not Commutative: g ◦ f 6= f ◦ g.

2. If f and g are both injective applications, then so is g ◦ f .

3. If f and g are both surjective applications, then so is g ◦ f.

4. If f and g are both bijective applications, then so is g ◦ f .

5. Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 2 (Inverse Applications)

If f : E → F and g : F → E, then f and g are inverse applications of one another relative to composition

iff

g ◦ f = IE and f ◦ g = IF .

Example: Show that the application g : R→ R defined by g(x) = x−1
2 is an inverse for the application g :

R→ R defined by f(x) = 2x+ 1.

g(f(x)) = f(x)−1
2 = 2x+1−1

2 = x

f(g(x)) = 2g(x) + 1 = 2
(
x−1
2

)
+ 1 = x
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Thus g is f ’s inverse.

Properties: Let f : E → F and g : F → G

1. If f has an inverse, then it is unique.

2. The composition g ◦ f of two invertible applications f and g is invertible. Moreove , the composition of

the inverses in the reverse order

(g ◦ f)−1 = f−1 ◦ g−1

Example: Let an application f : E → F.

Determine the inverse application for f(x) = x
x+1 . Assume that f is defined for as inclusive a set of real

numbers as possible and that the codomain of f is its range.

The equation y = x
x+1 defines an application on E = R− {−1} .

We will check its codomain after we determine which values y can be. Solving y = x
x+1 for x, we get the

following:

y = x
x+1 ⇒ y (x+ 1) = x

⇒ yx+ y = x

⇒ yx− x = −y

⇒ x = y
1−y = g(y)

Since there are x-values for all y except y = 1, our domain for g and our codomain for f must be taken to

be F = R− {1}.

For these x- and y-values the above solution process is reversible. The inverse application is therefore given

by f−1(y) = y
1−y .

77



2.4 The Inverse Trigonometric Application

In this section, we concern ourselves with finding inverses of the (circular) trigonometric applications. Our

immediate problem is that, owing to their periodic nature, none of the circular applications is injective. To

remedy this, we restrict the domains of the circular applications to obtain an injective application.

2.4.1 Arccosine Application

We first consider f(x) = cos(x). Choosing the interval [0, π] allows us to keep the range as [−1, 1] as well as

the property of being bijective.

Figure 2.14

Recall from Subsection 2.3.4 that the inverse of an application f is typically denoted f−1. For this reason,we

can use the notation f−1(x) = cos−1(x) for the inverse of f(x) = cos(x) (See Figures 2.14–2.15)

Remark: It is far too easy to confuse cos−1(x) with 1
cos(x) so we will not use this notation in our text.

Notation: We use the notation f−1(x) = arccos(x), read “arc-cosine of x”.
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Figure 2.15

Formally:

f−1 : [−1, 1] → [0, π]

x 7→ f−1(x) = arccos(x)

We list some important facts about the arccosine applications in the following properties.

Properties

arccos(x) = y if and only if y ∈ [0, π] and cos(y) = x.

cos(arccos(x)) = x provided x ∈ [−1, 1].

arccos(cos(x)) = x provided x ∈ [0, π].

2.4.2 Arcsine Application

We restrict f(x) = sin(x) in a similar manner, although the interval of choice is
[
−π

2 ,
π
2

]
(See Figure 2.16)

It should be no surprise that we call f−1(x) = arcsin(x), which is read “arc-sine of x”(See Figure 2.17)
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Figure 2.16

Formally:

f−1 : [−1, 1] →
[
−π

2 ,
π
2

]
x 7→ f−1(x) = arcsin(x)

We list some important facts about the arcsine applications in the following properties.

Properties

arcsin(x) = y if and only if y ∈
[
−π

2 ,
π
2

]
and sin(y) = x.

sin(arcsin(x)) = x provided x ∈ [−1, 1].

arcsin(sin(x)) = x provided x ∈
[
−π

2 ,
π
2

]
.
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Figure 2.17

Exercise: Find the exact values of the following.

1) arccos(12) 5) arcsin(
√
2
2 )

2) arccos(−
√
2
2 ) 6) arcsin(−1

2)

3) arccos(cos
(
π
6

)
) 7) arccos(cos(11π6 ))

4) cos
(
arccos(−3

5)
)

8) sin
(
arccos(−3

5)
)

Solution:

1. To find arccos(12), we need to find the real number y (or, equivalently, an angle measuring y radians)

which verifies y ∈ [0, π] and with cos(y) = 1
2 . We know y = π

3 meets these criteria, so arccos(12) = π
3 .

2. The number y = arccos(−
√
2
2 ) ∈ [0, π] with cos(y) = −

√
2
2 . Our answer is y = 3π

4 .

3. Since π
6 ∈ [0, π], we could simply refer to the properties of arccosine applications to get arccos(cos

(
π
6

)
) =

π
6 .
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4. One way to simplify cos
(
arccos(−3

5)
)

is to use the properties of arccosine applications directly. Since

−3
5 ∈ [−1, 1], we have cos

(
arccos(−3

5)
)

= −3
5 .

5. The value of arcsin(
√
2
2 ) is a real number y ∈

[
−π

2 ,
π
2

]
with sin(y) =

√
2
2 . The number we seek is

y = π
4 . Hence, arcsin(

√
2
2 ) = π

4 .

6. To find arcsin(−1
2), we seek the number y ∈

[
−π

2 ,
π
2

]
with sin(y) = −1

2 . The answer is y = −π
6 so that

arcsin(−1
2) = −π

6 .

7. Since 11π
6 does not fall between 0 and π, the properties of the arcsine applications does not apply. We

are forced to work through from the inside out starting with arccos(cos(11π6 )) = arccos(
√
3
2 ). We know

arccos(
√
3
2 ) = π

6 . Hence, arccos(cos(11π6 )) = π
6 .

8. As in the previous question, we let y = arccos(−3
5) so that cos y = −3

5 for y ∈ [0, π]. Since cos y < 0,

we can narrow this down a bit and conclude that π
2 < y < π . In terms of y, then, we need to find

sin
(
arccos(−3

5)
)

= sin y. Using the Pythagorean Identity cos2 y+sin2 y = 1, we get
(
−3

5

)2
+sin2 y = 1

or sin y = ±4
5 . We choose sin y = 4

5 . Hence, sin
(
arccos(−3

5)
)

= 4
5 .

The next pair of application we wish to discuss are the inverses of tangent and cotangent, which are named

arctangent and arccotangent, respectively.

2.4.3 Arctangent Application

We restrict f(x) = tan(x) to its fundamental cycle on
]
−π

2 ,
π
2

[
to obtain f−1(x) = arctan(x). Among other

things, note that the vertical asymptotes x = −π
2 and x = π

2 of the graph of f(x) = tan(x) become the

horizontal asymptotes y = −π
2 and y = π

2 of the graph of f−1(x) = arctan(x). We show these graphs on

Figure 2.18.

We list some of the basic properties of the arctangent application.

Properties

arctan(x) = y if and only if y ∈
]
−π

2 ,
π
2

[
and tan(y) = x.

tan(arctan(x)) = x provided x ∈ R.

arctan(tan(x)) = x provided x ∈
]
−π

2 ,
π
2

[
.
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Figure 2.18

2.4.4 Arccotangent Application

We restrict f(x) = cot(x) to its fundamental cycle on ]0, π[ to obtain f−1(x) = arccot(x). Once again, the

vertical asymptotes x = 0 and x = π of the graph of f(x) = cot(x) become the horizontal asymptotes y = 0

and y = π of the graph of f−1(x) = arccot(x). We show these graphs on Figure 2.19.

We list some of the basic properties of the arccotangent application.

Properties

arccot(x) = y if and only if y ∈ ]0, π[ and cot(y) = x.

cot(arccot(x)) = x provided x ∈ R.

arccot(cot(x)) = x provided x ∈ ]0, π[ .

Exercise: Find the exact values of the following.

1. arctan(
√

3).

2. arccot(−
√

3).

3. cot(arccot(−5))
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Figure 2.19
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Solution:

1. We know arctan(
√

3) is the real number y ∈
]
−π

2 ,
π
2

[
with tan(y) =

√
3. We find y = π

3 , so

arctan(
√

3) = π
3 .

2. The real number y = arccot(−
√

3) ∈ ]0, π[ with cot(y) = −
√

3. We get arccot(−
√

3) = 5π
7 .

3. We can apply properties of the arccotangent application directly and obtain cot(arccot(−5)) = −5.
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Chapter 3

Real functions of one real variable

Descartes was introducing algebra into geometry. His study to the solutions of equations of degree 3, 4, 5 and

more led to the concept of the function.

In this chapter we shall study limit, continuity and differentiability of real valued functions defined on certain

sets.

3.1 Elementary Functions

In mathematics, an “elementary function” is a function of a single variable composed of particular simple

functions.

Basic examples:

The elementary functions of (x) of mathematics comprise:

• Trigonometric functions: x 7→ sinx, cosx, tanx, cotx

• Exponential functions: x 7→ expx

• Logarithms: x 7→ lnx

• Inverse trigonometric functions: x 7→ arcsinx, arccosx, arctanx, arccotx
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• Hyperbolic functions :

x 7→ coshx =
exp (x) + exp (−x)

2
, x 7→ sinhx =

exp (x)− exp (−x)

2

• Inverse hyperbolic functions: x 7→ arg chx, x 7→ arg shx .

3.2 Limit of a Function

The notion of a limit is a fundamental concept of calculus. More particularly, limits allow us to look at what

happens in a very, very small region around a point.

Example 1: Values of f(x) = x2−4
x−2 may be computed near x = 2

x 1.9 1.99 1.999→ ← 2.001 2.01 2.1

f(x) 3.9 3.99 3.999→ ← 4.01 4.01 4.1

lim
x→2

f(x) = 4

Definition (Neighbourhood)

For x0 ∈ R, an open interval of the form ]x0 − δ, x0 + δ[ for some δ > 0 is called a neighbourhood of x0.

3.2.1 Limit of a function at a point

Definition

A real valued function f : D → R has “limit value L as x tends to a finite value x0” if one can demonstrate

that for any positive number ε (no matter how small), all the values f(x) of the function will eventually be this

close to the value L by restricting x to values very close, but not equal, to x0. That is, one can produce a positive

number δ so that if x, different from x0, lies between x0 − δ and x0 + δ so then we can be sure that the value
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f(x) lies between L− ε and L+ ε. Formally:

∀ε > 0, ∃ δ > 0,∀x ∈ D : x ∈ ]x0 − δ, x0 + δ[⇒ f(x) ∈ ]L− ε, L+ ε[

or we can write

∀ε > 0,∃ δ > 0, ∀x ∈ D : |x− x0| < δ ⇒ | f(x)− L| < ε

If a function f(x) has a limit value L as x approaches a finite value x0, we write:

lim
x→x0

f(x) = L

Example 1: Show that lim
x→4

(2x− 1) = 7. We have f(x) = 2x− 1, x0 = 4 and L = 7 and the question

we must answer is ”how close should x be to 4 if want to be sure that f(x) = 2x− 1 differs less than ε from

L = 7?”

To figure this out we try to get an idea of how big | f(x)− L| is:

| f(x)− L| = |(2x− 1)− 7| = 2 · |x− 8|

So, if 2 · |x− x0| < ε then we have | f(x)− L| < ε , i.e.

|x− x0| < ε
2 =⇒ |f(x)− L| < ε.

We can therefore choose δ = ε
2 . No matter what ε > 0 we are given our δ will also be positive,

∀ε > 0, ∃ δ > 0 , ∀x ∈ D : |x− 4| < δ =⇒ |(2x− 1)− 7| < ε

That shows that lim
x→4

f(x) = 7.

Definitions (Left limit and right limit)

(i) We say that f has the left limit L ∈ R as x tends to x0 iff

∀ε > 0,∃ δ > 0,∀x ∈ D : x ∈ ]x0 − δ, x0[⇒ f(x) ∈ ]L− ε, L+ ε[
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and in that case we write:

lim
<

x→x0

f(x) = L or lim
x→x−0

f(x) = L

(ii) We say that f has the right limit L ∈ R as x tends to x0 iff

∀ε > 0,∃ δ > 0,∀x ∈ D : x ∈ ]x0, x0 + δ[⇒ f(x) ∈ ]L− ε, L+ ε[

and in that case we write:

lim
>

x→x0

f(x) = L or lim
x→x+0

f(x) = L

Theorem 3 (Existence of the limit)

Let f be a real valued function defined on a set D ⊂ R, then lim
x→x0

f(x) exists if and only if:

lim
x→x−0

f(x) = lim
x→x+0

f(x) = lim
x→x0

f(x)

Example 1:

Let f : [−1, 1]→ R defined by:

f(x) =


0, −1 ≤ x ≤ 0

1, 0 < x ≤ 1

lim
x→x0

f(x) does not exist because lim
x→0−

f(x) = 0 and lim
x→0+

f(x) = 1.

Example 2:

Let f : R→ R defined by:

f(x) = sin

(
1

x

)

We see in Figure 3.1, that sin
(
1
x

)
oscillates between +1 and −1 as x→ 0. This means that f(x) gets close

to any number between +1 and −1 as x→ 0, but that the function f(x) never stays close to any particular value

because it keeps oscillating up and down.
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Here again, the limit lim
x→0

f(x) does not exist.

Figure 3.1

3.2.2 Limit of a function at infinity

Definition

A function f has limit value L as x becomes large if one can demonstrate that for any positive number ε

there exists a positive number A, such that all the values f(x) of the function lies between L − ε and L + ε

for x > A. We write: lim
x→+∞

f(x) = L. One can similarly define the notion of a limit as x becomes large and

negative: lim
x→−∞

f(x) = L.

Example 1: Let’s compute

lim
x→∞

5x2 + 1

4x2 + 3x− 2

We divide the numerator and denominator by x2, and you get

lim
x→∞

5x2 + 1

4x2 + 3x− 2
= lim

x→∞

5 + 1
x2

4 + 3
x −

2
x2

=
5

4
.

Example 2: Compute

lim
x→∞

x

x5 − 2
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We divide numerator and denominator by x5. This leads to

lim
x→∞

1
x4

1− 2
x5

=
0

1
= 0.

3.2.3 Properties of the limit

The following properties remain true if one replaces each limit by a one-sided limit, or a limit for x→∞.

Let f and g be two given functions whose limits for x→ x0 we know,

lim
x→x0

f(x) = L1, lim
x→x0

g(x) = L2.

Then:

1. lim
x→x0

(f + g) (x) = L1 + L2.

2. lim
x→x0

(f · g) (x) = L1 · L2.

3. lim
x→x0

(λ · f) (x) = λ · L1.

4. lim
x→x0

f(x)
g(x) = L1

L2
, if lim

x→x0
g(x) 6= 0.

Theorem 4. Suppose that

f(x) ≤ g(x) ≤ h(x)

(for all x) and that

lim
x→x0

f(x) = lim
x→x0

h(x)

Then

lim
x→x0

f(x) = lim
x→x0

g(x) = lim
x→x0

h(x)

Corollary.

If lim
x→x0

f(x) = 0 and g is a bounded function. Then

lim
x→x0

(f · g) (x) = 0
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Example 3: Compute

lim
x→0

x2 sin

(
1

x

)

Since we have −1 ≤ sin
(
1
x

)
≤ +1. Then

−x2 ≤ x2 · sin
(

1

x

)
≤ +x2,

Since

lim
x→0
− x2 = lim

x→0
+ x2 = 0

The corollary tells us that

lim
x→0

x2 sin

(
1

x

)
= 0

3.2.4 Indeterminate Forms

Definition. A function f is said to have an indeterminate form at x0(where x0 can be finite or infinite) if:

1. f is continuous on an interval including x0, except possibly at x0.

2. When we try to evaluate f at x0 we obtain one of the following forms:

0

0
,
∞
∞
, 0 · ∞,∞−∞, 1∞,∞0, 0∞

Here 0 and 1 represent variable quantities approaching the respective value, NOT constants with that value.

Some indeterminate forms can be solved by rewriting the limit in an equivalent form by factoring through

elimination, multiplying by the conjugate, by the trigonometric identities or using L’Hôpital’s rule (See the next

section).
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Example 1: By foctoring

lim
x→−1

x2−x−2
x2−2x−3 = 0

0

lim
x→−1

x2−x−2
x2−2x−3 = lim

x→−1
(x−2)(x+1)
(x−3)(x+1)

= lim
x→−1

(x−2)
(x−3)

= 3
4

Example 2: By the conjugate

lim
x→4

√
x−2
x−4 = 0

0

lim
x→4

√
x−2
x−4 = lim

x→4

(
√
x−2)(

√
x+2)

(x−4)(
√
x+2)

= lim
x→4

(x−4)
(x−4)(

√
x+2)

= lim
x→4

1

(
√
x+2)

= 1
4

Example 3: By trigonometric identities

lim
x→0

sin(x)
sin(2x) = 0

0

lim
x→0

sin(x)
sin(2x) = lim

x→0

sin(x)
2 sin(x) cos(x)

= lim
x→0

1
2 cos(x)

= 1
2
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3.3 Continuous Functions

3.3.1 Continuity of a function at a point

Definitions.

• Let f be a real function on a subset of the real numbers. Then f is continuous at x0 if


1) x0 ∈ Df

2) lim
x→x0

f(x) = f(x0)

• In particular, if the left hand limit, right hand limit and the value of the function at x = x0 exist and are

equal to each other, i.e.,

lim
x→x−0

f(x) = lim
x→x+0

f(x) = f(x0)

then f is said to be continuous at x = x0.

• A function is continuous if it is continuous at every x0 in its domain Df .

• If it is not continuous there, i.e. if either the limit does not exist or is not equal to f(x0) we will say that

the function is discontinuous at x0.

Example 1: Consider the function

f(x) = |x| =


x, x ≥ 0

−x, x

This function is continuous at all x0, lim
x→x0

f(x) = lim
x→x0

|x| = |x0| = f(x0).
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Example 2:

Let f : R→ R defined by:

f(x) =


sinx
x , x 6= 0

1, x = 0

Then f is continuous at x = 0, lim
x→0

f(x) = lim
x→0

sinx
x = f(0) = 1.

3.3.2 Continuity of a function in an interval

Definition.

1. f is said to be continuous in an open interval ]a, b[ if it is continuous at every point x0 in this interval.

2. f is said to be continuous in the closed interval [a, b] if

• f is continuous in ]a, b[ .

• f is right continuous at a point a , i.e. lim
x→a+

f(x) = f(a).

• f is left continuous at a point b , i.e. lim
x→b−

f(x) = f(b).

Property. All polynomials, rational functions, trigonometric functions, the inverse trigonometric functions,

the absolute value function, the exponential and logarithm functions are continuous everywhere within its

domain.

Example : The function y = 1
x2

is continuous for x > 1 or x < −1 but is not continuous on the interval

−1 < x < 1 (See Figure 3.2).

95



Figure 3.2

3.3.3 Continuous Extension at a point

We can redefine functions with removable discontinuities to obtain continuous functions.

Proposition.

Let I be an interval , and x0 ∈ I . Let f be defined on I − {x0} such that lim
x→x0

f (x) = l ∈ R.

Consider the function
∼
f :

∼
f(x) =


f(x) for x ∈ I − {x0}

l for x = x0

then, the function
∼
f is a continuous at x0.

Example 1: Find a continuous extension of the function f(x) = sinx
x .

The domain of f is Df = R∗ , then f is discontinuous at x = 0 because f(0) is not defined. Since lim
x→0

f (x)

exists, the discontinuity is removable.

We know that lim
x→0

sinx
x = 1. For the function to be continuous at zero we need to define f(0) we make

f(0) = lim
x→0

∼
f (x) = lim

x→0

sinx
x = 1.

and redefine the function:
∼
f(x) =


sinx
x for x 6= 0.

1 for x = 0.
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We say
∼
f is the continuous extension of f to x = 0.

3.3.4 The Intermediate Value Theorem

It is said that a function is continuous if you can draw its graph without taking your pencil o the paper.

A more precise version of this statement is the intermediate value theorem:

Theorem 5. If a function f is continuous on a closed interval [a, b], and if y0 is some number between f(a)

and f(b), then there is a number x0 in the interval [a, b] such that f(x0) = y0 (See Figure 3.3).

Figure 3.3

Example: Use the Intermediate Value Theorem to prove x2 = 2 has a root.

Consider the function f : R→ R defined by: f(x) = x2.

The function f is continuous on a closed interval [1, 2].

One has f(1) = 2 and f(2) = 4. Since f(1) ≤ 2 ≤ f(2), the intermediate value theorem with a = 1, b = 2,

y0 = 2 tells us that there is a number x0 between 1 and 2 such that f(x0) = 2, i.e. for which x20 = 2. So the

theorem tells us that the square root of 2 exists.
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3.3.5 Continuity of composite functions

Definition.

Let f and g be real valued functions such that (f ◦ g) is defined at x0. If g is continuous at x0 and f is

continuous at g(x0), then (f ◦ g) is continuous at x0.

Example: Since both f(x) = x2 + 1 and g(x) = cosx are continuous on R.

Therefore, both

(f ◦ g)(x) = cos2 x +1, and

(g ◦ f)(x) = cos(x2 +1)

are continuous on R.

3.3.6 Continuity of the algebraic combinations of functions

Definition.

If f and g are both continuous at x0 and λ is any constant, then each of the following functions is also

continuous at x0: The sum f + g , the difference f − g, the constant multiple λf , the product f · g , the quotient

f/g , if g(x0) 6= 0, the absolute value |f |.

Example: Let f : R→ R defined by:

f(x) =


x sin

(
1
x

)
, x 6= 0

0, x = 0

Here is a continuous function on R because

• the inverse function of x , x 7→ 1
x is a continuous on R∗.

• the sine function x 7→ sinx is a continuous on R.

• the composite functions x 7→ sin
(
1
x

)
is a continuous on R∗

• the function x 7→ x is a continuous on R.
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• the product function x 7→ x sin
(
1
x

)
is a continuous on R∗.

• since lim
x→0

x sin
(
1
x

)
= f(0), then the function f is a continuous at x0 = 0.

3.4 Differentiability of Functions

Differential calculus is a branch of CALCULUS deals with notions of SLOPE, rates of change and ratios of

change. For example, a study of VELOCITY, which can be described as the rate of change of position, falls

under the study of differential calculus, as do other concepts that arise in the study of motion.

3.4.1 Differentiability of a function at a point

Definition. (Differentiability)

Let f be a real valued function . Then f is said to be differentiable at x0 ∈ Df if

lim
x→x0

f(x)− f(x0)

x− x0
= l ∈ R

in that case the value l is called the derivative of f at x0.

The derivative of f at x0, if exists, is denoted by f
′
(x0) . Which is read as “f prime of x.”

Example 1: The function f : x 7−→
√
x is differentiable at x0 = 1.

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→1

√
x−1
x−1 = 0

0

lim
x→1

√
x−1
x−1 = lim

x→1

(
√
x−1)(

√
x+1)

(x−1)(
√
x+1)

= lim
x→1

x−1
(x−1)(

√
x+1)

= lim
x→1

1

(
√
x+1)

= 1
2

Since f is differentiable at x0 = 1, then f
′
(1) = 1

2 .

Example 2: The function f : x 7−→ 1
x is differentiable at x0 = 2.

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→2

1
x
− 1

2
x−2 = 0

0
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lim
x→2

1
x
− 1

2
x−2 = lim

x→2

2−x
2x
x−2

= lim
x→2

−1
2x = −1

4

Since f is differentiable at x0 = 2, then f
′
(2) = −1

4 .

Definitions (Left Differentiability and Right Differentiability)

• f is left differentiable at a point x0 , i.e. lim
x→x−0

f(x)−f(x0)
x−x0 = f

′
L(x0).

• f is right differentiable at a point x0 , i.e. lim
x→x+0

f(x)−f(x0)
x−x0 = f

′
R(x0).

Property. f is differentiable at a point x0 iff f is left differentiable and right differentiable at this point, i.e.

f
′
L(x0) = f

′
R(x0).

Remark. If a quantity y0 is a FUNCTION of another quantity x0, y0 = f(x0) say, then each change in the

x0-variable, x0 → x0 + h, produces a corresponding change in the y0-variable: f(x0)→ f(x0 + h). The ratio

of the changes of the two variables is:

f(x0 + h)− f(x0)

h

Graphically, this represents the slope of the line segment connecting the two points (x0, f(x0)) and (x0 +

h, f(x+ h)) on the graph of the curve y = f(x).

Definition.

The function f is said to be differentiable at x0 ∈ Df iff

lim
h→0

f(x0 + h)− f(x0)

h
= f

′
(x0)

f
′
(x0) represents the slope of the (tangent line to the) graph y = f(x) at position x0, or, alternatively, the

instantaneous rate of change of the variable y = f(x) at x0.

Example 3: The derivative of f(x) = x2 is f
′
(x) = 2x.

lim
h→0

f(x+h)−f(x)
h = lim

h→0

(x+h)2−x2
h

= lim
h→0

(2x+ h) = 2x
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Theorem 6. (Differentiability implies continuity)

Suppose f is differentiable at x0 ∈ Df . Then f is continuous at x0.

Proof. Note that

f is differentiable at x0 ∈ Df ⇒ lim
h→0

f(x0+h)−f(x0)
h = f

′
(x0)

⇒ lim
h→0

f(x0 + h)− f(x0) = lim
h→0

h · f ′ (x0)

⇒ lim
h→0

f(x0 + h)− f(x0) = 0

⇒ lim
h→0

f(x0 + h) = f(x0)

⇒ lim
x→x0

f(x) = f(x0)

⇒ f is continuous at x0

Remark. Every differentiable function is continuous, but the converse is not true.

Example 4: Consider the function

f(x) = |x| =


x, x ≥ 0

−x, x < 0

This function is continuous at all x, but it is not differentiable at x = 0.

To see this try to compute the derivative at 0,

• lim
x→0−

|x|−|0|
x−0 = lim

x→0−
−x
x = −1 =⇒ f

′
L(0) = −1.

• lim
x→0+

|x|−|0|
x−0 = lim

x→0+
x
x = 1 =⇒ f

′
R(0) = 1.

• note that f
′
L(0) 6= f

′
R(0).
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3.4.2 Differentiability of a function in an interval

Definition.

1. f is said to be differentiable in an open interval ]a, b[ if it is differentiable at every point x0 in this interval.

2. f is said to be differentiable in the closed interval [a, b] if

• f is differentiable in ]a, b[ .

• f is right differentiable at a point a , i.e. lim
x→a+

f(x)−f(x0)
x−x0 = f

′
(a).

• f is left continuous at a point b , i.e. lim
x→b−

f(x)−f(x0)
x−x0 = f

′
(b).

3.4.3 Derivative Table of Elementary Functions

f(x) f
′
(x)

ax ax ln a

sinx cosx

cosx − sinx

tanx 1
cos2 x

= 1 + tan2 x

cotx −1
sin2 x

= −1− cot2 x

arcsinx 1√
1−x2

arccosx −1√
1−x2

arctanx 1
1+x2

sinhx coshx

coshx sinhx

f(x) f
′
(x)

c 0

x 1

√
x 1

2
√
x

n
√
x 1

n.
n√
xn−1

1
x − 1

x2

1
xn

−n
xn+1

xn n.xn−1

ln |x| 1
x

expx expx
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3.4.4 Derivative of inverse function

Definition. If f is a function with inverse function f−1, then

(
f−1

)′
(y) =

1

f ′(x)

Example: The inverse of the function f(x) = x2 with reduced domain [0,+∞[ is f−1(y) =
√
y. Use the

formula given above to find the derivative of f−1. We have f
′
(x) = 2x, so that

(
f−1

)′
(y) = 1

2x = 1
2
√
y .

3.4.5 Algebra of derivatives

If f , g are differentiable functions and λ is any constant, then

1. (f + g)
′
(x) = f

′
(x) + g

′
(x).

2. (f · g)
′
(x) = f

′
(x) · g(x) + f(x) · g′(x)

3. (λ · f)
′
(x) = λ · f ′(x).

4.
(
f
g

)′
(x) = f

′
(x)·g(x)−f(x)·g′ (x)

(g(x))2
, if g(x) 6= 0.

3.4.6 Derivatives of composite functions

Definition. If f and g are differentiable, so is the composition f ◦ g. The derivative of f ◦ g is given by:

(f ◦ g)
′
(x) = f ′(g(x)) · g′(x).

Example: The function f(x) = sin 2x is the composition of two simpler functions, namely: f(x) = g(h(x))

where g(u) = sinu and h(x) = 2x. Since g and h are differentiable then g
′
(u) = cosu and h

′
(x) = 2.

Therefore the derivative of the composite functions rule implies that

f
′
(x) = (g(h(x)))

′
= g′(h(x)) · h′(x) = (cos 2x) · 2 = 2 cos 2x.
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3.4.7 Derivative of some composite Functions

If f is differentiable function and α is any constant, then:

1. (fα)
′

= αf
′
fα−1, f is strictly positive.

2.
(√
f
)′

= f
′

2
√
f

, f is strictly positive.

3.
(
ef
)′

= f
′
ef .

4. (ln f)
′

= f
′

f .

5. (sin f)
′

= f
′
cos f.

6. (cos f)
′

= −f ′ sin f.

7. (tan f)
′

= f
′

cos2 f
.

3.4.8 Lagrange’s Mean Value Theorem

Let a, b be two real numbers with a < b. Suppose f is a function such that:

(a) f is continuous on [a, b].

(b) f is differentiable on ]a, b[.

Then there exists c ∈ ]a, b[ such that

f
′
(c) =

f(b)− f(a)

b− a

3.4.9 L’Hospital’s Rule

In this section, we will learn how to evaluate functions whose values cannot be found at certain points.

Indeterminate Forms and L’Hospital’s Rule

Consider f and g are differentiable except possibly at x0. Assume that:
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Figure 3.4

(a) g
′
(x) 6= 0 at every point except possibly at x0.

(b) lim
x→x0

f(x)
g(x) = 0

0 or lim
x→x0

f(x)
g(x) = ∞

∞ .

(c) lim
x→x0

f
′
(x)

g′ (x)
exists

Then lim
x→x0

f(x)
g(x) exists and lim

x→x0
f
′
(x)

g′ (x)
= lim

x→x0
f(x)
g(x)

Remark. Note that the rule is also valid for one-sided limits and for limits at infinity or negative infinity.

In fact, for the special case in which f(x0) = g(x0) = 0, f
′

and g
′

are continuous, and g
′
(x0) 6= 0, it is

easy to see why the rule is true.

lim
x→x0

f
′
(x)

g′ (x)
= f

′
(x0)

g′ (x0)
=

lim
x→x0

f(x)−f(x0)
x−x0

lim
x→x0

g(x)−g(x0)
x−x0

= lim
x→x0

f(x)−f(x0)
g(x)−g(x0)

= lim
x→x0

f(x)
g(x)

Example 1: Find lim
x→1

lnx
x−1

lim
x→1

lnx
x−1 = 0

0

Thus, we can apply l’Hospital’s Rule:
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lim
x→x0

f
′
(x)

g
′
(x)

= lim
x→1

(lnx)
′

(x−1)′
= lim

x→1

1
x

= 1

Then,

lim
x→x0

f(x)
g(x) = lim

x→1

lnx
x−1 = 1

Example 2: Find lim
x→+∞

expx
x2

lim
x→+∞

expx
x2

= ∞
∞

Thus, we can apply l’Hospital’s Rule:

lim
x→x0

f
′
(x)

g′ (x)
= lim

x→+∞
(expx)

′

(x2)
′ = lim

x→+∞
expx
2.x = ∞

∞

However, a second application of l’Hospital’s Rule gives:

lim
x→x0

f
′′
(x)

g
′′
(x)

= lim
x→+∞

(expx)
′

(2.x)
′ = lim

x→+∞
expx
2 = +∞

Then,

lim
x→x0

f(x)
g(x) = lim

x→+∞
expx
x2

= ∞.

Example 3: Find lim
x→π−

sinx
1−cosx

lim
x→π−

sinx
1−cosx = 0

0

If we blindly attempted to use l’Hospital’s rule, we would get:

lim
x→x0

f
′
(x)

g′ (x)
= lim

x→π−
(sinx)

′

(1−cosx)′
= lim

x→π−
cosx
sinx = −∞

Then,

lim
x→x0

f(x)
g(x) = lim

x→π−
cosx
sinx = −∞.
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3.4.10 Higher derivatives

If the derivative f
′
(x) of some function f exists for all x in the domain of f , then we have a new function,

this function is called the derivative function of f , and it is denoted by f
′
. Now that we have agreed that

the derivative of a function is a function, we can repeat the process and try to differentiate the derivative.

The result, if it exists, is called the second derivative of f . It is denoted f
′′
. The derivative of the second

derivative is called the third derivative, written f
′′′

, and so on. The n-th derivative of f is denoted f (n).

Thus

f (0) = f, f (1) = f
′
, f (2) =

(
f
′
)′
, ..., f (n) =

(
f
n−1
)′
.

Example 1: If f(x) = x2 − x+ 1 then

f(x) = x2 − 2x+ 3

f
′
(x) = 2x− 2

f
′′

(x) = 2

f
′′′

(x) = 0

.

.

=

=

.

.

f (n) (x) = 0.

Example 2: If f(x) = expx then

f (1)(x) = expx, f (2) (x) = expx, ..., f (n) = expx.
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Example 3. If f(x) = sinx then

f
′
(x) = cosx

f
′′
(x) = − sinx

f
′′′

(x) = − cosx

f (4)(x) = sinx

f (5)(x) = cosx

f (6)(x) = − sinx

f (7)(x) = − cosx

It’s easy to find that ,

sin(n) x = sin
(
x+

nπ

2

)
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Chapter 4

Finite Expansions

4.1 Approximating functions by Taylor polynomials

4.1.1 First degree Taylor polynomials

If we know the function value at some point f(x0) and the value of the derivative at the same point f
′
(x0), we

can use these to find the tangent line, and then use the tangent line to approximate f(x) for other points x.

The tangent line approximation of f for x near x0 is called the first degree Taylor polynomial of f and is:

f(x) ≈ f(x0) + f
′
(x0) (x− x0) . (�)

The statement that a complicated function behaves like a simpler function f for x near x0 can be made more

precise by use of the “O” notation. For example, we can replace the weak statement (�) by the stronger version,

f(x) = f(x0) + f
′
(x0) (x− x0) +O(x− x0)

This means that there exists a function ε(x) such that:

lim
x→x0

(x− x0).ε(x)

(x− x0)
= 0
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we write then

(x− x0).ε(x) = O(x− x0)

Example 1: Consider the function f(x) = sinx. We want the first degree Taylor polynomial of this function

near the point x0 = π
4 and x0 = 0.

• Since sin(π4 ) =
√
2
2 and (sin)

′
(π4 ) = cos(π4 ) =

√
2
2 , the approximation of f for x near x0 = π

4 is

given by:

sinx =

√
2

2
+

√
2

2

(
x− π

4

)
+O(x− π

4
), lim

x→π
4

O(x− π

4
) = 0

• Since sin(0) = 1 and (sin)
′
(0) = cos 0 = 1, the approximation of f for x near x0 = 0 is given by:

sinx = x+O(x), lim
x→0

O(x) = 0

Example 2: Consider the function f(x) =
√
x. We want the first degree Taylor polynomial of this function

near the point x0 = 1 and an evaluation of
√

1.002

the approximation of f for x near x0 = 1 is given by:

√
x = 1 +

1

2
(x− 1) +O(x− 1), lim

x→0
O(x− 1) = 0

then

√
1.002 = 1 +

1

2
(1.002− 1) +O(0.002) = 1.001 +O(0.002), lim

x→0
O(0.002) = 0.

Higher order Taylor polynomials

The approximations of the function f by the Taylor polynomial of degree n, denoted by Pn(x − x0) for x

near x0 using more derivatives f
′
(x0), f

′′
(x0), ..., f

(n)(x0) is given by: f(x) = Pn(x − x0) + Rn (x− x0)

for lim
x→x0

Rn (x− x0) = 0.

Note that Rn (x− x0) is called remainder term which is the approximation error when approximating f
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with its Taylor polynomial. Using the “O” notation, the statement in Taylor polynomial reads as

Rn (x− x0) = O ((x− x0)n)

f(x) = f(x0) + f
′
(x0)
1! (x− x0) + f

′′
(x0)
2! (x− x0)2 + ...+ f

(n)
(x0)
n! (x− x0)n +O ((x− x0)n)

Example 1:

Consider the function f(x) = lnx. We want a polynomial approximation of this function near the point x0 = 1.

The first few derivatives of f are

f(x) = lnx

f
′
(x) = 1

x

f
′′
(x) = −1

x2

f
′′′

(x) = 2
x3

f
(4)

(x) = −3
x4

The derivatives evaluated at x0 = 1 are

f(0) = 0, f
(n)

(0) = (−1)n−1 (n− 1)!

By Taylor’s polynomial we have,

lnx = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ ...+ (−1)n−1

(x− 1)n

n
+O ((x− 1)n)
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4.1.2 Mac-Laurin Polynomials

The approximations of f by the Taylor polynomial of degree n for x near x0 = 0 is called the approximations of

f by Mac-Laurin polynomial and is given by:

f(x) = f(0) + f
′
(0)
1! x+ f

′′
(0)
2! x2 + ...+ f

(n)
(0)

n! .xn +O (xn) , lim
x→0

O (xn) = 0.

Example: Consider the function f(x) = cosx. We want Mac-Laurin polynomial of this function near the point

x0 = 0. The first few derivatives of f are

f
′
(x) = cosx

f
′′
(x) = − sinx

f
′′′

(x) = − cosx

f
(4)

(x) = sinx

f
(5)

(x) = cosx

f
(6)

(x) = − sinx

It’s easy to find that ,

cosn (x) = cos
(
x+

nπ

2

)

Since cos(0) = 1 and sin(0) = 0 the Maclaurin polynomials of the cosine is,

cosx = 1− x2

2!
+
x4

4!
+ ......+ (−1)2n

x2n

2n!
+O

(
x2n+1

)

The polynomial approximation of degree 4 is given by:

cosx = 1− x2

2!
+
x4

4!
+O

(
x4
)
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The polynomial approximation of degree 5 is given by:

cosx = 1− x2

2!
+
x4

4!
+O

(
x5
)

The first statement informs us that there are terms of order x4 in the expansion. The second statement is stronger

as it informs us that there are no terms of order x5.

4.2 Finite expansions at zero

Definition.

Let f be a real valued function. We said that the function f is represented by a finite expansion at zero if there

exist real numbers a0,a1,..., an and a real valued function ε such that

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n + xnε(x), lim
x→0

ε(x) = 0.

Then the function f is represented by the polynomial approximation of degree n, denoted by Pn(x) for x near

zero, which is called the main part of finite expansions at zero, such that: Pn(x) = a0+a1x+a2x
2+ ...+anx

n.

Remark: Note that xnε(x) = O (xn) .

Example. Using the euclidean division by increasing power order, one has the finite expansion at zero of

f(x) = 1
1−x :

1

1− x
= 1 + x+ x2 + ...+ xn +

xn+1

1− x
= 1 + x+ x2 + ...+ xn + xn.

(
x

1− x

)
.

in this case ε(x) = x
1−x . We generally do not try to determine the function ε(x).
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Properties.

(a) If the function f can be expanded at zero, then this expansion is unique.

(b) If the function f can be expanded at zero, then lim
x→0

f(x) exists and equal to a0. This criterion is

generally used to demonstrate that a function does not admit an expansion.

Example. The function f(x) = lnx does not have an expansion at zero, because lim
x→0+

f(x) = −∞.

4.2.1 Basic finite expansions of elementary functions

expx = 1 + x
1! + x2

2! + x3

3! + ......+ xn

n! +O (xn) .

(1 + x)α = 1+ αx+ α(α−1)x2
2! + ...+ α(α−1)....(α−(n−1))xn

n! +O (xn) .

1
1+x = 1− x+ x2 − x3 + x4 + ...+ (−1)n xn +O (xn) .

1
1−x = 1 + x+ x2 + x3 + x4 + ...+ xn +O (xn) .

cosx = 1− x2

2! + x4

4! + ......+ (−1)nx2n
2n! +O

(
x2n+1

)
.

sinx = x− x3

3! + x5

5! −
x7

7! + .........+ (−1)nx2n+1

2n+1! +O
(
x2n+1

)
.

ln(1 + x) = x− x2

2 + x3

3 −
x4

4 + ....+ (−1)n+1xn

n +O (xn) .

ln(1− x) = −x− x2

2 −
x3

3 −
x4

4 − ....−
xn

n +O (xn) .

arccosx = π
2 − x−

1
2 .
x3

3. −
1.3
2.4 .

x5

5 −
1.3.5
2.4.6

x7

7 − ...−
1.3.5...(2n−1).

2.4.6....2n .x
(2n+1)

(2n+1) +O
(
x2n+1

)
.

arcsinx = x+ 1
2 .
x3

3. + 1.3
2.4 .

x5

5 + 1.3.5
2.4.6

x7

7 + ...+ 1.3.5...(2n−1).
2.4.6....2n .x

(2n+1)

(2n+1) +O
(
x2n+1

)
.

arctan g = x− x3

3. −
x5

5 −
x7

7 + ...− x(2n+1)

(2n+1) +O
(
x2n+1

)
.

coshx = 1 + x2

2! + x4

4! + ......+ x2n

2n! +O
(
x2n
)
.

sinhx = x+ x3

3! + x5

5! + .........+ x2n+1

2n+1! +O
(
x2n+1

)
.
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4.3 Algebraic combinations of finite expansions

Definition.

If f and g can both be expanded at zero and λ is any constant, then each of the following functions is also can

be expanded at zero: The sum f + g , the difference f − g, the constant multiple λf , the product f · g , the

quotient f/g , if g(x0) 6= 0.

Consider the finite expansions at zero of f and g:

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n +O (xn)

g(x) = b0 + b1x+ b2x
2 + ...+ bnx

n +O (xn)

F The finite expansion at zero of the sum f + g is:

(f + g) (x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + ...+ (an + bn)xn +O (xn)

lim
x→0

ε(x) = 0.

F The finite expansion at zero of the f · g is obtained by the product and keeping only the monomials of

degree less than n in the product

(
a0 + a1x+ a2x

2 + ...+ anx
n
) (
b0 + b1x+ b2x

2 + ...+ bnx
n
)

F The finite expansion at zero of the quotient f/g is obtained by the euclidean division of(
a0 + a1x+ a2x

2 + ...+ anx
n
)

by
(
b0 + b1x+ b2x

2 + ...+ bnx
n
)

by increasing power order.
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Example 1: Find the finite expansion at zero of f(x) = sinhx of the degree 4.

sinhx =
expx− exp(−x)

2

=
1

2

[(
1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!

)
−
(

1 +
−x
1!

+
x2

2!
+
−x3

3!
+
x4

4!

)]
+O

(
x4
)

=
1

2

(
2x+ 2

x3

3!

)
+O

(
x4
)

= x+
x3

3!
+O

(
x4
)
.

Example 2: Find the finite expansion at zero of f(x) = cosx · sinx of the degree 5.

We have cosx = 1− x2

2! + x4

4! +O
(
x5
)

and sinx = x− x3

3! + x5

5! +O
(
x5
)
.

f(x) = cosx · sinx

=

(
1− x2

2!
+
x4

4!

)
·
(
x− x3

3!
+
x5

5!

)
+O

(
x5
)
.

=

(
1− x2

2
+
x4

24

)
·
(
x− x3

6
+

x5

120

)
+O

(
x5
)
.

= x− 2

3
x3 +

2

15
x5 +O

(
x5
)
.

Example 3: Find the finite expansion at zero of f(x) = sinx
cosx of the degree 3.

Note that lim
x→0

cosx 6= 0 then the quotient f(x) = sinx
cosx can be expanded at zero.

Let sinx = x− x3

3! +O
(
x3
)

and cosx = 1− x2

2! +O
(
x3
)
.

Using the euclidean division by increasing power order we obtain:

f(x) =
sinx

cosx

=
x− x3

3!

1− x2

2!

+O
(
x3
)

= x+
1

3
x3 +O

(
x3
)
.

Example 4: Find the finite expansion at zero of f(x) = ln(1+x)
sinx of the degree 3.

Since sinx = x− x3

3! +O
(
x3
)

we have lim
x→0

sinx = 0.
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Note that the function f can be expanded at zero of the degree 3 if the finite expansions at zero of ln (1 + x)

and sinx are given of the degree 4.

f(x) =
ln (1 + x)

sinx

=
x− x2

2 + x3

3 −
x4

4 +O
(
x4
)

x− x3

3! +O (x4)

=
1− x

2 + x2

3 −
x3

4 +O
(
x3
)

1− x2

3! +O (x3)

Since lim
x→0

(
1− x2

3! +O
(
x3
))

= 0 the function f can be expanded in this case.

ln (1 + x)

sinx
=

1− x
2 + x2

3 −
x3

4 +O
(
x3
)

1− x2

3! +O (x3)

= 1− x

2
+
x2

6
− x3

12
+O

(
x3
)
.

4.4 Composite of finite expansions

Definition.

If g can be expanded at zero of degree n and if f can be expanded at g(0) of degree n such that g(0) = 0. Then

the composite function (f ◦ g) can be expanded at zero of degree n by replacing the finite expansion of g in the

finite expansion of f and by keeping only the monomials of degree ≤ n.

Example 1: Find the finite expansion at zero of f(x) = exp (cosx) of the degree 3.

If g(x) = cosx note that g(0) 6= 1.

We know that expx = 1 + x
1! + x2

2! + x3

3! +O
(
x3
)

and cosx = 1− x2

2! +O
(
x3
)
. So if g(x) = cosx− 1 =
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−x2

2! +O
(
x3
)

in this case g(0) = 0.

f(x) = exp (cosx)

= exp (1− 1 + cosx)

= exp 1 · exp (−1 + cosx)

= exp 1 · exp

[
−x

2

2!
+O

(
x3
)]

= exp 1.

1 +

(
−x2

2!

)
1!

+O
(
x3
)

= exp 1− exp 1

2
x2 +O

(
x3
)
.

Example 2: Prove that the finite expansion at zero of f(x) = exp (sinx) is given by f(x) = exp (sinx) =

1 + x+ x2

2 +O
(
x3
)
.

4.5 Finite expansions at a point

We said that the function f : x 7−→ f(x) can be represented by a finite expension at point x0 if the function

F : X 7−→ F (X) can be represented by finite expension at zero X0 = 0 such that F (X) = f (x0 +X) and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +O (Xn) , lim
X→0

O (Xn) = 0.

f(x) = a0 + a1 (x− x0) + a2 (x− x0)2 + ...+ an (x− x0)n +O ((x− x0)n) ,

and lim
x→x0

O ((x− x0)n) = 0.
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Example 1: Find the finite expansion at a point x0 = 1 of f(x) = expx of the degree 3 .

F (X) = f (x0 +X)

= exp (1 +X)

= exp 1 · expX

= exp 1 ·
[
1 +

X

1!
+
X2

2!
+
X3

3!
+O

(
X3
)]

= exp 1 ·

[
1 +

(x− 1)

1!
+

(x− 1)2

2!
+

(x− 1)3

3!
+O

(
(x− 1)3

)]

Example 2: Find the finite expansion at a point x0 = 2 of f(x) = lnx of the degree 2 .

F (X) = f (x0 +X)

= ln (2 +X)

= ln

[
2 ·
(

1 +
X

2

)]
= ln 2 + ln

(
1 +

X

2

)
= ln 2 +

1

2
X − 1

8
X2 +O

(
X2
)

= ln 2 +
1

2
(x− 2)− 1

8
(x− 2)2 +O

(
(x− 2)2

)
.

4.6 Finite expansions at Infinity

We said that the function f : x 7−→ f(x) can be represented by a finite expension at infinity if the function

F : X 7−→ F (X) can be represented by finite expension at zero X0 = 0 such that F (X) = f
(
1
x

)
and

F (X) = a0 + a1X + a2X
2 + ...+ anX

n +O(Xn), lim
X→∞

O(Xn) = 0.

f(x) = a0 +
a1
x

+
a2
x2

+ ...+
an
xn

+O

(
1

xn

)
.

Example 1: Find the finite expansion at infinity of f(x) = cos 1
x .
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Let X = 1
x and thus:

cos
1

x
= cosX = 1− X2

2!
+
X4

4!
+ ......+

(−1)nX2n

2n!
+O

(
X2n

)
= 1− 1

2!x2
+

1

4!x4
+ ......+

(−1)n

2n!x2n
+O

(
1

x2n

)

4.7 Using finite expansions to evaluate limits

The finite expansions provide a good way to understand the behaviour of a function near a specified point and

so are useful for solving some indeterminate forms. When taking a limit as x→ 0 , we can often simplify the

statement by substituting in finite expansions that we know.

Example 1: Find the limit lim
x→0

exp(2x) sin 3x
sinh(−2x)

lim
x→0

exp(2x) sin 3x

sinh (−2x)
= lim

x→0

(1 + 2x) · (3x) +O(x)

−2x+O(x)
= −3

2
.

Example 2: Find the limit lim
x→0

1−cosx
sin2 x

lim
x→0

1− cosx

sin2 x
= lim

x→0

x2

2 +O(x)

(x+O(x))2
=

1

2
.

Example 3: Find the limit lim
x→0

expx−1−x−x
2

2
x3

expx = 1 +
x

1!
+
x2

2!
+
x3

3!
+O

(
x3
)

We get expx− 1− x− x2

2 = x3

3! +O
(
x3
)

and consequently

expx− 1− x− x2

2

x3
=

x3

3! +O
(
x3
)

x3

=
1

3!
+O (x)
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so

lim
x→0

expx− 1− x− x2

2

x3
= lim

x→0

1

3!
+O (x) =

1

6
.
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Chapter 5

Vector Space and Linear Maps

5.1 Vector Space

Underlying every vector space (to be defined shortly) is a scalar field K.

A field is a set of elements where the four basic operations +,−,×,÷ are defined, with their usual properties

(commutativity, associativity, distributivity). Examples of fields include the rational numbersQ, the real numbers

R, and the complex numbers C. However, N is not a field (we cannot subtract or divide) and Z is not a field (we

cannot divide).

Definition. (Vector space)

A vector space over a fieldK is a nonempty set V of objects, called vectors, on which are defined two operations:

1) An internal operation (vector addition)

+ : V × V −→ V

(u, v) 7−→ u+ v
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2) An external operation (scalar multiplication)

· : K × V −→ V

(α, u) 7−→ αu

such that the following properties are satisfied:

(a) ∀u, v ∈ V, u+ v = v + u.

(b) ∀u, v, w ∈ V : (u+ v) + w = u+ (v + w) .

(c) ∀u ∈ V : u+ 0V = u (0V is the zero vector).

(d) ∀u ∈ V , ∃ (−u) ∈ V : u+ (−u) = 0V .

(e) ∀u, v ∈ V , ∀α ∈ K : α (u+ v) = αu+ αv.

(f) ∀u ∈ V,∀α, β ∈ K : (α+ β)u = αu+ βu.

(g) ∀u ∈ V,∀α, β ∈ K : (αβ)u = α (βu) .

(h) ∀u ∈ V : 1u = u.

Examples:

(a) Kn = {(x1, x2, .., xn) /xi ∈ R, i = 1, .., n} is a vector space over the field K and K is any field

(typically K = R or K = C) with the vector addition and scalar multiplication defined as follows

for all (x1, x2, .., xn) and (y1, y2, .., yn) from Kn and α ∈ K :

(x1, x2, .., xn) + (y1, y2, .., yn) = (x1+y1, x2+y2, .., xn + yn)

α (x1, x2, .., xn) = (αx1, αx2, .., αxn)

(b) The set P [x] =
{∑n

i=1 aix
i/ ai ∈ R, i = 1, .., n

}
of all polynomials over a field R is a vector space

over R with the vector addition and scalar multiplication defined as follows for all p(x) =
∑n

i=1 aix
i

and q(x) =
∑n

i=1 bix
i from P [x] and α ∈ R :
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∀p(x), q(x) ∈ P [x] : p(x) + q(x) =
n∑
i=1

(ai + bi)x
i

∀p(x) ∈ P [x], ∀α ∈ R : αp(x) =
n∑
i=1

(αan)xn

(c) The set V of all real valued continuous (differentiable or integrable) functions defined on the closed

interval [a, b] is a real vector space with the vector addition and scalar multiplication defined as

follows:

(f + g)(x) = f(x) + g(x)

(αf)(x) = αf(x)

For all f, g ∈ V and α ∈ R.

5.1.1 Subspaces of a vector space

Definition 1. (Subspace)

A subspace of a vector space V is a nonempty subset F of V that has two properties:

(a) F is closed under vector addition. That is, ∀u, v ∈ F : u+ v ∈ F .

(b) F is closed under multiplication by scalars. That is, ∀u ∈ F,∀α ∈ K : αu ∈ F.

Definition 2. (Subspace)

A subspace of a vector space V is a a nonempty subset F of V if and only if:

∀u, v ∈ F,∀α, β ∈ K : αu+ βv ∈ F.
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Remark 1.

Properties (1) and (2) guarantee that a subspace F of V is itself a vector space, under the vector space operations

already defined in V .

Example 1:

• Rn−1 is a subspace of Rn.

• {0V } is a subspace of V.

• V is a subspace of V.

Example 2: Show that F = {(0, y, z) , y, z ∈ R} is a subspace of real vector space R3.

• 0R3 ∈ F then F is a nonempty subset of R3.

• Let u = (0, y1, z1), v = (0, y2, z2) ∈ F and α, β ∈ R. Then,

αu+ βv = α (0, y1, z1) + β (0, y2, z2)

= (0, αy1 + βy2, αz1 + βz2) ∈ F.

Hence, F is a subspace of R3.

5.1.2 Linear combinations

Definition. (Linear combination)

Let V be a vector space. We say that the vector u is a linear combination of the vectors v1, v2, .., vn of V if

∃ α1, α2, .., αn ∈ K : u = α1v1 + α2v2 + ..+ αnvn.

Example: Express u = (−2, 3) in R2 over R as a linear combination of the vectors v1 = (1, 1) and v2 = (1, 2).

Let α1, α2 be scalars such that

125



u = α1v1 + α2v2

⇒ (−2, 3) = α1(1, 1) + α2(1, 2)

⇒ (−2, 3) = (α1 + α2, α1 + 2α2)

⇒ α1 + α2 = −2 and α1 + 2α2 = 3

⇒ α1 = −7 and α2 = 5

Hence, u = −7v1 + 5v2

5.1.3 Linear independence and linear dependence

Definition. (Linear independence)

Let the set S = {v1, v2, .., vn} ⊂ V , a vector space. We say that S is linearly independent if all scalars

α1, α2, .., αn are zero for which α1v1 + α2v2 + ..+ αnvn = 0V . That is

∀α1, α2, .., αn ∈ K : α1v1 + α2v2 + ..+ αnvn = 0V ⇒ α1 = α2 = .. = αn = 0K .

Otherwise we say S is linearly dependent.

Definition. (Linear dependence)

The set S = {v1, v2, .., vn} is linearly dependent if there are scalars α1, α2, .., αn not all zero for which

α1v1 + α2v2 + ..+ αnvn = 0V

That is:

∃ α1, α2, .., αn ∈ K : αi 6= 0, i ∈ {1, .., n} ∧ α1v1 + α2v2 + ..+ αnvn = 0V .

Example 1: The set S = {(−1, 0) , (2, 1)} is linearly independent.
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Let α1, α2 ∈ R:

α1 (−1, 0) + α2 (2, 1) = (0, 0) ⇒ (−α1 + 2α2, α2) = (0, 0) .

⇒ −α1 + 2α2 = 0 and α2 = 0.

⇒ α1 = α2 = 0.

Example 2: The set S = {(1, 0) , (−2, 0)} is linearly dependent.

Let α1, α2 ∈ R:

α1 (1, 0) + α2 (−2, 0) = (0, 0) ⇒ (α1 − 2α2, 0) = (0, 0) .

⇒ α1 − 2α2 = 0

⇒ α1 = 2α2.

∃α1 = 1 ∧ α2 = 1
2 ∧ α1 (1, 0) + α2 (−2, 0) = (0, 0) .

Remark 2.

• {u} is linearly independent⇔ u 6= 0V .

• 0V ∈ S = {v1, v2, .., vn} =⇒ S is linearly dependent.

5.1.4 Generating sets

Definition. (Generating sets)

Given a vector space V , a finite set of vectors S = {v1, v2, .., vn} ⊂ V is called a system of generators if every

vector u ∈ V can be expressed as a linear combination of vectors of S :

∀u ∈ V,∃ α1, α2, .., αn ∈ K : u = α1v1 + α2v2 + ..+ αnvn.

and we write V = [S] .

Example 1: The set S = {(1, 1, 1) , (2, 2, 0) , (3, 0, 0)} is a system of generators of R3.
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Let u = (x, y, z) be a vector, we check the scalars α, β, γ ∈ R such that

u = (x, y, z) = α (1, 1, 1) + β (2, 2, 0) + γ (3, 0, 0)

⇒



x = α+ 2β + 3γ

y = α+ 2β

z = α

⇒



α = z

β = y−z
2

γ = x−y
3

⇒ u = z (1, 1, 1) +
y − z

2
(2, 2, 0) +

x− y
3

(3, 0, 0)

Example 2: Find generating set of the vector space R2 over the field R

(x, y) = x (1, 0) + y (0, 1)⇒ R2 = [{(1, 0) , (0, 1)}]

5.1.5 Bases of a vector space

Definition. (Bases)

Given a vector space V , a finite set of vectors S = {v1, v2, .., vn} ⊂ V is called a basis of V if has two

properties:

(a) S is linearly independent.

(b) S is a generator of V , that is V = [S] .

Examples: Let Rn be a vector space over R.

• If n = 1, the basis of R is the set S1 = {1}.

– Since ∀x ∈ R : x = 1.x then R is generated by S1.

– ∀α ∈ R : α.1 = 0⇒ α = 0. Thus the set S1 is linearly independent.
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• If n = 2, the basis of R2 is the set S2 = {(1, 0) , (0, 1)} .

– R2 is generated by S2.

– ∀α, β ∈ R : α. (1, 0) + β. (0, 1) = (α, β) = (0, 0)⇒ α = β = 0. Thus the set S2 is linearly

independent.

• If n = 3, the basis of R3 is the set S3 = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} .

– Clearly S3 is linearly independent and is a system of generators of R3.

Property. If S is a basis, every vector can be written as a linear combination of its elements in a unique way.

Example 1. Let the set S = {(1, 0), (1, 1)}, we can write any vector of R2 as a linear combination of (1, 0) and

(1, 1) in a unique way.

Example 2. The set S = {(1, 0), (0, 1), (1, 1)} is not a basis but it is a system of generators. In this case any

of the three vectors can be removed because it can be expressed as a combination of the other two. The linear

combinations are not unique:

(2, 3) = 1.(1, 0) + 2.(0, 1) + 1.(1, 1)

5.1.6 Dimension of a vector space

Definition. (Dimension)

If a vector space V has a basis with finite number of elements, then every other basis of V has the same number

of elements. This number is called the dimension of V . We write

dimV = n

Properties. if we know that a vector space has dimension n (dimV = n), then:

• Every basis consists of exactly n vectors (but not every set of n vectors is a basis!).

• Every system of generators has to contain at least n vectors.

• If a system of generators consists of n vectors, then it is a basis.

129



• If a set of n vectors is linearly independent, then it is a basis.

Proposition. Let V be a vector space of dimension n, and let F is a subspace of a vector space V then dimF ≤

dimV . Furthermore, if dimF = dimV then F = V.

Example 1: Rn is a vector space of dimension n. A particular basis is the canonical basis:

e1 = (1, 0, 0, .., 0)

e2 = (0, 1, 0, .., 0)

.

.

en = (0, 0, 0, .., 1)

Example 2: The set of three vectors {(1, 2) , (−1, 2) , (3, 1)} is not a basis of R2 because 3 > dimR2 = 2.

Example 3:

• dim {0V } = 0.

• Let C be a vector space over R, then dimC = 2.

• Let Pn be a vector space of polynomial over R, then dim(Pn) = n+ 1.

5.2 Linear Maps

Definition. (Linear map)

A linear map f from a vector space V into a vector space W over the same field K is a rule that assigns to each

vector x in V a unique vector f(x) in W , such that:

f : V −→ W

x 7−→ f(x)
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(a) ∀x1, x2 ∈ V : f(x1 + x2) = f(x1) + f(x2).

(b) ∀x ∈ V,∀α ∈ K : f (αx) = αf(x).

Or ∀x1, x2 ∈ V,∀α, β ∈ K : f (αx1 + βx2) = αf(x1) + βf(x2).

Example 1: The map f : R2 → R3 defined as f(x, y) =
(
x2, x+ y, 1

)
is not linear. We can easily find vectors

for which the condition is false. For example:

f ((1, 0) + (0, 0)) = f (1, 0) = (1, 1, 1)

f (1, 0) + f (0, 0) = (1, 1, 1) + (0, 0, 1) = (1, 1, 2)

Hence, f ((1, 0) + (0, 0)) 6= f (1, 0) + f (0, 0)

Example 2: f : R2 → R3 defined as f(x, y) = (3x− y, 0, 2y) is linear map:

(a) f ((x1, y1) + (x2, y2)) = f (x1+x2, y1+y1) = (3 (x1 + x2) , 0, 2 (y1 + y2)) = (3x1 − y1, 0, 2y1)+

(3x2 − y2, 0, 2y2)⇒ f ((x1, y1) + (x2, y2)) = f(x1, y1) + f (x2, y2) .

(b) f (α.(x, y)) = f (α.x, α.y) = (3 (αx)− (αy) , 0, 2 (α.y)) = α. (3x− y, 0, 2y) = αf(x, y).

Properties. Here are some simple properties of linear maps f : V →W .

(a) f(0V ) = 0W .

(b) f(−x) = −f(x).

(c) If V1 is a subspace of V , then f(V1) is a subspace of W.

(d) If W1 is a subspace of W , then f−1(W1) is a subspace of V.

(e) The composite map of two linear maps is a linear map.
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5.2.1 Linear maps and dimension

The kernel of a linear map

Definition. ( Kernel )

The kernel (or null space) of such a f , denoted by ker f , is the set of all x in V such that f(x) = 0W (the zero

vector in W ):

ker f = {x ∈ V, f(x) = 0W } = f−1({0W })

The image of a linear map

Definition. (Image)

The image of f , denoted by Imf , is the set of all vectors in W of the form f(x) for some x in V .

Imf = {f(x), x ∈ V } = f(V )

Properties. Let f : V →W be a linear map.

(a) The kernel of f is a subspace of V .

(b) The image of f is a subspace of W .

Proposition. Let f : V →W be a linear map.

(a) f is injective if and only if ker f = {0V } .

(b) f is surjective if and only if Imf = W.

Example: The map f : R3 → R2 defined as f(x, y, z) = (x+ y, z) is not injective and surjective.

• f is injective⇔ ker f = {0R3} .
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ker f =
{
X ∈ R3, f(X) = (0, 0)

}
=

{
(x, y, z) ∈ R3, f(x, y, z) = (0, 0)

}
=

{
(x, y, z) ∈ R3, (x+ y, z) = (0, 0)

}
=

{
(x, y, z) ∈ R3, x+ y = 0 and z = 0

}
=

{
(x, y, z) ∈ R3, x = −y and z = 0

}
= {(−y, y, 0) , y ∈ R}

For example: (−1, 1, 0) ∈ ker f ⇒ ker f 6= {0R3} . Hence f is not injective.

• f is surjective⇔ Imf =
{
f(x), x ∈ R3

}
= R2.

Imf =
{
f(X), X ∈ R3

}
= {(x+ y, z) : x, y, z ∈ R}

= {x (1, 0) + y (1, 0) + z (0, 1) : x, y, z ∈ R}

Hence, Imf is generated by two vectors (1, 0) , (1, 0) which are the canonical basis of R2. Then Imf = R2

and f is surjective.

Proposition. Let f : V →W be a linear map, with V finite-dimensional. Then:

f bijective⇔ f injective⇔ f surjective

Proposition. Let f : V →W be a linear map, with V finite-dimensional. Then:

dimV = dim ker f + dim Imf
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The rank of a linear map

Definition. (Rank)

The rank of a linear map f is the dimension of its image, written rankf :

rankf = dim Imf

Example: Find ker f, Imf and rankf of the map f : R4 → R3 defined as:

f(x, y, z, t) = (x− y, z + t, x− y + z) .

ker f =
{
X ∈ R4, f(X) = (0, 0, 0)

}
=

{
(x, y, z, t) ∈ R4, f(x, y, z, t) = (0, 0, 0)

}
=

{
(x, y, z, t) ∈ R4, (x− y, z + t, x− y + z) = (0, 0)

}
=

{
(x, y, z, t) ∈ R4, x− y = 0 ∧ z + t = 0 ∧ x− y + z = 0

}
=

{
(x, y, z) ∈ R3, x = y ∧ z = t = 0

}
= {(x, x, 0, 0) , x ∈ R} = {x. (1, 1, 0, 0) , x ∈ R }

Hence , ker f = [{(1, 1, 0, 0)}] .

Imf = {f(x, y, z, t)/ x, y, z, t ∈ R}

= {(x− y, z + t, x− y + z) / x, y, z, t ∈ R}

= {(x− y) . (1, 0, 1) + t. (0, 1, 0) + z (0, 1, 1) / x, y, z, t ∈ R}

Hence , Imf = [{(1, 0, 1) , (0, 1, 0) , (0, 1, 1)}]

Let α1, α2, α3 ∈ R:
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α1 (1, 0, 1) + α2 (0, 1, 0) + α3 (0, 1, 1) = (0, 0, 0) ⇒ (α1, α2 + α3, α1 + α3) = (0, 0, 0) .

⇒



α1 = 0 .

α2 + α3 = 0.

α1 + α3 = 0.

⇒ α1 = α2 = α3 = 0.

Therefore, the set {(1, 0, 1) , (0, 1, 0) , (0, 1, 1)} is linearly independent and it is the basis of Imf.

rankf = dim Imf = 3.

...
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Let’s REMEMBER translated
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الحدود  النشر على عمليات   

ذا كاهت      𝒇    الدوالفا ن  n من الدرجة   جوار الصفر ثقبلان وشرا محدودا دالتان  𝒈 و   ا  + 𝒈  ,    𝜶 ∈ ℝ∗  

     𝜶 ∙ 𝒇   ,𝒇 ∙ 𝒈    ,  و         𝒇/𝒈  حيث𝒈(𝒙) ≠     n  الدرجة  من  جوار الصفر ثقبل وشرا محدودا دوال هي  ,    𝟎

 :  بوضع   

                   

 :ومنه  

  𝒇 + 𝒈  𝒙 =  𝒂𝟎 + 𝒃𝟎 +  𝒂𝟏 + 𝒃𝟏 𝒙 +  𝒂𝟐 + 𝒃𝟐 𝒙
𝟐 + ⋯+

 𝒂𝒏 + 𝒃𝒏 𝒙
𝒏 + 𝝄 𝒙𝒏  

 (𝜶 ∙ 𝒇) 𝒙 =  (𝜶𝒂𝟎) + (𝜶𝒂𝟏)𝒙 + (𝜶𝒂𝟐)𝒙𝟐 + ⋯+  (𝜶𝒂𝒏)𝒙𝒏 + 𝝄 𝒙𝒏  

  𝒇 ∙ 𝒈  𝒙 =  𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙
𝟐 + ⋯+  𝒂𝒏𝒙

𝒏 ∙  𝒃𝟎 + 𝒃𝟏𝒙 + 𝒃𝟐𝒙
𝟐 +

⋯+  𝒃𝒏𝒙
𝒏 + 𝝄 𝒙𝒏  

   .  n الدرجة منفيما يخص الجداء نحتفظ ماعدا بالحدود التي لها درجة أ صغر من أ و جساوي 

  
𝒇

𝒈
 (𝒙) =

𝒂𝟎+𝒂𝟏𝒙+𝒂𝟐𝒙
𝟐+⋯+  𝒂𝒏𝒙

𝒏

𝒃𝟎+𝒃𝟏𝒙+𝒃𝟐𝒙
𝟐+⋯+  𝒃𝒏𝒙

𝒏
+ 𝝄 𝒙𝒏  

 (الحد ذو أ صغر درجة على الحد ذو أ صغر درجة) المتزايدة القوى حسبللبسط على المقام   الاقليدية  بالقسمةهقوم 

 التينوشر مركب د

ذا كاهت                                                 𝒈(𝟎) جوار  ثقبل وشرا محدودا دالة  𝒇 و    nجوار الصفر من الدرجة   ثقبل وشرا محدودا دالة  𝒈 ا 

= 𝒈 𝟎 و  𝒇 الدالة المركبة  فا ن  𝟎 ∘ 𝒈جوار الصفر من الدرجة    ثقبل وشرا محدوداn  ,  وشر    بحيث يتم استبدال

𝒈    في النشر المحدود للدالة𝒇    من الدرجة و الاحتفاظ ماعدا بالحدود ذات الدرجة أ قل أ و جساويn. 

 هقطة  جوارالنشر المحدود

ذا كاهت n  من الدرجة    𝒙𝟎جوار النقطة    ثقبل وشرا محدودا   𝒇هقول أ ن الدالة    جوار  ثقبل وشرا محدودا دالة  𝑭   ا 

= 𝑭 𝑿         حيث   n من الدرجة  الصفر 𝒇 𝒙 = 𝒇(𝑿 + 𝒙𝟎)   حيث   : 
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 ∞لانهاية  الما  جوارامنشر المحدود      

ذا كاهت n  من الدرجة    ∞جوار    ثقبل وشرا محدودا   𝒇هقول أ ن الدالة      جوار  ثقبل وشرا محدودا دالة  𝑭   ا 

= 𝑭 𝑿         حيث   n من الدرجة  امصفر 𝒇 𝒙 = 𝒇(
𝟏

𝑿
 :حيث   (

 

 

 

 

النهايات  حساب في  امنشر المحدودثطبيق    

زالة في المحدود امنشر يس تعمل   ب حساب النهاية عندها المطلو امنقطة جوار امتوابع وشر يتم بحيث امتعيين عدم حالات ا 

لى   زالة من تمكننا درجة أ صغر وا   .امتعيين عدم حالة ا 
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Appendix E

Vector Space and Linear Maps translated
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 امفضاء امشعاعي وامتطبيلات الخطية
 

 امفضاء امشعاعي
بًا)تحت كل فضاء شعاعي  فه كرً     .  𝑲   امسلميات حللًوجد  (سيتم ثعرً

,+)      امعمليات الأساس ية الأربعهعرف عليهاعبارة عن مجموعة من امعناصر الحلل     الاعتيادًةبخصائصها (÷,×,−

 .( ، امتوزًعامتجميع ، امتبدًل)

,ℚ:  أأمثلة ℝ, ℂ     مها بنية حلل ومكن ℕ    (لا يمكن امطرح و املسمة دوما)ميس مها بنية حلل ℤ  ميس مها بنية  

 .        (لا يمكن املسمة دوما)حلل 

ف امفضاء امشعاعي  ثعرً
ف عمليتين أأشعة  جسمى, امعناصر من خاميةغير    𝑽  مجموعة    هو𝑲   الحلل على امفضاء امشعاعي   ، وامتي ًتم ثعرً

   : عليها

                                        امعملية الداخلية
+: 𝑽 × 𝑽 ⟶ 𝑽

(𝒖,𝒗) ⟼ 𝒖 + 𝒗
 

 

∶  ∙                                  الخارجية     امعملية  𝑲 × 𝑽 ⟶ 𝑽
(𝜶, 𝒖) ⟼ 𝜶𝒖

 

 

  بحيث ثتحلق الخواص امتامية

1. ∀𝒖, 𝒗 ∈ 𝑽:  𝒖 +  𝒗 = 𝒗 + 𝒖 
2. ∀𝒖, 𝒗, 𝒘 ∈ 𝑽:   𝒖 +  𝒗 + 𝒘 = 𝒖 +  𝒗 + 𝒘  
3. ∀𝒖 ∈ 𝑽, ∃𝟎𝑽  ∈ 𝑽: 𝒖 + 𝟎𝑽 = 𝒖      (   𝟎𝑽   امشعاع المعدوموه   )  

4. ∀𝒖 ∈ 𝑽, ∃ −𝒖 ∈ 𝑽:  𝒖 +  −𝒖 = 𝟎𝑽 

5. ∀𝒖, 𝒗 ∈ 𝑽, ∀𝜶 ∈ 𝑲: 𝜶  𝒖 +  𝒗 = 𝜶𝒖 + 𝜶𝒗  

6. ∀𝒖 ∈ 𝑽, ∀𝜶, 𝜷 ∈ 𝑲:  𝜶 +  𝜷 𝒖 = 𝜶𝒖 + 𝜷𝒖  

7. ∀𝒖 ∈ 𝑽, ∀𝜶, 𝜷 ∈ 𝑲:  𝜶 𝜷 𝒖 = 𝜶(𝜷𝒖) 

8. ∀𝒖 ∈ 𝑽, 𝟏 ∙ 𝒖 = 𝒖  

 

,ℚ :  مثال ℂ  , ℝ
3

 , ℝ
2

, ℝ      فضاءات شعاعية علىℝ 
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   امفضاء امشعاعي الجزئي

:  تحلق الخاصيتين   𝑽من     𝑭    هو المجموعة الجزئية غير الخامية   𝑽 امفضاءمن  امفضاء امشعاعي الجزئي :1ثعريف

1. ∀𝒖, 𝒗 ∈ 𝑭:  𝒖 +  𝒗 ∈ 𝑭 

2. ∀𝒖 ∈ 𝑭, ∀𝜶 ∈ 𝑲: 𝜶𝒖 ∈ 𝑭 

 : تحلق  الخاصية    𝑽من     𝑭    هو المجموعة الجزئية غير الخامية   𝑽 امفضاءمن   امفضاء امشعاعي الجزئي:2ثعريف

∀𝒖, 𝒗 ∈ 𝑭, ∀𝜶, 𝜷 ∈ 𝑲: 𝜶𝒖 + 𝜷𝒗 ∈ 𝑭         

هتيجة     

  𝟎𝑽         هو فضاء شعاعي جزئي من 𝑽.  

 𝑽         هو فضاء شعاعي جزئي من هفسه.   

 

ℝ3:  مثال  , ℝ2, ℝ    فضاءات شعاعية جزئية   منℝ3 

 المزج الخطي

,𝒗𝟏 هو مزج خطي مل شعة    𝒖 هلول أ ن امشعاع   . 𝑲 الحللعلى  شعاعي فضاء    𝑽ميكن  𝒗𝟐, … , 𝒗𝒏    من𝑽 

ذا كان ,𝜶𝟏∃                :ا  𝜶𝟐, … , 𝜶𝒏 ∈ 𝑲: 𝒖 = 𝜶𝟏𝒗𝟏 + 𝜶𝟐𝒗𝟐 + ⋯ + 𝜶𝒏𝒗𝒏  

 

 الاس تللال والارثباط الخطي

𝑺    ال شعةجملة متكن:  ثعريف = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏}     من𝑽 .  

ذا كاهت كل امسلميات منعدمة من أ جل كل مزج خطي منعدم  ل شعة مس تللة خطيا    𝑺هلول أ ن الدلة      :أ ي   𝑺ا 

 

 

 مرثبطة خطيا   𝑺أ ن الدلة    كلنا واذا لم يتحلق هذا امشرط
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ف 𝑺  جملة الأشعة متكن: تعرً = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏}     من𝑽 

ذا وجدت سلمَات غير منعدمة من أأجل كل مزج خطي منعدم  لأشعة مرتبطة خطَا     𝑺الجملة      هقول أأن  : أأي   𝑺ا 

 

 هتيجة 

  𝒖         مس تقلة خطَا ⇔          𝒖 ≠ 𝟎𝑽    
   𝑺   𝟎     مرتبطة خطَا𝑽 ∈ 𝑺 = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} ⇒ 

 الجملة المولدة       
ف 𝑺   الأشعة منتهَة منجملة فضاء شعاعي و   𝑽    مَكن: تعرً = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏}     من𝑽  ,تسمى   

ذا كان كل شعاعجملة مولدة  𝒖      ا  ∈ 𝑽 ٍكتب  على شكل مزج خطي لأشعة 𝑺 نرمز بامرمز و :𝑽 = [𝑺]     ,معناه: 

 

أأساس امفضاء امشعاعي 
ف 𝑺   الأشعة منتهَة منجملة فضاء شعاعي و   𝑽    مَكن: تعرً = {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏}     من𝑽,  

ذا كان    أأساس    𝑺   الجملة    تسمى ذا وفقط ا   :   ا 

1. 𝑺    نلفضاء جملة مولدة 𝑽,  أأي     𝑽 = [𝑺].   

2.   𝑺    مس تقلة خطَا جملة.   

𝑆:       مثال = {𝑒1 = (1,0), 𝑒2 =    ℝ2   نلفضاء امشعاعي  أأساس     {(0,1)

ذا كان  :  خاصَة   .𝑺 لأشعة   كل شعاع ٍكتب كمزج خطي وحيد  فان 𝑽 نلفضاء امشعاعي أأساس    𝑺ا 

 امفضاء امشعاعي بعد
ف ذا وجد  أأساس   ,  𝑲 فضاء شعاعي على الحقل    𝑽  مَكن: تعرً   من 𝒏 يحتوي على عدد منتو   𝑽  نلفضاءا 

dim:      ونكتب  , 𝑽  امشعاعينلفضاءبعد منتو   𝒏ٌسمى   امعدد  , الأشعة  𝑽 = 𝒏 
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𝑒1}: 1مثال =  1,0,0 , 𝑒2 =  0,1,0 , 𝑒3 = ℝ3نلفضاء امشعاعي  أ ساس هو{  0,0,1  : ومنه  ,ℝ  على   

dim ℝ3 = 3.  

,1}   :2مثال 𝑖 }     نلفضاء امشعاعي  أ ساسهوℂ   على  ℝ,   dim ℂ = 2  . 

ذا     خواص ذن , 𝒏بعد منته    فضاء شعاعي ذو   𝑽 كان ا   : ا 

   . شعاع  𝒏 ال كل على على تحتويمولدة كل جملة  

 .ال شعة من امعدد نفس على تحتوي   𝑽 امشعاعي  نلفضاء ال سس جميع 
ذا كانت  الدلة    ,𝒗𝟏}فا  𝒗𝟐, … , 𝒗𝒏}    نلفضاء  أ ساسا  فهيي جشكلمس تللة خطيا  𝑽.  

ذا كانت  الدلة    ,𝒗𝟏}فا  𝒗𝟐, … , 𝒗𝒏}    نلفضاء  أ ساسا  فهيي جشكلمولدة  𝑽.   

ذا  ذن   𝑽 امفضاءمن جزئي فضاء شعاعي    𝑭  كانا  dim:  ا  𝑭 ≤ dim 𝑽     ذا و   كانا 
    dim 𝑭 = dim 𝑽      فان𝑭 = 𝑽 .           

   امتطبيق الخطي

    :حيث,   Kفضائين شعاعين على نفس الحلل    V, W  ميكن: ثعريف
𝒇: 𝑽 ⟶ 𝑾

𝒙 ⟼ 𝒇(𝒙)
 

ذا كان  W  نحو V  من  ثطبيق خطي هو 𝒇   أ ن نلول ذا وفلط ا   :  ا 

 

 

  أ و     

 

    W  نحو V  من  ثطبيق خطي    𝒇    ميكن       خواص

1. 𝒇 𝟎𝑽 = 𝟎𝑾 

2. 𝒇 −𝒙 = −𝒇(𝒙) 

ذا كان .3 ن   𝑽 امفضاءمن جزئي فضاء شعاعي      𝑽𝟏ا      W  امفضاءمن جزئي  فضاء شعاعي      𝒇 𝑽𝟏    فا 

ذا كان .4 ن     𝑾 امفضاءمن جزئي فضاء شعاعي     𝑾𝟏ا     V  امفضاءمن جزئي  فضاء شعاعي  𝒇−𝟏 𝑾𝟏    فا 

  ثطبيق خطي هوثطبيلين خطيينمركب  .5
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التطبيقات الخطية والبؼد 

   تطبيق خطينواة 

  حيث    V  الفضاء  من 𝒙و هي مجموػة كل الؼناصر  ,   𝑲𝒆𝒓 𝒇 ونرمز لها بالرمز   , تطبيق خطي نواة :تؼريف 

𝒇 𝒙 = 𝟎𝑾     ونكتب : 

 
 

تطبيق خطي صورة 

 :ونكتب Vو هي مجموػة صور غناصر الفضاء ,  𝑰𝒎 𝒇ونرمز لها بالرمز     , تطبيق خطي صورة :تؼريف

 

 

    W  نحو V  من  تطبيق خطي  𝒇 ليكن       خواص

1.    𝑲𝒆𝒓 𝒇  الفضاءمن جزئي  فضاء شؼاغي   هي  V. 

2.    𝑰𝒎 𝒇   الفضاءمن جزئي  فضاء شؼاغي   هي  W.      

و الغامر   الخطي المتباينالتطبيق 

 W نحو Vمن  تطبيق خطي 𝒇 ليكن   : نظرية

1. 𝒇   ذا كان  متباين ذا وفقط ا  𝑲𝒆𝒓 𝒇    ا  =  𝟎𝑽  

2. 𝒇   ذا كان   غامر ذا وفقط ا  𝑰𝒎 𝒇    ا  = 𝑾   

      

ذن. بؼد منتهذو   V  مع الؼلم أ ن ,  W نحو Vمن  تطبيق خطي 𝒇  ليكن:نظرية  :  ا 
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    التقابليالتطبيق الخطي

ذن. بعد منتهذو   V  مع العلم أ ن ,  W نحو Vمن  تطبيق خطي 𝒇  ليكن:نظرية : ا 

 𝒇      ذا كان     تقابلي ذا وفقط ا   متباين   𝒇 ا 

 𝒇       ذا كان     تقابلي ذا وفقط ا   غامر    𝒇ا 

 

 الخطي   التطبيقرتبة

  𝒓𝒂𝒏𝒌 𝒇 : ونرمز لها بالرمز,      𝑰𝒎 𝒇 هي بعد صورته خطيتطبيق رتبة :  تعريف

  :   ونكتب 
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