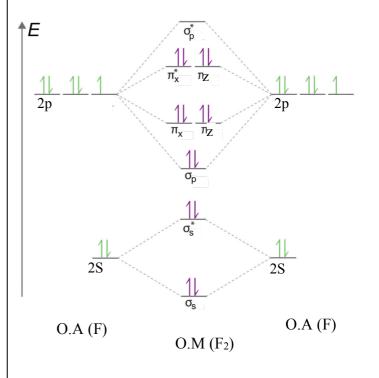
Université Frères Mentouri-Constantine 1 Faculté des sciences exactes Département de chimie

2^{ème} année LMD

NOM: PRENOM: Groupe:


Interrogation de Chimie minérale

- I. Étude de la molécule de difluor F_2 . Z(F)=9
- a) **Dessiner les orbitales** moléculaires de **F**₂, résultantes des interactions entre les orbitales atomiques de valence des deux atomes de fluor. On précise que l'écart énergétique entre les orbitales 2s et 2p est grand. Pour chaque OM, **préciser le caractère liant ou antiliant. Donner le nom** de chaque O.M.
- b) Construire le diagramme des niveaux d'énergie des orbitales moléculaires de F₂. Indiquer l'occupation électronique de chaque O.M.

b) le diagramme d'énergie des orbitales moléculaires de F2

2021

c) Donner la configuration électronique de F₂.

$$\sigma_{s}^{2}$$
, σ_{s}^{*2} , σ_{v}^{2} , $\pi_{x}^{2} = \pi_{z}^{2}$, $\pi_{x}^{*2} = \pi_{z}^{*2}$, σ_{v}^{*0}

d) Calculer l'ordre de liaison de F₂.

$$OL=(8-6)/2=1$$

e) Donner la configuration électronique de F₂²⁺. Cet ion est-il para ou diamagnétique ?

$$\sigma_s^2$$
, σ_s^{*2} , σ_v^2 , $\pi_x^2 = \pi_z^2$, $\pi_x^{*1} = \pi_z^{*1}$, σ_y^{*0} .

paramagnétique

f) Calculer l'ordre de liaison de F_2^{2+} .

OL=(8-4)/2=2

- g) Cette molécule est-elle plus stable ou moins stable que F₂? Justifier votre réponse.
- $OL(F_2) < OL(F_2^{2+}) => E(F_2) < E(F_2^{2+})$, lorsque l'indice de liaison augmente, l'énergie de dissociation augmente $=> F_2^{2+}$ est plus stable que F_2
- h) Comment évolue la longueur de la liaison F-F lorsque l'on passe de F₂ à F₂²⁺? Justifier votre réponse.
- $OL(F_2) < OL(F_2^{2+}) => d(F_2^{2+}) < d(F_2) => lorsque l'indice de liaison augmente, la longueur de liaison diminue.$

Université Frères Mentouri-Constantine 1 Faculté des sciences exactes Département de chimie

2^{ème} année LMD

2021

II- Dans la colonne des halogènes, à température ambiante, F₂ et Cl₂ sont gazeux, Br₂ est liquide et I₂ solide. Que peut-on invoquer pour expliquer ces différences?

Les dihalogènes F_2 , Cl_2 , Br_2 et I_2 sont des molécules **apolaires** \Rightarrow la cohesion entre les molécoles est assurée par des interactions de type **Van der Waals** : attractions entre dipôles électriques induits (**London**).

L'interaction London augmente avec \mathbb{Z} , plus le nuage électronique est grand plus la polarisabilité est importante, ce qui conduit à une polarité importante donc des interactions plus fortes : ces interactions augmentent du $F_2 < Cl_2 < Br_2 < I_2$. Ce qui explique que les températures d'ébullition sont plus élevées pour I_2 , puis Br_2 , puis Cl_2 et enfin F_2 , ce qui est en accord avec les états physiques des dihalogènes.

III- Attribuer à chaque composé Cl_2 , HCl, HF et NaCl, son pourcentage ionique 17%, 0%, 45% et 100%. En déduire les **charges partielles** portées par les atomes de ces liaisons, et discuter la **nature de la liaison chimique** entre les deux atomes dans chacun de ces composés. $\chi(H)=2,2$; $\chi(Cl)=3,16$; $\chi(Na)=0,93$; $\chi(F)=3,98$.

 $i\% = 8 \times 100\%$

 Cl_2 : $\Delta \chi = 0$; i%= 0% => $\delta = 0$ => liaison covalente pure.

 $\Delta\chi(HF) = 1.78 > \Delta\chi(HCl) = 0.96$; => i% (HCl)= 17%=> $\delta = 0.17$; liaison covalente polarisée;

i% (HF)= 45%, δ =0,45; liaison covalente polarisée.

NaCl: $\Delta \chi = 2,23$; i%= 100%, $\delta = 1$; liaison ionique.

IV- a)-À l'ai de de la théorie V.S.E.P.R. montrer si les deux molécules CH₄ et NH₃, sont polaires.

CH₄: AX₄ géométrie tétraédrique parfaite,

molécules symétrique => $\mu_{globale} = 0$

(molécule apolaire)

NH₃: AX₃E géométrie tétraédrique,

Pyramide trigonale $\Rightarrow \mu_{globale} \neq 0$

(molécule polaire)

b)-Quelles interactions peut-on prévoir entre les molécules de chaque composé.

CH₄: molécule apolaire => interactions de type Van der Waals : attractions entre dipôles électriques induits (London)

NH₃: molécule polaire => interactions de type Van der Waals : attractions entre dipôles permanents (Keesom) et interaction London. En plus des interactions de type Van der Waals, des liaisons Hydrogène (H-N···H) sont présentes dans ce composé.

c)- Attribuer à chaque composé sa température d'ébullition de, -161,7°C, -33,3°C. Justifier votre réponse.

Avec un Z proche le composé NH_3 contient des interactions entre les molécules plus fortes que les interactions présentes dans le composé $CH_4 => Teb \ (NH_3) > Teb \ (CH_4) => Teb \ (CH_4) = -161,7^{\circ}C$, Teb $(NH_3) = -33,3^{\circ}C$.