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Introduction

This Handout, the result of teaching experience, is aimed at first year students in Science and

Technology. Its objective is to guide students efficiently through the fundamental principles and

computation techniques to be qualified to deal with mathematical problems.

Five chapters are included in this Handout:

Chapter 1 deals with Matrices, we learn about matrices, we are studying operations on the matrices,

types of matrices, inverse of a matrix, also, a second method (Gauss-Jordan elimination method) for

finding a matrix inverse will be outlined. we will learn about a characteristic quantity associated with

square matrices-the determinant.

The determinant which studied in Chapter 2 plays an important role in matrix calculus and solving

linear systems. It allows us to know whether a matrix is invertible or not. We start by giving the

expression for determinant of a matrix and also cofactor method of finding the inverse of a square

matrix.

Systems of linear equations and their solutions constitute one of the major topics that we will study

in the chapter 2. In the first section we will introduce some basic terminology then, We have a brief

discussion of methods for solving such systems.

Chapter 3 deals with Integrals end primitive functions.

Integration started as a method to solve problems in mathematics and physics, such as finding the area

under a curve, or determining displacement from velocity. Today integration is used in a wide variety

of scientific fields.

Integrals refer to the concept of an anti-derivative, a function whose derivative is the given function;

in this case, they are also called indefinite integrals.

Both the integral and differential are related to each other by the fundamental theorem of calculus,

which provides a method to compute the definite integral of a function when its anti-derivative is

known.

In this chapter, we will learn about some important methods for calculating integrals.



In the fourth chapter, we will study the ordinary differential equations and their corresponding methods

of solution, especially first-order ordinary differential equations, as well as second-order differential

equations with constant coefficients.

The last chapter is devoted to the functions of several variables. We will present some basic definitions

of derivatives and multiple integrals, especially the double integral.

Finally, we hope that this cours will be a means to help students understand the lessons and be able to

apply them.
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Chapter 1 Matrices and Determinants

Introduction

h Definition of a Matrix

h Special Matrices

h Operations on Matrices

h The inverse of a matrix

h Matrix of a linear application

h Linear map of matrix

h Change of basis (Transit matrix)

h Determinant of a Square Matrix

Properties of Determinants

Det of particular matrices

Inverse of a matrix using cofactor

h Rank of a Matrix

1.1 Definition of a Matrix

Definition 1.1 (Matrix)

♣

A matrix A is a rectangular array (table) of elements of k. See [3]

It is said to be of order m× n if the table has m rows and n columns, enclosed within a

bracket (either round or square)

The numbers m and n are called the dimensions of the matrix.

The numbers in the table are called the coefficients of A.

The coefficient in the ithrow and in the jth column is denoted by aij.

The matrices is denoted with capital letters, like A, B, C etc.

A short hand method of writing a general m× n matrix is the following.

Am×n =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn


m×n

= (aij)1≤i≤m
1≤j≤n

(1.1)



1.1 Definition of a Matrix

Remark

k denotes a field wich is Q, R or C.

If m = n, in equation (1.1) we say that matrix A is of order n.

A matrix having only one column is called column matrix (or vector column), and a matrix with

only one row is called a row matrix (or row vector).

We denote the set of matrices of order m× n byMm×n (k).

Example 1.1

Let be the following matrices

A =

 1 0 7

2 −3 0

 , B =


−5 0

7 −3

3 4

 , C =

(
9 −3 1

)
, D =



−8

2

0

−5


A is a matrix of order 2× 3, with two rows and three columns,

such as a11 = 1, a12 = 0, a13 = 7, a21 = 2, a22 = −3, a23 = 0.

B is a matrix of order 3× 2, B ∈M3×2 (R) .

C is a row matrix (row vector), with three columns.

D is a column matrix (column vector), with four rows.

1.1.1 Equality of two matrices

Definition 1.2

♣

[3, 5] Two matrices A = (aij) and B = (bij) are said to be equal if:

They possess the same number of rows and the same number of columns

If aij = bij , ∀i = 1, ...,m and ∀j = 1, ..., n.

� Exercise 1.1

Set the coefficients α and β that the two matrices A and B are equal

A =

 −7 α

−9 −β

 , B =

 −7 2

−9 5


2



1.2 Special Matrices

Solution

 −7 α

−9 −β

 =

 1 2

3 5

⇐⇒
 α = 2

−β = 5 =⇒ β = −5

1.2 Special Matrices

1.2.1 Zero-matrix

Definition 1.3

♣

[3, 6] If every coefficient in a matrix Am×n = (aij)1≤i≤m
1≤j≤n

in (1.1) is zero, it is known as a zero

matrix and denoted by 0n×m.

For example:

03×2 =


0 0

0 0

0 0

 , 03×3 =


0 0 0

0 0 0

0 0 0



1.2.2 Square matrix

Definition 1.4

♣

[3, 6] A matrix that has equal numbers of rows and columns (n = m) is known as a square

matrix. We call this matrix A of order n, and is represented by n only i.e. A ∈Mn (k).

For example

A =

 2 1

−
√
3 0

 ∈M2 (R) , B =


1 0 9

2 −3
√
2

5 4 1

 ∈M3 (R)

3



1.2 Special Matrices

1.2.3 Diagonal matrix

Definition 1.5

♣

A square matrix A = (aij) is said to be a diagonal matrix if aij = 0 for i ̸= j, and at least one

element aii ̸= 0. See [6, 20].

For example

A =



2 0 0 0

0 −4 0 0

0 0 0 0

0 0 0 1


and B =

 −2 0

0 8

.

1.2.4 Identity Matrix

Definition 1.6

♣

[3, 5] A square matrix whose diagonal elements are equal to 1 is called identity matrix and

denoted by In, in other words aij =

 1, i = j

0, i ̸= j

.

For example:

I3 =


1 0 0

0 1 0

0 0 1

 and I2 =

 1 0

0 1

 .

1.2.5 Upper Triangular matrix

Definition 1.7

♣

A square matrix A = (aij) is said to be an upper triangular matrix if aij = 0 for i > j See [3,

6].

For example

4



1.3 Operations on Matrices

A =


1 2 −5

0 −8 0

0 0 1

 and B =

 a b

0 c

 .

1.2.6 Lower Triangular matrix

Definition 1.8

♣

A square matrix A = (aij) is said to be an lower triangular matrix if aij = 0 for i < j See [3,

6].

For example

A =


2 0 0

9 −3 0

3
√
13 1

 and B =

 a 0

b c

 .

1.2.7 Symmetric Matrix

Definition 1.9

♣A square matrix A = (aij) said to be a symmetric if aij = aji for all i and j See [3, 5].

For example

A =


2 5 −7

5 −3
√
3

−7
√
3 1

 is a symmetric Matrix.

1.3 Operations on Matrices

The matrix operations include the addition, subtraction, multiplication of matrices, transpose of

a matrix, and inverse of a matrix.

5



1.3 Operations on Matrices

1.3.1 Scalar multiple of a matrix

Definition 1.10 (Scalar multiple of a matrix)

♣

Let A = (aij)Mm×n (R), then for any scalar λ ∈ R, we defind λA by: λA = (λaij)1≤i≤m
1≤j≤n

,

λA =



λa11 λa12 · · · λa1n

λa21 λa22 · · · a2n

...
...

...

λam1 λam2 · · · λamn


See [3, 11]

For example

A =


3 0 −5

1 −5
√
2

5 2 3

⇒ 3A =


9 0 −15

3 −15 3
√
2

15 6 9


Remark

Multiplying a scalar by a matrix is commutative, ie λA = Aλ

1.3.2 Addition of Matrices

Definition 1.11 (Addition of Matrices)

♣

Let A = (aij) and B = (bij) be are two matrices with same order m× n, Then the sum A+B

is defined by: A+B = (aij)1≤i≤m
1≤j≤n

+ (bij)1≤i≤m
1≤j≤n

= (aij + bij)1≤i≤m
1≤j≤n

, see [11]

A+B =



a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
... . . . ...

am1 + bm1 am2 + bm2 · · · amn + bmn



Example 1.2

6



1.3 Operations on Matrices

Let A =

 0 5 −9
√
3 0 2

 , B =

 1 0 9

2 −3 4

 ,

Find 3A, A+B, 3A− 2B.

Solution

3A =

 0 15 −27

3
√
3 0 6

 , A+B =

 1 5 0

2 +
√
3 −3 6



3A− 2B =

 0 15 −27

3
√
3 0 6

−
 2 0 −18

4 −6 8


=

 −2 15 −45

3
√
3− 4 6 −2


Property

Let A, B and C be matrices of order m× n, and let λ1, λ2 ∈ R. Then [3]

A+B = B + A

(A+B) + C = A+ (B + C)

(λ1 + λ2)A = λ1A+ λ2A

(λ1λ2)A = λ1 (λ2A)

1.3.3 Multiplication of Matrices

Definition 1.12 (Multiplication of Matrices)

♣

Let A = (aij) ∈ Mm×n (R) and B = (bjk) ∈ Mn×p (R). The product AB is a matrix

C = (cik) of order m× p, defined by: [20, 27]

cik =
n∑

l=1

ail × blk, where

1 ≤ i ≤ m, 1 ≤ k ≤ p, m, n, p ∈ N

Example 1.3

Obtain the product AB if A =

 7 −1

2 −3

and B =

 2 4 1

3 2 0


7



1.3 Operations on Matrices

Solution

AB =

 7 −1

2 −3

×
 2 4 1

3 2 0



=



[
7 −1

] 2

3

 [
7 −1

] 4

2

 [
7 −1

] 1

0


[
2 −3

] 2

3

 [
2 −3

] 4

2

 [
2 −3

] 1

0





=

 11 26 7

−5 2 2


Remark

1. The multiplication of a matrix A by a matrix B is defined only when the number of columns of

the first matrix A equals the number of rows of the second matrix B.

2. In general, the matrix multiplication is not commutative: AB ̸= BA.

Example 1.4

Let A =

 −2 4

3 5

 , B =

 1 3

2 −4


We have:

AB =

 −2 4

3 5

×
 1 3

2 −4

 =

 6 −22

13 −11


BA =

 1 3

2 −4

×
 −2 4

3 5

 =

 7 19

−16 −12


Thus, AB ̸= BA

Property

Assuming that the sizes of the matrices are such that the indicated operations can be performed,

the following rules of matrix arithmetic are valid, See [3].

(AB)C = A(BC)

A(B + C) = AB + AC

8



1.3 Operations on Matrices

AIn = InA = A

An = A× A...× A︸ ︷︷ ︸
n factors

, n ∈ N∗

In general

(A+B)2 ̸= A2 + 2AB +B2

(A−B)2 ̸= A2 − 2AB +B2

(A+B) (A−B) ̸= A2 −B2

1.3.4 Transpose of a Matrix

Definition 1.13 (Transpose of a Matrix)

♣

The transpose of matrix A = (aij)1≤i≤m
1≤j≤n

, written AT , or At( is the matrix obtained by writing

the rows of A in order as the columns of At and writing the columns of A as the rows of At, see

[20].

Example 1.5

For example:

Let A =


1 0 9 1

2 −3
√
2 6

5 4 1 −4

⇒ At =



1 2 5

0 −3 4

9
√
2 1

1 6 −4


Remark

If A ∈Mm×n (R) , then At ∈Mm×n (R) .

1.3.5 Properties of the matrices transpose of a matrix

Let A and B be matrices, and let λ ∈ R. [3, 6] Then

(A+B)t = At +Bt

(At)
t
= A

(λA)t = λAt, λ is a scalar.

9



1.3 Operations on Matrices

(AB)t = BtAt

If At = A, the matrix A is symmetric

� Exercise 1.2

Show that the matrix C is symmetric, where:

C =


1 2 5

2 −3 4

5 4 8


Solution

Taking the transpose of C

Ct =


1 2 5

2 −3 4

5 4 8

 ;

Clearly Ct = C so C is a symmetric matrix.

1.3.6 Main diagonal

Definition 1.14 (Main diagonal)

♣

The Main diagonal (Principal diagonal) of a square matrix, A = (aij) ∈ Mn (R) , is the list

of entries aij where i = j, that mean (a11, a22, .......ann), see [3]

Trace of a square matrix

Definition 1.15

♣

Let A ∈ Mn (R) , a square matrix of order n, the trace of A denoted tr(A), is defined to be

the sum of elements on the main diagonal; see [3].

tr (A) =
n∑

i=1

aii = a11 + a22 + .......+ ann

Example 1.6

10



1.4 The inverse of a matrix

Let A =


1 −8 5

0 −3 2

9 5 4

 =⇒ tr (A) = 1 + (−3) + 4 = 2

1.3.7 Properties of trace of matrix

A and B two square matrices of the same order, then [10]:

tr(A+B) = tr(A) + tr(B).

tr (λA) = λtr (A) .

tr(A) = tr(At).

(AB)t = BtAt

� Exercise 1.3

Classify the following matrices (and, where possible, find the trace):

A =


9 2

9 1

11 2

 , B =


1 4 7 0

3 1 6 9

1 0 −3 4

 , C =



7 8 0 1

2 10 0 8

−8 12 −3 1

1 4 7 5


.

Solution

A ∈M3×2 (R) , B ∈M3×4 (R), C ∈M4 (R)

The trace is not defined for A or B. However, tr(C) = 7 + 10 + (−3) + 5 = 19

1.4 The inverse of a matrix

Definition 1.16

♣

Let A ∈ Mn (R) a square matrix, if there exists a square matrix B of order n; (B ∈Mn (R))

such that

AB = BA = In

we say that A is invertible. We call B the inverse of A and we denote it A−1 [6, 10]

11



1.4 The inverse of a matrix

Example 1.7

Let A =

 1 2

0 3

 , To study if A is invertible is to study the existence of a matrix

B =

 x y

z t

 such that AB = BA = I2

AB = I is equivalent to:

(AB = I2) ⇐⇒

 1 2

0 3


 x y

z t

 =

 1 0

0 1


⇐⇒

 x+ 2z y + 2t

z 3t

 =

 1 0

0 1




x+ 2z = 1

y + 2t = 0

z = 0

3t = 1

x = 1, y = −2

3
, z = 0, t =

1

3

There is therefore only one possible matrix, namely B =

 1 −2
3

0 1
3

 ;

To prove that it is suitable, we must also show the equality BA = I2. The matrix A is therefore

invertible and A−1 =

 1 −2
3

0 1
3

 .

Remark

Not all square matrices have an inverse matrix.

Example 1.8

The matrix A =

 0 2

0 7

 , is not invertible. Indeed, let B =

 x y

z t

 any matrix. So

the product BA =

 x y

z t


 0 2

0 7

 =

 0 2x+ 7y

0 2z + 7t

 , can never be equal to the identity

12



1.4 The inverse of a matrix

matrix.

Remark

The zero matrix On of order n is not invertible.

Inverse of the inverse If A be an invertible matrix, then A−1 is also invertible and we have:(
A−1

)−1
= A

Inverse of product If A and B be two invertible matrices of the same order, then AB is invertible

and [6]

(AB)−1 = B−1A−1

� Exercise 1.4

Let C =


0 2 2

2 0 2

2 2 0


1. Compute C2 − 2C − 8I3

2. From the previous relation, prove that C is revertible and find its inverse.

Solution

C2 = C × C =


0 2 2

2 0 2

2 2 0




0 2 2

2 0 2

2 2 0



C2 =


8 4 4

4 8 4

4 4 8



13



1.4 The inverse of a matrix

Calculate : C2 − 2C − 8I3

C2 − 2C − 8I3 =


8 4 4

4 8 4

4 4 8

− 2


0 2 2

2 0 2

2 2 0

− 8


1 0 0

0 1 0

0 0 1



=


0 0 0

0 0 0

0 0 0


Proof that C is invertible and find its inverse

C2 − 2C − 8I3 = 0⇐⇒ C2 − 2C = 8I3

⇐⇒

 C · 1
8
(C − 2I3) = I3

1
8
(C − 2I3) · C = I3

According to the definition of the inverse of a matrix, we can conclude that C is revertible and its

inverse is given by

C−1 =
1

8
(C − 2I3)

=
1

8




0 2 2

2 0 2

2 2 0

− 2


1 0 0

0 1 0

0 0 1





C−1 =
1

8


−2 2 2

2 −2 2

2 2 −2


Thus

C−1 =


−1

4
1
4

1
4

1
4
−1

4
1
4

1
4

1
4
−1

4


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1.4 The inverse of a matrix

1.4.1 Computation of the Matrix Inverse

1.4.1.1 Inverse of a Matrix using Elementary Row Operations (Gauss-Jordan

method)

Steps to find the inverse of a matrix using Gauss-Jordan method

[19] Let A ∈Mn (R) be a square matrix.

In order to find the inverse of the matrix following steps need to be followed [1, 2]:

Form the augmented matrix by the identity matrix (A |In ).

On the rows of this augmented matrix, we carry out elementary operations until we obtain the

matrix (In |B )

The following row operations are performed on augmented matrix when required:

αri −→ ri, with α ̸= 0 : multiply each element in a row by a non-zero constant α

ri + αrj −→ ri, with α ∈ R and i ̸= j : replace a row by the sum of itself and a constant

multiple of another row of the matrix.

ri ←→ rj interchange any two row (swap rows).

Example 1.9

Using elementary row operations, find A−1 for the matrix

A =


−5 0 −12

3 1 −1

1 0 3


Solution

The identity matrix is given by

I3 =


1 0 0

0 1 0

0 0 1


Form the augmented matrix by the identity matrix (A |In ) as follows:
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1.4 The inverse of a matrix

(A |In ) =


−5 0 −12 1 0 0

3 1 −1 0 1 0

1 0 3 0 0 1


We use the row operation r1 ↔ r3 to give

1 0 3 0 0 1

3 1 −1 0 1 0

−5 0 −12 1 0 0

 .

The pivot in the second row can be turned into a zero entry by use of the row operation r2−3r1 −→

r2, giving 
1 0 3 0 0 1

0 1 −10 0 1 −3

−5 0 −12 1 0 0

 .

A similar row operation can be applied to the third row. The row operation r3 + 5r1 −→ r3 thus

obtains: 
1 0 3 0 0 1

0 1 −10 0 1 −3

0 0 3 1 0 5

 .

At this point, we choose to change the new pivot in the third row, so that it is equal to 1. We use

the row operation 1
3
r3 −→ r3 to find:

1 0 3 0 0 1

0 1 −10 0 1 −3

0 0 1 1
3

0 5
3

 .

To obtain the identity matrix on the left side, we need to remove the two nonzero entries which

16



1.4 The inverse of a matrix

are above the pivot in the third row. The row operations r2 + 10r3 −→ r2 and r1 − 3r3 −→ r1 give
1 0 0 −1 0 −4

0 1 0 10
3

1 41
3

0 0 1 1
3

0 5
3

 .

We have obtained precisely the form that we were looking for, which means that the right side of

the augmented matrix is the inverse

A−1 =


−1 0 −4

10
3

1 41
3

1
3

0 5
3

 .

1.4.2 Rank of a matrix using elementary transformations

Let A ∈Mm×n (R) be a matrix having columns C1, C2, ..., Cm and rows R1, R2, ...., Rn.

We can use elementary row/column transformations and convert the matrix into upper triangular

form or in lower triangular form.

A row (or column) transformation can be one of the following: [26]

Interchanging two rows Ri ←→ Rj .

Multiplying a row by a non-zero scalar αRi −→ Ri, with α ̸= 0.

Multiplying a row by a scalar and then adding it to the other row Ri +αRj −→ Ri, with α ∈ R

and i ̸= j.

Equivalent Matrix

[18] A matrix B is said to be equivalent to a matrix A if B can be obtained from A, by forming

finitely many successive elementary transformations on a matrix A. Denoted by A ∼ B.

Here are the steps to find the rank of a matrix [21].

Convert the matrix into upper triangular form or in lower triangular form using row/column

transformations.

Then the rank of the matrix is equal to the number of non-zero rows in the resultant matrix.
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1.4 The inverse of a matrix

Example 1.10 Find the rank of each of the folowing matrices:

A =


−1 2 5

1 2 3

−2 8 1

 , B =


3 2 −6

1 1 −2

−3 −3 6



C =


1 2 3

2 4 6

−3 −6 −9

 , D =


4 3 1 −2

−3 −1 −2 4

6 7 −1 2


Solution

Performing elementary row operations, we get

1. A =


−1 2 5

1 2 3

−2 8 1


R2+R1−→ R2

R3 − 2R1−→ R3

−−−−−−−−−−−−−→


−1 2 5

0 4 8

0 4 −9

R3−R2−→ R3−−−−−−−−−−→


−1 2 5

0 4 8

0 0 −17


The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, RK (A) = 3.

2. B =


3 2 −6

1 1 −2

4 4 −8


R2 − 1

3
R1−→ R2

R3 − 4
3
R1−→ R3

−−−−−−−−−−−−−→


3 2 −6

0 1
3

0

0 4
3

0

R3 − 4R2−→ R3−−−−−−−−−−−→


3 2 −6

0 1
3

0

0 0 0


Now it is in Echelon form and so now we have to count the number of non-zero rows.

The number of non-zero rows is 2. Therefore, RK (B) = 2.

3. C =


1 2 3

2 4 6

−3 −6 −9


R2 − 2R1−→ R2

R3 + 3R1−→ R3

−−−−−−−−−−−−−→


1 2 3

0 0 0

0 0 0


The number of non-zero rows is 1. Therefore, RK (C) = 1.

4. D =


4 3 1 −2

−3 −1 −2 4

6 7 −1 2


R2 +

3
4
R1−→ R2

R3 − 3
2
R1−→ R3

−−−−−−−−−−−−−→


4 3 1 −2

0 5
4

−5
4

5
2

0 5
2

−5
2

5


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1.5 Matrix associated with a linear application

R3 − 2R2−→ R3−−−−−−−−−−−→


4 3 1 −2

0 5
4

−5
4

5
2

0 0 0 0


The number of non-zero rows is 2. Therefore, RK (D) = 2.

1.5 Matrix associated with a linear application

[30] A linear application (or linear transformation, linear map) between two finite-dimensional

vector spaces can always be represented by a matrix, called the matrix of the linear map.

Let U and V be two vector spaces over a field k such: dimU = n, dimV = m

Let B = {u1, u2, ...., un} is a basis of vector space U and B′
= {v1, v2, ...., vm} is a basis of

vector space V

Let f be a linear transformation (map) from U to V

f (u1) = a11v1 + a21v2 + ...+ am1vm

f (u2) = a12v1 + a22v2 + ...+ am2vm

...

f (un) = a1nv1 + a2nv2 + ...+ amnvm

Then, the matrix defined by A = (aij)1≤i≤m
1≤j≤n

∈ Mm,n (k) is the matrix associated of the linear

application f and is denoted byMf

(
B,B

′)
.

Remark

If dimU = dimV = n, then the associated matrix of linear map will be a square matrix of

order n.

The matrix associated with a null map is the null matrix.

The matrix associated with an identity application is the identity Matrix matrix.

Example 1.11
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1.6 Linear application (map) associated with a matrix

Let f be a linear map defined by

f : R2 −→ R3

(x, y) 7→ (5x+ y,−x+ 3y, x− y)

Find the associate matrix of linear map f with canonical basis in R2 and R3

Solution

The canonical basis in R2 is {(1, 0) , (0, 1)} ,

and the canonical basis in R3 is {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}

We have

f (1, 0) = (5,−1, 1) = 5 (1, 0, 0)− 1 (0, 1, 0) + 1 (0, 0, 1)

f (0, 1) = (1, 3,−1) = 1 (1, 0, 0) + 3 (0, 1, 0)− 1 (0, 0, 1)

Then the associated matrix of f is defined by

A =


5 1

−1 3

1 −1

 ∈M3×2 (R)

Remark

The associated matrix A of a linear map f is invertible if and only if the transformation f is

bijective

Rank
(
Mf

(
B,B

′))
= dim (Imf)

1.6 Linear application (map) associated with a matrix

Definition 1.17
[27] Let M = (aij)1≤i≤m

1≤j≤n
be a matrix of order m × n and let U and V be two vector spaces

such that dimU = n, dimV = m.

Let B = {u1, u2, ...., un} is a basis of U and B′
= B = {v1, v2, ...., vm} is a basis of V ,

We call the application linear f : U −→ V an associated linear application of the matrix M if

f (uj) = a1jv1 + a2jv2 + ...+ amjvm for all 1 ≤ j ≤ n
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1.7 Change of basis (Transit matrix)

♣It is denoted by fM .

Example 1.12

Let f : R2 −→ R3, Let M =


4 0

−1 1

2 3

 be a matrix of order 3× 2

LetB = {e1, e2} be the canonical basis in R2, andB′
= {e1, e2, e3} is the canonical basis in R3

There existe an unique linear application fM : R2 −→ R3 such fM (e1) = a11e1 + a12e2 + a13e3 = (4,−1, 2)

fM (e2) = a21e1 + a22e2 + a23e3 = (0, 1, 3)

Let (x, y) ∈ R2

fM (x, y) = fM (xe1 + ye2)

= xfM (e1) + yfM (e2)

= x (4,−1, 2) + y (0, 1, 3)

= (4x,−x+ y, 2x+ 3y)

Remark

If f is bijective, and Mf

(
B,B

′) is the associate matrix of f , then Mf−1

(
B

′
, B
)

is the

associate matrix of f−1 in the basis
(
B

′
, B
)

LetMf is the associate matrix of f andMg is the associate matrix of g, thenMf◦g =Mg ·Mf

1.7 Change of basis (Transit matrix)

The change of basis is a technique that allows us to express vector coordinates with respect to a

”new basis” that is different from the ”old basis” originally employed to compute coordinates.

Property

If V is a vector space with basis {u1, u2, ...., un}, then every vector v ∈ V can be written

uniquely as a linear combination of u1, u2, ...., un.
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1.8 Determinants

Definition 1.18

♣

[4] Let V be a vector space. Let B = {u1, u2, ...., un} and B′
= {v1, v2, ...., vn} be two basis

for U . Then, there exists a matrix P , denoted by PB→B′ and called change-of-basis matrix from

B to B′ , such that, P = (aij) ∈Mn (k) where (aij) ∈ k defined by:

u1 = a11v1 + a12v2 + ...+ a1nvn

u2 = a21v1 + a22v2 + ...+ a2nvn

...

un = an1v1 + an2v2 + ...+ annvn

Example 1.13

Consider the vector space R2 of two basis: B = {u1 = (1, 0) , u2 = (1,−1)} and B
′
=

{v1 = (0, 1) , v2 = (1, 1)}

We have  u1 = −v1 + v2

u1 = −2v2 + v2

the change-of-basis matrix is

P
B→B

′ =

 −1 −2
1 1



1.8 Determinants

1.9 Determinant of a Square Matrix

To define the determinant of a matrix, we have to know about sub-matrices of a matrix.

Definition 1.19 (Sub-matrix)

♣

Let A = (aij) ∈Mm×n (R) be matrix of order m× n. The matrix Aij obtained by deleting the

ith row and jth column of A is called a sub-matrix of A.

22



1.9 Determinant of a Square Matrix

Definition 1.20 (Determinant)

♣

[4] Let A = (aij) ∈Mn (R) be a square matrix of order n.

The determinant of the matrix A can be defined as a linear application defined from the set of

square matricesMn (R) to R, written det(A) or |A| given by:

det : Mn (R) −→ R

A 7→ det (A) =


a, if A = (a) , (n = 1)
n∑

j=1

(−1)1+j a1j det (A1j) , if n ≥ 2

where A1j is the sub-matrix of A, which is obtained by deleting the first row and jth column.

Remark

The determinant of the matrix A can be calculated according to any row i and according to any

column j, it is given by the following relations:

according to the row i =⇒ det (A) =
n∑

j=1

(−1)i+j aij det (Aij)

according to the column j =⇒ det (A) =
n∑

i=1

(−1)i+j aij det (Aij)

where Aij is a sub-matrix of A.

Definition 1.21 (Minor and Cofactor)

♣

[4] Let Aij a square sub-matrix of A = (aij) ∈Mn (R).

1. The determinant Mij = det (Aij) is called the minor of the element aij of A.

2. Cij = (−1)i+j Mij is called the cofactor of aij .

So, we can defined the determinant of a matrix A using minors and cofactors as:

det (A) =
n∑

j=1

aij (−1)i+j Mij =
n∑

j=1

aijCij

Example 1.14

Let A =

 3 5

4 −2

 , So detA = 3× (−2)− 4× 5 = −26
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1.9 Determinant of a Square Matrix

Let A =


−1 2 5

1 2 3

−2 8 1

, we calculate the determinant of the matrix A according to the first

row∣∣∣∣∣∣∣∣∣∣∣
−1 + 2 − 5 +

1 2 3

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
= +(−1)

∣∣∣∣∣∣∣
2 3

8 1

∣∣∣∣∣∣∣−2
∣∣∣∣∣∣∣

1 3

−2 1

∣∣∣∣∣∣∣+5

∣∣∣∣∣∣∣
1 2

−2 8

∣∣∣∣∣∣∣
= (−1) (2× 1− 3× 8)− 2 (1× 1− (−2)× 3) + 5 (1× 8− (−2) 2)

= 68

We calculate the determinant of the matrix A according to the second column∣∣∣∣∣∣∣∣∣∣∣
−1 −2 5

1 +2 3

−2 −8 1

∣∣∣∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣
1 3

−2 1

∣∣∣∣∣∣∣+2

∣∣∣∣∣∣∣
−1 5

−2 1

∣∣∣∣∣∣∣−8
∣∣∣∣∣∣∣
−1 5

1 3

∣∣∣∣∣∣∣
= −2 (1× 1− (−2)× 3) + 2 ((−1)× 1− (−2)× 5)− 8 ((−1)× 3− 1× 5)

= 68

Remark

To facilitate the calculations, we have to choose the row or column that contains the largest

number of zeros.

Example 1.15

Calculate the determinant of the following matrix

B =



3 −7 9 3

0 0 2 0

0 1 10 3

0 4 −8 5


We calculate the determinant of the matrix A according to the first column ( it contains the largest
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1.9 Determinant of a Square Matrix

number of zeros.)

detB =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 −7 9 3

0 0 2 0

0 1 10 3

0 4 −8 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣∣∣∣
0 2 0

1 10 3

4 −8 5

∣∣∣∣∣∣∣∣∣∣∣
= 3× (−2)

∣∣∣∣∣∣∣
1 3

4 5

∣∣∣∣∣∣∣ = (−6) (1× 5− 3× 4)

= 42

1.9.1 Important Properties of Determinants

[4, 29] Let A ∈Mn (k) be a matrix having columns C1, C2, ..., Cn and rows R1, R2, ...., Rn.

1. If all the elements of a row (or column) are zero, then detA = 0.

2. The interchange of any two rows (or columns) of the determinant of A changes its sign.

Example 1.16

|A| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 5

1 2 3

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣

|B| =

∣∣∣∣∣∣∣∣∣∣∣
2 −1 5

2 1 3

8 −2 1

∣∣∣∣∣∣∣∣∣∣∣
(interchange of columns 1 and 2)

|C| =

∣∣∣∣∣∣∣∣∣∣∣
−2 8 1

1 2 3

−1 2 5

∣∣∣∣∣∣∣∣∣∣∣
(interchange of rows 1 and 3)

|A| = 68 (previous example)

|B| = 2 (1 + 6) + (20− 24) + 5 (−4− 8) = −68

So |A| = − |B| .
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1.9 Determinant of a Square Matrix

|C| = (−2) (1− 6)− 8 (5 + 3) + 10 (2 + 2) = −68

So |A| = − |C| .

3. A determinant remains unaltered under an operation of the form

Ci +
n∑

j=1,j ̸=i

αjCj −→ Ci

Or

Ri +
n∑

j=1,j ̸=i

αjRj −→ Ri

(This property is used to make zeros appear on a row (or column))

Example 1.17

C1
↓

C2
↓

C3
↓

Let: detA =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 5

1 2 3

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
←− R1

←− R2

←− R3

Replacing the first column by: C1 +
1
2
C2 −→ C1∣∣∣∣∣∣∣∣∣∣∣

−1 2 5

1 2 3

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
−1 + 1 2 5

1 + 1 2 3

−2 + 4 8 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
0 2 5

2 2 3

2 8 1

∣∣∣∣∣∣∣∣∣∣∣
←− R1

←− R2

←− R3

Replacing the second row by: R2 −R3 −→ R2∣∣∣∣∣∣∣∣∣∣∣
0 2 5

2 2 3

2 8 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
0 2 5

2− 2 2− 8 3− 1

2 8 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
0 2 5

0 −6 2

2 8 1

∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣
2 5

−6 2

∣∣∣∣∣∣∣ = 2 (4 + 30) = 68

4. If all the elements of a row (or column) of a determinant are multiplied by a non-zero constant,

then the determinant gets multiplied by the same constant.

Special case: det (αA) = αn · detA, where A ∈Mn (k)

Example 1.18
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1.9 Determinant of a Square Matrix

|A| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 5

1 2 3

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
, |B| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 −15

1 2 −9

−2 8 −3

∣∣∣∣∣∣∣∣∣∣∣
, |C| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 5

2 4 6

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
|A| = 68 (previous example)

In |B|, the third column is multiplied by (−3)

|B| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 −15

1 2 −9

−2 8 −3

∣∣∣∣∣∣∣∣∣∣∣
= (−1) (−60 + 72)− 2 (−3− 18)− 15 (8 + 4)

So, |B| = −204, that means |B| = −3 |A| .

In |C| the second row is multiplied by 2

|C| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 5

2 4 6

−2 8 1

∣∣∣∣∣∣∣∣∣∣∣
= (−1) (40− 48)− 2 (20 + 12) + 5 (16 + 8)

So, |C| = 136, that means |C| = 2 |A| .

5. If all elements of a row (or column) are proportional (identical) to the elements of some other

row (or column), then detA = 0.

Example 1.19

|A| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 4

1 2 4

−2 8 16

∣∣∣∣∣∣∣∣∣∣∣
The third column is proportional to first column

|A| =

∣∣∣∣∣∣∣∣∣∣∣
−1 2 4

1 2 4

−2 8 16

∣∣∣∣∣∣∣∣∣∣∣
= (−1) (32− 32)− 2 (16 + 8) + 4 (8 + 4) = 0.

1.9.2 Determinants of particular matrices

Let A,B ∈Mn (k) two square matrices of order n, then
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1.9 Determinant of a Square Matrix

1. If A is a Zero-matrix, then detA = 0.

2. If A = (aij) is an Upper triangular matrix (or Lower triangular matrix), then

detA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n

...
... . . . ...

...
... . . . ...

an1 an2 · · · · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11 · a22 · .... · ann.

Special cases:

If A is Diagonal matrix, then detA = a11 · a22 · .... · ann.

det In = 1.

3. detA = detAt

Example 1.20

Let

A =


−1 2 5

1 2 3

−2 8 1


|A| = 68.

At =


−1 1 −2

2 2 8

5 3 1


|At| = (−1) (20− 24)− (20− 40) + (−2) (6− 10) = 68

So, |A| = |At|

4. detAB = detA · detB

Special case: detAA−1 = detA · detA−1 = 1 =⇒ detA−1 = 1
detA

Example 1.21
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1.9 Determinant of a Square Matrix

Let A =


−1 2 5

0 2 3

0 0 1

 , B =


−1 0 0

0 3 0

0 0 −2


A is upper triangular matrix, then detA = |A| = (−1)× 2× 1 = −2.

B is diagonal matrix, then detB = |B| = (−1)× 3× (−2) = 6.

detA× detB = (−2)× 6 = −12

AB =


−1 2 5

0 2 3

0 0 1




−1 0 0

0 3 0

0 0 −2

 =


1 6 −10

0 6 −6

0 0 −2


AB is upper triangular matrix, then detAB = |AB| = 1× 6× (−2) = −12

detAB = −12, so detAB = detA · detB.

Remark

det (A+B) ̸= det (A) + det (B) .

det (α · A) ̸= α · det (A) .

1.9.3 Inverse of a square Matrix using Cofactor Matrix

Definition 1.22

♣

[15] Let A = (aij)1≤i,j≤n be a square matrix of order n, where detA ̸= 0

We can calculate the inverse of matrix A as follows:

A−1 =
1

detA
(CofA)t (1.2)

CofA = (Cij)1≤i,j≤n , and Cij = (−1)i+j Mij,

Where Mij, denote the minor of the element aij, Cij is the cofactor of aij.

Example 1.22

Let A =

 5 3

2 4


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1.9 Determinant of a Square Matrix

Calculate the inverse of the matrix A

According to equation (1.2) we have: A−1 = 1
detA

(CofA)t

detA = 14 ̸= 0, then A is invertible

CofA =

 C11 C12

C21 C22

 , and Cij = (−1)i+j Mij

C11 = (−1)2 × 4 = 4,

C12 = (−1)3 × 2 = −2,

C21 = (−1)3 × 3 = −3,

C22 = (−1)4 × 5 = 5.

CofA =

 4 −2

−3 5

 =⇒ (CofA)t =

 4 −3

−2 5


So, A−1 = 1

14

 4 −3

−2 5

 =⇒ A−1 =

 2
7

−3
14

−1
7

5
14


Example 1.23

Calculate the inverse of the matrix

A =


2 4 −6

7 3 5

1 −2 4


detA = 54 ̸= 0, then A is invertible.

CofA = (Cij)1≤i,j≤n , and Cij = (−1)i+j Mij

C11 = (−1)2

∣∣∣∣∣∣∣
3 5

−2 4

∣∣∣∣∣∣∣ = 22,

C21 = (−1)3

∣∣∣∣∣∣∣
4 −6

−2 4

∣∣∣∣∣∣∣ = −4,
C31 = (−1)4

∣∣∣∣∣∣∣
4 −6

3 5

∣∣∣∣∣∣∣ = 38,

C12 = (−1)3

∣∣∣∣∣∣∣
7 5

1 4

∣∣∣∣∣∣∣ = −23,
C22 = (−1)4

∣∣∣∣∣∣∣
2 −6

1 4

∣∣∣∣∣∣∣ = 14,

C32 = (−1)5

∣∣∣∣∣∣∣
2 −6

7 5

∣∣∣∣∣∣∣ = −52,

C13 = (−1)4

∣∣∣∣∣∣∣
7 3

1 −2

∣∣∣∣∣∣∣ = −17,
C23 = (−1)5

∣∣∣∣∣∣∣
2 4

1 −2

∣∣∣∣∣∣∣ = 8,

C33 = (−1)6

∣∣∣∣∣∣∣
2 4

7 3

∣∣∣∣∣∣∣ = −22.
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1.10 Rank of a matrix using determinant

CofA =


22 −23 −17

−4 14 8

38 −52 −22

 =⇒ (CofA)t =


22 −4 38

−23 14 −52

−17 8 −22



A−1 = 1
54


22 −4 38

−23 14 −52

−17 8 −22



1.10 Rank of a matrix using determinant

Definition 1.23

♣

Let A be any matrix of order m× n.

A matrix A is said to be of rank r if [13]

1. It has at-least one non-zero minor of order r

2. Every minor of order greater than r of A is zero.

The rank of a matrix A is denoted by RK (A) .

Remark

If A is a zero matrix , then RK (A) = 0.

If A is not a zero matrix , then RK (A) ≥ 1.

If A is a matrix of order m× n, then RK (A) ≤ min (m,n) .

If A is a square matrix of order n, then (A invertible )⇐⇒ (RK (A) = n) .

1.10.1 Finding Rank of a Matrix by Minor Method

Here are the steps to find the rank of a matrix A ∈Mm×n (R) by the minor method.

Find the determinant of A (if A is a square matrix A ∈Mn (R) ). If det(A) ̸= 0, then the rank

of A = n.
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If either detA = 0 (in case of a square matrix) or A is a rectangular matrix, then see whether

there exists any minor of maximum possible order is non-zero. If there exists such non-zero

minor, then rank of A is the order of that particular minor.

Repeat the above step if all the minors of the order considered in the above step are zeros and

then try to find a non-zero minor of order that is one less than the order from the above step.

Example 1.24

Find the rank of each of the following matrices:

A =


−1 2 5

1 2 3

−2 8 1

 , B =


3 2 −6

1 1 −2

−3 −3 6



C =


1 2 3

2 4 6

−3 −6 −9

 , D =


4 3 1 −2

−3 −1 −2 4

6 7 −1 2


Solution

1. Let be A =


−1 2 5

1 2 3

−2 8 1

 , A is a square matrix of order 3, we compute the detA, |A| = 68

(previous example). det(A) ̸= 0, then the RK (A) = 3.

2. Let be B =


3 2 −6

1 1 −2

−3 −3 6

 , B is a square matrix of order 3, we compute the detB.

det(B) = 0, then the RK (B) < 3.

Next consider the second-order minors of B.

we find that the second-order minor

∣∣∣∣∣∣∣
3 2

1 1

∣∣∣∣∣∣∣ = 1 ̸= 0, then the RK (B) = 2.
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3. Let C =


1 2 3

2 4 6

−3 −6 −9

 , C is a square matrix of order 3, we compute the detC.

det(C) = 0, then the RK (C) < 3.

Next consider the second-order minors of C.

M11 =

∣∣∣∣∣∣∣
2 4

−3 −6

∣∣∣∣∣∣∣ = 0, M12 =

∣∣∣∣∣∣∣
2 6

−3 −9

∣∣∣∣∣∣∣ = 0, M13 =

∣∣∣∣∣∣∣
2 4

−3 −6

∣∣∣∣∣∣∣ = 0,

M21 =

∣∣∣∣∣∣∣
2 3

−6 −9

∣∣∣∣∣∣∣ = 0, M22 =

∣∣∣∣∣∣∣
1 3

−3 −9

∣∣∣∣∣∣∣ = 0, M23 =

∣∣∣∣∣∣∣
1 2

−3 −6

∣∣∣∣∣∣∣ = 0,

M31 =

∣∣∣∣∣∣∣
2 3

4 6

∣∣∣∣∣∣∣ = 0, M32 =

∣∣∣∣∣∣∣
1 3

2 6

∣∣∣∣∣∣∣ = 0, M33 =

∣∣∣∣∣∣∣
1 2

2 4

∣∣∣∣∣∣∣ = 0,

All the second-order minors of C are zero, and C is not a zero matrix , then RK (C) = 1.

4. Let D =


4 3 1 −2

−3 −1 −2 4

6 7 −1 2

 , D is a matrix order 3× 4. So RK (D) ≤ min (3, 4) = 3.

We search for non-zero third-order minor of D

We have∣∣∣∣∣∣∣∣∣∣∣
4 3 1

−3 −1 −2

6 7 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣
4 3 −2

−3 −1 4

6 7 2

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣
4 1 −2

−3 −2 4

6 −1 2

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣
3 1 −2

−1 −2 4

7 −1 2

∣∣∣∣∣∣∣∣∣∣∣
= 0.

So, RK (D) < 3. Next, we search for a non-zero second-order minor of D.

We find that

∣∣∣∣∣∣∣
3 −2

−1 4

∣∣∣∣∣∣∣ = 10 ̸= 0. So RK (D) = 2.

K Chapter 1 Exercise k

1. Exercise 1
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We consider the following matrices:

A =

(
−1 4 7

)
, B =

 3

−1

 , C =


1 0

−4 1

−1 2

 ,

D =

 −2 1

1 1

 , H =


−2 1 0

−1 −2 0

0 1 4


(a). What are the possible matrix products? What are square matrices and symmetric matrices?

(b). Calculate 1
3
C,C + 2C,C.D,D2.

2. Exercise 2

Let A be a matrix defined by:

A =


1 2 3

0 0 1

−1 0 −2


(a). Calculate A3 + A2 + A.

(b). Express A−1 in terms of A2, A and I3. Detremine A−1.

3. Exercice 3

Let A be a matrix defined by:

A =


0 1 1

1 0 1

1 1 0


(a). Find a, b ∈ R such that A2 = a.I3 + b.A.

(b). Deduce that A is invertible and give its inverse..

4. Exercise 4

Calculate the determinants
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∣∣∣∣∣∣∣
2 −1

4 3

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣∣∣
−2 1 0

−1 −2 0

0 1 4

∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 0

4 −2 0 0

8 −1 −2 0

6 0 1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
5. Exercise 5

Prove using the properties of determinants that:∣∣∣∣∣∣∣∣∣∣∣
2 3 −5

2α 3α −5α

4 −1 8

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣
0 α β

−α 0 λ

−β −λ 0

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣
1 α α2

1 β β2

1 δ δ2

∣∣∣∣∣∣∣∣∣∣∣
= (β − α) (δ − α) (δ − β)

6. Exercise 6

Calculate the determinants of the following matrices:

A =



5 5 5 5

1 1 1 1

−6 4 2 −8

1 −2 −3 5


, B =


3 3 3

0 0 1

0 0 8




3 0 0 0

4 −2 0 0

8 −1 −2 0

6 0 1 4


×



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


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Chapter 2 System of Linear Equations

Introduction

h Introduction

h Study of the solution set

h Matrix form of linear equations

h Methods to solve systems

Cramer‘s rule

Matrix Inversion method

h Gauss method

Equivalent Systems

Elementary Operations

Solving systems using Gauss elimi-

nation

2.1 Introduction

Systems of linear equations and their solutions constitute one of the major topics that we will

study in this chapter. In the first section we will introduce some basic terminology and discuss a

methods for solving such systems as Cramer’s rule, Matrix inversion method, and Gauss method.

An equation of the form

a1x1 + a2x2 + a3x3 + ......+ anxn = b (2.1)

is called a linear equation in the n unknowns (variables) x1, x2, x3, ..., xn.

a1, a2, a3, ..., an denote real numbers (called the coefficients of x1, x2, x3, ..., xn respectively).

b is a number (called the constant term of the equation).

Example 2.1

3x+ 4y = 2,

x− y − z = −6.

are linear equations, but

3y + yz = 3

sin(2x)− cos(3y) = 2 are not.



2.2 Study of the solution set

2.2 Study of the solution set

A vector (s1, s2, ..., sn) is called a solution of this equation if it satisfies the equation (2.1)

That means

a1s1 + a2s2 + a3s3 + ......+ ansn = b

The set of all such solutions is called the solution set for the equation.

m linear equations in n unknowns x1, x2, x3, ..., xn of the form

a11x1 + a12x2 + a13x3 + ......+ a1nxn = b1

a21x1 + a22x2 + a23x3 + ......+ a2nxn = b2

...

am1x1 + am2x2 + am3x3 + ......+ amnxn = bm

(2.2)

is called a system of linear equations

We abbreviate this system by
n∑

j=1

aijxj = bi, i = 1...,m

where aij and bi are all real numbers.

Such a linear system is called an homogeneous linear system if

b1 = b2 = b3 = ... = bm = 0.

If (s1, s2, ..., sn) is a solution of the above system of equations, then it is a solution of each of the

m equations in the system.

The set of all solutions of the linear system is called the solution set of the system. To solve a

system is to find its solution set.

Remark Any system of linear equations has one of the following states [25].

No solution.

Unique solution.

Infinitely many solutions.
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2.2 Study of the solution set

Example 2.2

Consider the system two equations in two Variables 2x− y = 1

3x+ 2y = 12

The unique solution of the system is given by x = 2 and y = 3. Geometrically, the two lines

represented by the two linear equations that make up the system intersect at the point (2, 3). See

Figure 2.1

Figure 2.1: Unique solution

Example 2.3

Consider the system  2x− y = 1

6x− 3y = 3

The system of two equations is equivalent to the single equation 2x− y = 1. Thus, any ordered pair

of numbers (x, y) satisfying the equation 2x− y = 1 constitutes a solution to the system.

So, there are infinitely solutions of the system. Geometrically, the two equations in the system

represent the same line, and all solutions of the system are points lying on the line see Figure 2.2.

Example 2.4

Consider the system  2x− y = 1

6x− 3y = 12
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2.3 Matrix representation of linear equations

Figure 2.2: Infinitely solutions

By the first equation, we obtain the equation y = 2x− 1, substituting this expression into the second

equation gives 0 = 9.

which is impossible. Thus, there is no solution to the system of equations.

We see at once that the lines represented by these equations are parallel see Figure 2.3.

Figure 2.3: No solution

Definition 2.1

♣

[25] We say that the system of linear equations is consistent if it has a solution (unique solution

or infinitely many solutions ). Otherwise the system is called inconsistent (no solution).
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2.3 Matrix representation of linear equations

2.3 Matrix representation of linear equations

Consider a system of m linear equations in n unknowns

a11x1 + a12x2 + a13x3 + ......+ a1nxn = b1

a21x1 + a22x2 + a23x3 + ......+ a2nxn = b2

...

am1x1 + am2x2 + am3x3 + ......+ amnxn = bm

(2.3)

We can write the system of equations (2.3) in matrix form as:

AX = B

Where A = (aij)1≤i≤m
1≤j≤n

comprised of the coefficients of the variables,

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn


,

The n unknowns (variables), is written in a single column X = (xj) , j = 1..., n

X =



x1

x2

...

xn


The constant matrix B = (bi) , i = 1...,m of order m × 1 is written in a single column and in

the same order as the rows of the coefficient matrix.

B =



b1

b2

...

bm


Remark
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2.4 Methods to solve systems of linear equations

The matrix form of homogeneous linear equations isAX = 0 called the associated homogeneous

system.

The augmented matrix is the coefficient matrix with the constant matrix as the last column, ie.

[A |B ]

[A |B ] =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1

b2

...

bm



2.4 Methods to solve systems of linear equations

The following methods are useful to solve linear equation

1. Cramer‘s rule

2. Matrix Inversion method

3. Gauss elimination method

Remark

The first two methods (Cramer‘s rule and Matrix Inversion methods ) are applicable only when

m = n i.e. to solve system of n equations in n unknowns.

2.4.1 Cramer‘s rule

Definition 2.2 (Cramer‘s rule)
[20, 24]Let AX = B be a linear system with n equations in n unknowns, where:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn


, X =



x1

x2

...

xn


, B =



b1

b2

...

bm


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2.4 Methods to solve systems of linear equations

♣

If |A| ≠ 0, then the unique solution to this system is

X = (xj) , j = 1..., n , and xj is given by: xj =
|Aj|
|A|

, j = 1..., n

where Aj is the matrix obtained from A by replacing the jth column of A by the column vector

B, in other words

Aj =



a11 a12 · · · a1j−1 b1 a1j+1 · · · a1n

a21 a22 · · · a2j−1 b2 a2j+1 · · · a2n

...
...

...
...

...
...

...
...

am1 am2 · · · amj−1 bm amj+1 · · · amn



Example 2.5

Solve the following system by using Cramer’s Rule
x− y + z = −8

3x+ y − 2z = −12

2x+ 3y − 2z = 8

Solution

The given system can be written in the matrix form AX = B
1 −1 1

3 1 −2

2 3 −2




x

y

z

 =


−8

−12

8


We start with the coefficient determinant

|A| =

∣∣∣∣∣∣∣∣∣∣∣
1 −1 1

3 1 −2

2 3 −2

∣∣∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣
1 −2

3 −2

∣∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣∣
3 −2

2 −2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
3 1

2 3

∣∣∣∣∣∣∣
= (−2 + 6) + (−6 + 4) + (9− 2)

= 9

|A| ≠ 0, then the unique solution to this system is given by: xj =
|Aj |
|A| , j = 1, 2, 3.

42



2.4 Methods to solve systems of linear equations

Now we compute the other determinants |Aj|

|A1| =

∣∣∣∣∣∣∣∣∣∣∣
−8 −1 1

−12 1 −2

8 3 −2

∣∣∣∣∣∣∣∣∣∣∣
= −8

∣∣∣∣∣∣∣
1 −2

3 −2

∣∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣∣
−12 −2

8 −2

∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣
−12 1

8 3

∣∣∣∣∣∣∣
= −8(−2 + 6) + (24 + 16) + (−36− 8)

= −32 + 40− 44

= −36

|A2| =

∣∣∣∣∣∣∣∣∣∣∣
1 −8 1

3 −12 −2

2 8 −2

∣∣∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣
−12 −2

8 −2

∣∣∣∣∣∣∣− (−8)

∣∣∣∣∣∣∣
3 −2

2 −2

∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣
3 −12

2 8

∣∣∣∣∣∣∣
= (24 + 16) + 8(−6 + 4) + (24 + 24)

= 40− 16 + 48

= 72

|A3| =

∣∣∣∣∣∣∣∣∣∣∣
1 −1 −8

3 1 −12

2 3 8

∣∣∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣
1 −12

3 8

∣∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣∣
3 −12

2 8

∣∣∣∣∣∣∣+ (−8)

∣∣∣∣∣∣∣
3 1

2 3

∣∣∣∣∣∣∣
= (8 + 36) + (24 + 24)− 8(9− 2)

= 44 + 48− 56

= 36

Now, the solutions given by the formulas

x =
|A1|
|A|

, y =
|A2|
|A|

, z =
|A3|
|A|

x =
−36
9

= −4, y =
72

9
= 8, z =

18

36
=

1

2
.
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2.4 Methods to solve systems of linear equations

2.4.2 Matrix Inversion method

Definition 2.3

♣

[20, 24] Let AX = B be a non-homogeneous linear system with n equations in n unknowns,

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn


, X =



x1

x2

...

xn


, B =



b1

b2

...

bm


If |A| ≠ 0, then the system has unique solution given by

X = A−1B

Example 2.6 Solve the system of equations using matrix inverses
x− 2y + z = 3

2x+ y +−z = 5

3x− y + 2z = 12

The given system can be written in the matrix form AX = B
1 −2 1

2 1 −1

3 −1 2




x

y

z

 =


3

5

15


We start with the coefficient determinant

|A| =

∣∣∣∣∣∣∣∣∣∣∣
1 −2 1

2 1 −1

3 −1 2

∣∣∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣
1 −1

−1 2

∣∣∣∣∣∣∣− (−2)

∣∣∣∣∣∣∣
2 −1

3 2

∣∣∣∣∣∣∣+ 1

∣∣∣∣∣∣∣
2 1

3 −1

∣∣∣∣∣∣∣
= 10

|A| = 10 ̸= 0. Hence A−1 exists and the system has unique solution given by

X = A−1B

Find A−1 using cofactor matrix

A−1 =
1

|A|
(CofA)t
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2.4 Methods to solve systems of linear equations

CofA =



+

∣∣∣∣∣∣∣
1 −1

−1 2

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣
2 −1

3 2

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
2 1

3 −1

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
−2 1

−1 2

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1 1

3 2

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
1 −2

3 −1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
−2 1

1 −1

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣
1 1

2 −1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1 −2

2 1

∣∣∣∣∣∣∣



CofA =


1 −7 −5

3 −1 −5

1 3 5


Now transpose this matrix and divide by |A| to obtain A−1.

So,

A−1 =
1

10


1 3 1

−7 −1 3

−5 −5 5


Finally X = A−1B 

x

y

z

 =


1
10

3
10

1
10

−7
10

−1
10

3
10

−1
2

−1
2

1
2




3

5

12




x

y

z

 =


1
10
× 3 + 3

10
× 5 + 1

10
× 12

−7
10
× 3− 1

10
× 5 + 3

10
× 12

−1
2
× 3− 1

2
× 5 + 1

2
× 12




x

y

z

 =


3

1

2


Then the unique solution is given by x = 3, y = 1, z = 2.
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2.5 Gauss method

Remark

Let AX = 0 be an homogeneous linear system with n equations in n unknowns,

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn


, X =



x1

x2

...

xn


If |A| ≠ 0, then the system has unique solution given by

x1 = 0, x2 = 0, x3 = 0, ......, xn = 0

This solution is called trivial solution.

2.5 Gauss method

The Gauss method will apply to linear systems of any size, including systems where the number

of equations and the number of variables are not the same.

To solving systems of linear equations of any size, we write a series of systems, one after the

other, each equivalent to the previous system.

Each of these systems has the same set of solutions as the original one; the aim is to end up with

a system that is easy to solve.

2.5.1 Equivalent systems and elementary operations

Definition 2.4

♣[20, 24] Two systems of equations are equivalent if they have the same solution set.

Remark (Elementary operations that produce equivalent systems])

A system of linear equations is transformed into an equivalent system if

(a) Two equations are interchanged.

(b) An equation is multiplied by a non-zero constant.

(c) A constant multiple of one equation is added to another equation.
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2.5 Gauss method

2.5.2 Solving linear systems using augmented matrices (Gauss elimination)

[20, 24] Consider a system of m linear equations in n unknowns

a11x1 + a12x2 + a13x3 + ......+ a1nxn = b1

a21x1 + a22x2 + a23x3 + ......+ a2nxn = b2

...

am1x1 + am2x2 + am3x3 + ......+ amnxn = bm

(2.4)

We use rank of matrices to determine consistency or inconsistency of a system.

2.5.3 Steps of the Gauss elimination method

Find the ranks of the coefficient matrix A and augmented matrix (A |B ) for which,

Reduce the augmented matrix (A |B ) by elementary row operations on matrices to get the upper

triangular form.

This form gives the rank of the augmented matrix (A |B ) and also the rank of A.

1. If rank(A) ̸= rank(A |B ), then the system has no solution.

2. If rank(A) =rank(A |B ) = n, then the system has a unique solution.

3. If rank(A) =rank(A |B ) < n, then the system has infinitely many solutions.

Remark

An m× n homogeneous system AX = 0 has

infinitely many solutions if rank(A) < n,

unique (trivial) solution if rank(A) = n.

Example 2.7

Solve the following system of equations.
−4x+ 8y − z = −12

x− 3y + z = 10

3x− 7y + 2z = 24

(2.5)

Solution
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2.5 Gauss method

We can write the linear system (2.5) in matrix form as
−4 8 −1

1 −3 1

3 −7 2




x

y

z

 =


−12

10

24


We create the augmented matrix

(A |B ) =


−4 8 −1 −12

1 −3 1 10

3 −7 2 24


Use the elementary row operations to reduce the augmented matrix (A |B )

−4 8 −1 −12

1 −3 1 10

3 −7 2 24


R1 ←→ R2

∼


1 −3 1 10

−4 8 −1 −12

3 −7 2 24




1 −3 1 10

−4 8 −1 −12

3 −7 2 24


R2 + 4R1−→ R2

∼

R3 − 3R1−→ R3


1 −3 1 10

0 −4 3 28

0 2 −1 −6




1 −3 1 10

0 −4 3 28

0 2 −1 −6

 ∼

R3 +
1
2
R2−→ R3


1 −3 1 10

0 −4 3 28

0 0 1
2

8


rank(A) =rank(A |B ) = 3, then the system has unique solution

x− 3y + z = 10

−4y + 3z = 28

1
2
z = 8

So, the solution is given by

{z = 16, y = 5, x = 9}

Example 2.8
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2.5 Gauss method

Find all solutions (if any) to the following system of linear equations.

3x+ 3y − 2z = 1

x+ 2y = 4

10y + 3z = −2

4x− 6y − 2z = 10

This is a system of 4 linear equations in 3 unknown

The given system can be written in the matrix form AX = B

3 3 −2

1 2 0

0 10 3

4 −6 −2




x

y

z

 =



1

4

−2

10


The augmented matrix

(A |B ) =



3 3 −2 1

1 2 0 4

0 10 3 −2

4 −6 −2 10


We use the elementary row operations to reduce the augmented matrix (A |B )

3 3 −2 1

1 2 0 4

0 10 −3 −2

4 −6 −2 10


R1 ←→ R2

∼



1 2 0 4

3 3 −2 1

0 10 −3 −2

4 −6 −2 10


R2 − 3R1−→ R2

∼

R4 − 4R1−→ R4

∼



1 2 0 4

0 −3 −2 −11

0 10 −3 −2

0 −14 −2 −6


R3 +

10
3
R2−→ R3

∼

R4 − 14
3
R2−→ R4



1 2 0 4

0 −3 −2 −11

0 0 −29
3
−116

3

0 0 −34
3
−136

3


∼
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2.5 Gauss method

−3
29
R3−→ R3

∼

−3
34
R4−→ R4



1 2 0 4

0 −3 −2 −11

0 0 1 4

0 0 1 4


∼

R4 −R3−→ R4



1 2 0 4

0 −3 −2 −11

0 0 1 4

0 0 0 0


rank(A) =rank(A |B ) = 3= number of unknowns therefore the given system is consistent and

has unique solution

from the above form, the given equivalent system reduces to
x+ 2y = 4

−3y − 2z = −11

z = 4

=⇒ z = 4, y = 1, x = 2

Thus the unique solution is x = 2, y = 1, z = 4.

Example 2.9

Find all solutions (if any) to the following system of linear equations.
3x+ y − 4z = −1

x+ 10z = 5

8x+ 2y + 12z = 2

The given system can be written in the matrix form AX = B
3 1 −4

1 0 10

8 2 12




x

y

z

 =


−1

5

2


Solution The corresponding augmented matrix is

(A |B ) =


3 1 −4 −1

1 0 10 5

8 2 12 2


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2.5 Gauss method

Create the first leading one by interchanging rows 1 and 2
3 1 −4 −1

1 0 10 5

8 2 12 2


R1 ←→ R2

∼


1 0 10 5

3 1 −4 −1

8 2 12 2




1 0 10 5

3 1 −4 −1

8 2 12 2


R2 − 3R1−→ R2

∼

R3 − 8R1−→ R3


1 0 10 5

0 1 −34 −16

0 2 −68 −38


Now subtract row 2 from row 3 to obtain

1 0 10 5

0 1 −34 −16

0 2 −68 −38

 ∼

R3 − 2R2−→ R3


1 0 10 5

0 1 −34 −16

0 0 0 −6


rank(A) = 2, but rank(A |B ) = 3,

rank(A) ̸=rank(A |B ) , then the system has no solution.

it is clear that the following reduced system
x+ 10z = 5

y − 34z = −16

0 = −6

has no solution, which is equivalent to the original system. Hence the original system has no solution.

Example 2.10

Find all solutions (if any) to the following system of linear equations.
x− 2y − z + 3t = 1

2x− 4y + z = 5

x− 2y + 2z − 3t = 4
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2.5 Gauss method

The given system can be written in the matrix form AX = B
1 −2 −1 3

2 −4 1 0

1 −2 2 −3





x

y

z

t


=


1

5

4


Solution The augmented matrix is

(A |B ) =


1 −2 −1 3 1

2 −4 1 0 5

1 −2 2 −3 4


Use the elementary row operations to reduce the augmented matrix (A |B )

Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives
1 −2 −1 3 1

2 −4 1 0 5

1 −2 2 −3 4


R2 − 2R1−→ R2

∼

R3 −R1−→ R3


1 −2 −1 3 1

0 0 3 −6 3

0 0 3 −6 3


Now subtract row 2 from row 3 and multiply row 2 by 1

3
to get

1 −2 −1 3 1

0 0 3 −6 3

0 0 3 −6 3


R3 −R2−→ R3

∼


1 −2 −1 3 1

0 0 3 −6 3

0 0 0 0 0




1 −2 −1 3 1

0 0 3 −6 3

0 0 0 0 0


1
3
R2−→ R2

∼


1 −2 −1 3 1

0 0 1 −2 1

0 0 0 0 0


we take it to reduced form by adding row 2 to row 1 :

1 −2 0 1 2

0 0 1 −2 1

0 0 0 0 0



52



Chapter 2 Exercise

The corresponding reduced system of equations is

x− 2y + t = 2

z − 2t = 1

0 = 0

rank(A) =rank(A |B ) = 2 < number of unknowns,

Therefore the given system has infinitely many solutions given by

2 + 2y − t

y

1 + 2t

t


Where y, t is arbitrary in R.

K Chapter 2 Exercise k

1. Exercise 1

Find the solution to the following system of linear equations, if any

(a).


6x− 2y + 1 = 0

x− 5y − 3 = 0

4x+ 7y − 17 = 0

(b).


8x− 10y − 2 = 0

2x+ y + 6 = 0

2x+ 4y − 20 = 0

(c).

 2x+ 3y − z = 0

4x+ 6y − 3z = 0

2. Exercise 2

Do the following systems have a non-zero solution or not? Then find it if it exists
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Chapter 2 Exercise

(a).


2x+ 6y − 4z = 0

x− 8y + 8z = 0

−6x+ 9y − 3z = 0

,

(b).


x+ 2y − 5z = 0

−6x+ 4y − 6z = 0

12x− 8y + 16z = 0

3. Exercise 3

Find the solution to the following system of linear equations using Gauss’s method.

(a).


x1 + 2x2 + 5x3 = −9

2x1 − 2x2 + 6x3 = 4

3x1 − 6x2 − x3 = 25

(b).


2x1 − 2x2 − 4x3 − 2x4 = 4

4x1 + 2x2 − 6x3 + 2x4 = 12

−x1 − x2 − x3 − x4 = −7
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Chapter 3 Integrals and Primitive functions

Introduction

h Primitive functions

h Indefinite integrals

Properties of Indefinite integrals

h Definite integrals

Properties of Definite integrals

h Integration involves Trigonometric, Log-

arithmic and Exponential Functions

Integration of Trigonometric Func-

tions

Integration by Substitution

Integration by Parts

h Integration of rational functions

3.1 Primitive functions

Let f be a continuous function in an interval I , we call F is a primitive function of the func-

tion f on the interval I , IfF is differentiable at each point of I and the derivative ofF is f , in other word:

 The function f is differentiable in an interval I

and ∀x ∈ I, F ′
(x) = f (x)

⇐⇒
 F is a primitive function of f

in an interval I


Example 3.1

The function F (x) =
√
x is a primitive of f(x) = 1

2
√
x

on ]0; +∞[ ,

The function F (x) = arctan x is a primitive of f(x) = 1
1+x2 on R,

The function F (x) = x2

2
is a primitive of f(x) = x on R,

f(x) = x have an infinite number of primitives, such as x2

2
− 1 , x2

2
+ 4 , x2

2
− 7 , etc. Thus, all

the primitives of x can be obtained by changing the value of c in F (x) = x2

2
+ c, where c is an

arbitrary constant.

The power function f(x) = xn has primitive F (x) = xn+1

n+1
+c if n ̸= −1, and F (x) = ln |x|+ c

if n = −1.



3.1 Primitive functions

Property [14, 17]

If f is continuous function on interval I , then f has a primitive function F on I .

Let F be a primitive function of f on I . Then the set of all primitive functions of f on I is:

{F + c, c ∈ R}

3.1.1 Primitive functions of elementary functions

By reversing the direction of formulas for derivatives of elementary functions we get the following

table of primitive functions [14, 17]:

Definition domain Function f(x) Primitive F (x) + C (C: constant )

R xn xn+1

n+1
+ C

]0; +∞[ 1
x

ln |x|+ C

R ex ex + C

R sinx − cosx+ C

R sin(ax+ b) − 1
a
cos(ax+ b) + C

R cosx sinx+ C

R cos(ax+ b) 1
a
sin(ax+ b) + C

R− {(2k + 1)π/2; k ∈ Z} 1
cos2 x

= 1 + tan2 x tanx+ C

R− {(2k + 1)π/2; k ∈ Z} tanx − ln | cosx|+ C

]− 1; 1[ 1√
1−x2 arcsinx+ C

]− 1; 1[ −1√
1−x2 arccosx+ C

R 1
1+x2 arctanx+ C

R −1
1+x2 arccotanx+ C

We will also assume knowledge of the following well-known, basic integral formulas:
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3.2 Types of Integrals

Function Primitive function

f
′
(x) · fn (x) 1

n+1
fn+1 (x) + C, n ̸= −1

f
′
(x)

f(x)
ln |f (x)|+ C

f
′
(x) · ef(x) ef(x) + C

f
′
(x) · sin (f (x)) − cos (f (x)) + C

f
′
(x) · cos (f (x)) sin (f (x)) + C

f
′
(x)

cos2(f(x))
tan (f (x)) + C

f
′
(x)√

1−(f(x))2
arcsin (f (x)) + C

−f
′
(x)√

1−(f(x))2
arccos (f (x)) + C

f
′
(x)

1+(f(x))2
arctan (f (x)) + C

1
a2+x2

1
a
arctan x

a
+ C

3.2 Types of Integrals

Integration can be classified into two different categories, namely;

Indefinite Integrals

Definite Integrals

3.3 Indefinite Integrals

Definition 3.1

♣

[14, 17] If a function f(x) has one primitive F (x), then it has an infinite number of primitives.

The set of all primitives {F + c, c ∈ R} of f(x) is called the indefinite integral of f(x) with

respect to x. The integration of a function f(x) is represented by:∫
f (x) dx = F (x) + c (3.1)

The function f(x) under the integral sign is called the integrand.

The x is the integration variable.

57



3.4 Properties of indefinite integrals

The symbol dx is the differential of x.

An arbitrary constant c is said to be a constant of integration.

3.4 Properties of indefinite integrals

[14, 17] Let f and g two continuous functions

1.
∫
f

′
(x) dx = f (x) + c, c ∈ R

2.
(∫

f (x) dx
)′
= f (x)

3. ( k = constant),
∫
k · f(x)dx = k

∫
f(x)dx

4.
∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx

Properties 3 and 4 give the linearity of the integral operator in the following equation.∫
[αf(x) + βg(x)]dx = α

∫
f(x)dx+ β

∫
g(x)dx (3.2)

Below some examples are provided to evaluate the indefinite integral using table of usual primitive

functions and linearity of the integral.

Example 3.2

1. Evaluate:
∫
(x2 + 3x3 + 7x− 5) dx.

Using the linearity of the integral in equation (3.2), we have:∫ (
x2 + 3x3 + 7x− 5

)
dx =

∫
x2dx+

∫
3x3dx+

∫
7xdx−

∫
5dx

=

∫
x2dx+ 3

∫
x3dx+ 7

∫
xdx− 5

∫
dx

=
x3

3
+ 3

x4

4
+ 7

x2

2
− 5x+ C

2. Evaluate:
∫
(7x3 + 3 cosx) dx.

∫ (
7x3 + 3 cosx

)
dx =

∫
7x3dx+

∫
3 cosxdx

= 7

∫
x3dx+ 3

∫
cosxdx

= 7 · x
4

4
+ 3 · sinx+ C

=
7x4

4
+ 3 sinx+ C
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3.5 Definite Integrals

3. Evaluate:
∫
(sinx− 2 cosx)dx.∫

(sinxdx− 2 cosx)dx =

∫
sinxdx− 2

∫
cosxdx

= − cosx− 2 sinx+ C

4. Evaluate:
∫ (

3 cosx− 1
5
ex
)
dx.∫ (

3 cosx− 1

5
ex
)
dx = 3

∫
cosxdx− 1

5

∫
exdx

= 3 sinx− 1

5
ex + C

3.5 Definite Integrals

Definition 3.2

♣

[14, 17] Suppose f(x) is a continuous real-valued function on [a, b] and also suppose that F (x)

is any primitive for f(x). The value F (b)− F (a) is called the definite integral of the function

f , we read the integral from a to b of the function f and we write:∫ b

a

f(x)dx = [F (x)]ba = F (b)− F (a)

On a definite integral, above and below the integral symbol are the boundaries of the interval,

[a, b]. The numbers a and b are called the limits of integration; where a is the lower limit and b is

the upper limit. The definite integral of a real function can be imagined as the area between the x-axis

and the curve y = f(x) over an interval [a, b], see Fig 3.1

Figure 3.1: Definite Integral (from a to b)
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3.6 Properties of definite integrals

3.6 Properties of definite integrals

The properties of indefinite integrals apply to definite integrals as well, definite integrals also

have properties that relate to the limits of integration [14, 17].

1. Multiplication by a constant ( k = constant)∫ b

a

k · f(x)dx = k

∫ b

a

f(x)dx

2. Reversing the interval Fig 3.2 ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

x

y

b a

-A

Figure 3.2: Reversing the interval

3. Chasles relation a < c < b Fig 3.3∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

c
x

y

ba

A

Figure 3.3: Chasles relation for definite integral

4. Interval of zero length Fig 3.4 ∫ a

a

f(x)dx = 0
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3.6 Properties of definite integrals

x

y

a

A=0

Figure 3.4: Zero integral

5. The integral of a sum functions∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

6. Let a ≤ b

If f is a positive function on [a, b] ; then
∫ b

a
f(x)dx ≥ 0

If f is a negative function on [a, b] ; then
∫ b

a
f(x)dx ≤ 0

[If ∀x ∈ [a, b] , f (x) ≤ g (x)] =⇒
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

7.
∣∣∣∫ b

a
f(x)dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx

8. If f is an even function, then ∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx

9. if f is an odd function, then ∫ a

−a

f(x)dx = 0

10. If f is periodic, of period T then∫ a+T

a

f(x)dx =

∫ T

0

f(x)dx

Example 3.3

1. Determine the value of
∫ 2

1
2xdx∫ 2

1
2xdx = [x2]

2
1 = 22 − 12 = 3

x

y

y=
2x

1 2

A
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2. Determine the value of
∫ 1

0
sin(x)dx

x

y

10

y=sin(x)

A

∫ 1

0

sinxdx = [− cosx]10 = − cos 1− (− cos 0)

= 0.46

3. Evaluate:
∫ 5

1
|x− 3| dx

|x− 3| =

 x− 3, x ≥ 3

−x+ 3, x < 3

∫ 5

1

|x− 3| dx =

∫ 3

1

(−x+ 3) dx+

∫ 5

3

(x− 3) dx

=

[
−x
2

+ 3x

]3
1

+
[x
2
− 3x

]5
3

=
5

2
− 9 =

−13
2

3.7 Integration involves Trigonometric, Logarithmic and

Exponential Functions

There are many methods of integration involves Trigonometric, Logarithmic and Exponential

Functions, that are used to solve mathematical operations.

3.7.1 Integration of Trigonometric Functions

3.7.1.1 Integral of the types

∫
f(sinx) cosxdx

62



3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions∫
f(cosx) sinxdx∫
f((tanx)dx

1. If the integral is in the form
∫
f(sinx) cosxdx

We use the following variable change: u = sinx, du = cosxdx

The integral is written:
∫
f(u)du.

2. If the integral is in the form
∫
f(cosx) sinxdx

We use the following variable change: u = cosx, du = sinxdx

The integral is written :
∫
f(u)du

3. If the integral to integrate only depends on tanx :
∫
f((tanx)dx

Let’s use the following variable change:

u = tanx, x = arctanu⇒ dx = du
u2+1

We obtain
∫
f(tanx)dx =

∫
f(u) du

u2+1

Example 3.4

Find
∫
sin5 x cosxdx

By changing the variable:u = sinx, du = cosxdx∫
sin5 x cosxdx =

∫
u5du

=
1

6
u6 + c∫

sin5 x cosxdx =
1

6
sin6 x+ c

Example 3.5

Find
∫
cos2 x sinxdx

By changing the variable: u = cosx, du = − sinxdx∫
cosx3 sinxdx =

∫
−u3du

= −1

4
u4 + c∫

cosx3 sinxdx = −1

4
cosx4 + c

Example 3.6

Find
∫
sin3 xdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions∫
sin3 xdx =

∫
sin2 x sinxdx =

∫
(1− cosx2) sinxdx

By changing the variable: u = cosx, du = − sinxdx∫ (
1− cos2 x

)
sinxdx =

∫
−
(
1− u2

)
du

=

∫
u2du−

∫
du

=
1

3
u3 − u+ c∫

sin3 xdx =
1

3
cos3 x− cosx+ c

Example 3.7∫
tanx
cos2 x

dx

We have: cos2 x = 1
1+tan2 x

=⇒ 1
cos2 x

= 1 + tan2 x.

By substituting this relation into the above integral:∫
tanx

cos2 x
dx =

∫
tanx

(
1 + tan2 x

)
dx

=

∫
tanxdx+

∫
tan3 xdx

=

∫
t
dt

t2 + 1
+

∫
t3

dt

t2 + 1

Were t = tanx, and
(

t3

t2+1
= t− t

t2+1

)
∫

tanx

cos2 x
dx =

∫
t
dt

t2 + 1
+

∫ (
t− t

t2 + 1

)
dt

=

∫
t
dt

t2 + 1
+

∫
tdt−

∫
t
dt

t2 + 1

=

∫
tdt =

1

2
t2 + c

Substituting the value of t, we get,∫
tanx

cos2 x
dx =

1

2
tan2 x+ C.

3.7.1.2 Integral of the types:

∫
sin px cos qxdx,∫
sin px sin qxdx∫
cos px cos qxdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

In this case, we use the following formulas:

sin px cos qx =
1

2
[sin(p+ q)x+ sin(p− q)x]

sin px sin qx =
1

2
[cos(p− q)x− cos(p+ q)x]

cos px cos qx =
1

2
[cos(p− q)x+ cos(p+ q)x]

Example 3.8

Find
∫
cos x

4
cos x

3
dx

cos
x

4
cos

x

3
dx =

1

2

[
cos

(
1

4
− 1

3

)
x+ cos

(
1

4
+

1

3

)
x

]
=

1

2

[
cos

(
−1
12

)
x+ cos

(
7

12

)
x

]
∫

cos
x

4
cos

x

3
dx =

∫
1

2

[
cos
−1
12
x+ cos

7

12
x

]
dx

=
1

2

[∫
cos

x

12
dx+

∫
cos

7

12
xdx

]
=

1

2

[
12 sin

1

12
x+

12

7
sin

7

12
x

]
+ c∫

cos
x

4
cos

x

3
dx = 6 sin

x

6
+

6

7
sin

7

12
x+ c

3.7.1.3 Integral of the types:

Ip,q =

∫
sinp x cosq xdx (3.3)

we consider two cases:

1. First case p = 2k + 1 is an odd number

Ip,q =

∫
sin(2k+1) x cosq xdx

=

∫
sin2k x sinx cosq xdx =

∫ (
1− cos2 x

)k
cosq x sinxdx

65
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In this case we use the following variable change

u = cosx du = − sinxdx

Substituting these expressions into equation 3.3, we find

Ip,q =

∫ (
1− cos2 x

)k
cosq x sinxdx = −

∫ (
1− u2

)k
uqdu

We proceed in the same way if q is an odd positive number

2. Second case if p and q two even positive numbers

Using the following formulas, we can transform the expression 3.3:

sin2 x =
1

2
(1− cos 2x), cos2 x =

1

2
(1 + cos 2x) and sinx cosx =

1

2
sin 2x

Example 3.9

Find
∫
sin3 x cos4 xdx

p = 3 is an odd positive number∫
sin3 x cos4 xdx =

∫
sin2 x sinx cos4 xdx

=

∫ (
1− cos2 x

)
sinx cos4 xdx

=

∫
cos4 x sinxdx−

∫
cos6 x sinxdx

With the change of the variable mentioned above, we obtain.:∫
sin3 x cos4 xdx =

∫
−u4du+

∫
u6du = −1

7
u7 +

1

7
u7 + c∫

sin3 x cos6 xdx = −1

7
cos7 x+

1

7
cos7 x+ c

3.7.1.4 integral of type

I =
∫
R (sinx, cosx) dx

where R is rational fraction of the functions sin, cos

In general method, we put t = tan x
2
, thus, we find the following relationships

t = tan x
2
=⇒ x = 2arctan t =⇒ dx = 2

1+t2
dt, cosx = 1−t2

1+t2
, sinx = 2t

1+t2
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thus, we find

I =

∫
R

(
2t

1 + t2
,
1− t2

1 + t2

)
2

1 + t2
dt

Remark

In integrals of the form I =
∫
R (sinx) · cosxdx, we put t = sinx

In integrals of the form I =
∫
R (cosx) · sinxdx, we put t = cosx

In integrals of the form I =
∫
R (tanx) dx, we put t = tanx

Example 3.10

Find
∫

sinx
1+cosx

dx

Let’s put t = tan x
2
=⇒ dx = 2

1+t2
dt, cosx = 1−t2

1+t2
, sinx = 2t

1+t2∫
sinx

1 + cos x
dx =

∫
2t

(1 + t2)
(
1 + 1−t2

1+t2

) · 2

1 + t2
dt

=

∫
2t

1 + t2
dt

= ln
∣∣1 + t2

∣∣+ C

= ln
∣∣∣1 + tan2 x

2

∣∣∣+ C

3.7.2 Integration by Substitution

In order to solve the difficulty of some integration, we use the substitution by introducing a new

independent variable t = g(x) in the integral function
∫
f(t)dt, we get, dt

dx
= g

′
(x) or dt = g

′
(x) dx

Thus, from the above substitution ,we get,∫
f(g(x)).g

′
(x) dx =

∫
f(t).dt

The substitution rule can transform a complicated integral into a simple one.

Remark

The substitution Rule for definite integrals is given by

If t = g (x) , then
∫ b

a

f(g (x))g
′
(x)dx =

∫ g(b)

g(a)

f(t)dt

Example 3.11
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Evaluate the following integrals

1. I1 =
∫
x sin (x2 + 3) dx

2. I2 =
∫

1
x lnx

dx

3. I3 =
∫

earctan x

1+x2 dx

4. I4 =
∫

tan2 x−2 tanx+5
cos2 x

dx

5. I5 =
∫
x
√
x+ 1dx

6. I6 =
∫ 3

2
1

(lnx)x
dx

Solution

I1 =
∫
x sin (x2 + 3) dx

Let t = x2 + 3, therefore dt = 2xdx.

dt = 2xdx ⇒ 1
2
dt = xdx.

We can now substitute∫
x sin

(
x2 + 3

)
dx =

∫
sin
(
x2 + 3

)︸ ︷︷ ︸
t

xdx︸︷︷︸
1
2
dt

=

∫
1

2
sin tdt

= −1

2
cos t+ C

(
by replacing t with x2 + 3 we get

)
= −1

2
cos
(
x2 + 3

)
+ C.

Thus
∫
x sin (x2 + 3) dx = −1

2
cos (x2 + 3) + C.

I2 =
∫

1
x lnx

dx

We choose t = lnx then dt = 1/xdx, which gives∫
1

x lnx
dx =

∫
1

lnx︸︷︷︸
1/t

1

x
dx︸︷︷︸
dt

=

∫
1

t
dt

= ln |t|+ C

= ln | lnx|+ C.

I3 =
∫

earcsin x
√
1−x2 dx
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Solution:

Let t = arcsinx, then dt = 1√
1−x2dx

I3 =

∫
earcsinx

√
1− x2

dx =

∫
etdt

= et + C

Substituting the value of t, we get

I3 =

∫
earcsinx

√
1− x2

dx = earcsinx + C

I4 =
∫

tan2 x−2 tanx+5
cos2 x

dx

Let t = tanx makes dt = 1
cos2 x

dx

I4 =

∫
tan2 x− 2 tanx+ 5

cos2 x
dx =

∫ (
t2 − 2t+ 5

)
dt

=
t3

3
− t2 + 5t+ C

Substituting the value of t, we get

I4 =

∫
tan2 x− 2 tanx+ 5

cos2 x
dx =

1

3
tan3 x− tan2 x+ 5 tanx+ C

I5 =
∫
x
√
x+ 1dx.

Solution

Put t = x+ 1, then dt
dx

= 1, so dt = dx, then∫
x
√
x+ 1dx =

∫
x(x+ 1)

1
2dx =

∫
xt

1
2du.

By the substitution t = x+ 1, it follows that x = t− 1, then we obtain∫
xt1/2dt =

∫
(t− 1)t

1
2dt

=

∫ (
t · t

1
2 − t

1
2

)
dt

=

∫ (
t
3
2 − t

1
2

)
dt
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Thus

I5 =
1

3
2
+ 1

t
3
2
+1 +

1

1/2 + 1
t
1
2
+1 + C

=
2

5
t5/2 +

2

3
t3/2 + C

=
2

5

√
t
5
+

2

3

√
t
3
+ C

=
2

5

√
x+ 15 +

2

3

√
x+ 1

3
+ C

3.7.3 Integration by Parts

Integration by Parts can be used to integrate any given function if the integration function is

represented as a multiple of two or more functions.

The product rule of derivation will be the starting point for the integration by part:

(f(x).g(x))
′
= f(x).g

′
(x) + f

′
(x).g(x)

Now, integrate both sides of this.∫
(f(x).g(x))

′
dx =

∫ (
f(x).g

′
(x) + f

′
(x).g(x)

)
dx

⇒ f(x).g(x) =

∫
f(x).g

′
(x)dx+

∫
f

′
(x).g(x)dx

The integration by parts formula can be reached by rewriting the formula as follows:∫
f(x).g

′
(x)dx = f(x).g(x)−

∫
f

′
(x).g(x)dx

Remark

In definite integral, we use the formula:∫ b

a

f(x).g
′
(x)dx = [f(x).g(x)]ba −

∫ b

a

f
′
(x).g(x)dx

To use this formula effectively, it is necessary to accurately identify both the f(x) and the g′
(x).

The choice is not randomly made.

Integration by parts can be used more than once.

Example 3.12

Evaluate the following integrals

70



3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

1. I1 =
∫
xexdx

2. I2 =
∫
x cosxdx

3. I3 =
∫
xn lnxdx

4. I4 =
∫
arcsinxdx

5. I5 =
∫
x arctanxdx

6. I6 =
∫
ex sinxdx

7. I7 =
∫
x2e−3xdx

Solutions

I1 =
∫
xexdx

We will integrate this by parts, using the formula∫
f ′g = fg −

∫
fg′

Let g(x) = x and f ′(x) = ex Then we obtain g′ and f by differentiation and integration. f ′(x) = ex

g(x) = x

=⇒

 f(x) = ex

g′(x) = 1∫
f ′g = fg −

∫
fg′ becomes∫

xexdx = xex −
∫
exdx = xex − ex + C

I2 =
∫
x cosxdx

Let g(x) = x and f ′(x) = cos x

Then we obtain g′ and f by differentiation and integration. f ′(x) = cos x

g(x) = x

=⇒

 f(x) = sin x

g′(x) = 1∫
f ′g = fg −

∫
fg′ becomes∫

x cosxdx = x sinx−
∫

sinxdx = x sinx− (− cosx) = x sinx+ cosx+ C

I3 =
∫
xn lnxdx

Let g(x) = ln x and f ′(x) = xn
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Then we obtain g′ and f by differentiation and integration. f ′(x) = xn

g(x) = lnx

=⇒

 f(x) = xn+1

n+1

g′(x) = 1
x∫

f ′g = fg −
∫
fg′ becomes

I3 =

∫
xn lnxdx = lnx · x

n+1

n+ 1
−
∫

xn+1

n+ 1
· 1
x

=
xn+1 lnx

n+ 1
− 1

n+ 1

∫
xndx

=
xn+1 lnx

n+ 1
− 1

n+ 1
· x

n+1

n+ 1
+ C

=
xn+1

n+ 1

(
lnx− 1

n+ 1

)
+ C

I4 =
∫
arcsinxdx

Let g(x) = arcsin x and f ′(x) = 1.

Then we obtain g′ and f by differentiation and integration. f ′(x) = 1

g(x) = arcsin x

=⇒

 f(x) = x

g′(x) = 1√
1−x2

We compute the integral
∫

x√
1−x2dx by substitution.

Let t = 1− x2. Then dt = −2xdx and so dx = dt
−2x

.∫
x√

1− x2
dx =

∫
x√
t

dt

−2x

= −1

2

∫
1√
t
dt

= −1

2

∫
t−1/2du

= −1

2

t1/2

1
2

+ C

= −
√
t+ C

= −
√
1− x2 + C

Thus the entire integral is

I4 =

∫
arcsinxdx = x arcsinx−

(
−
√
1− x2

)
+ C = x arcsinx+

√
1− x2 + C

I5 =
∫
x arctanxdx
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Let g(x) = arctan x and f ′(x) = x Then we obtain g′ and f by differentiation and integration. f ′(x) = x

g(x) = arctan x

=⇒

 f(x) = x2

2

g′(x) = 1
x2+1∫

f ′g = fg −
∫
fg′ becomes

I5 =

∫
x arctanxdx =

x2

2
arctanx−

∫
x2

2
· 1

x2 + 1
dx

=
x2

2
arctanx− 1

2

∫
x2

x2 + 1
dx

=
x2

2
arctanx− 1

2

[∫
x2 + 1

x2 + 1
dx−

∫
1

x2 + 1
dx

]
=

x2

2
arctanx− 1

2
[x− arctanx] + C

I6 =
∫
ex sinxdx

Let g(x) = sin x and f ′(x) = ex (Notice that if yo choose, g(x) = ex and f ′(x) = sin x would

also work.) We obtain g′ and f by differentiation and integration. f ′(x) = ex

g(x) = sinx

=⇒

 f(x) = ex

g′(x) = cos x∫
f ′g = fg −

∫
fg′ becomes∫

ex sinxdx = ex sinx−
∫
ex cosxdx

It looks like our method produced a new integral,
∫
ex cosxdx that also requires integration by

parts.

Let g(x) = cos x and f ′(x) = ex. We obtain g′ and f by differentiation and integration. f ′(x) = ex

g(x) = cos x

=⇒

 f(x) = ex

g′(x) = − sinx∫
f ′g = fg −

∫
fg′ becomes∫
ex cosxdx = ex cosx−

∫
ex(− sinx)dx = ex cosx+

∫
ex sinxdx

Thus
∫
ex cosxdx = ex cosx+

∫
ex sinxdx

Now the result contains the original integral,
∫
ex sinx.
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Recall that we denote
∫
ex sinx by I6. Let us review the computation again:∫

ex sinxdx = ex sinx−
∫
ex cosxdx

= ex sinx−
(
ex cosx+

∫
ex sinxdx

)
= ex sinx− ex cosx−

∫
ex sinxdx

This is the same as

I6 = ex sinx− ex cosx− I6

This is an equation that we can solve for I6.

2I6 = ex sinx− ex cosxI6 =
1

2
ex(sinx− cosx)

Thus the answer is

I6 =
1

2
ex(sinx− cosx) + C.

I7 =
∫
x2e−3xdx

We will need to integrate by parts twice. First, let f ′(x) = e−3x and g(x) = x2. Then

 f ′(x) = e−3x

g(x) = x2
=⇒

 f(x) = −1
3
e−3x

g′(x) = 2x∫
f ′g = fg −

∫
fg′ becomes∫

x2e−3xdx = −1

3
e−3x

(
x2
)
−
∫ (
−1

3
e−3x

)
2xdx = −1

3
x2e−3x +

2

3

∫
xe−3xdx

and we can compute
∫
xe−3xdx by integrating by parts. Let f ′(x) = e−3x and g(x) = x. Then f ′(x) = e−3x

g(x) = x

=⇒

 f(x) = −1
3
e−3x

g′(x) = 1

∫
f ′g = fg −

∫
fg′ becomes
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∫
xe−3xdx = −1

3
e−3x(x)−

∫ (
−1

3
e−3x

)
dx

= −1

3
xe−3x +

1

3

∫
e−3xdx

= −1

3
xe−3x +

1

3

(
−1

3
e−3x

)
+ C

= −1

3
xe−3x − 1

9
e−3x + C

We need to compute the integral
∫
x2e−3xdx. So far we had this much:∫

x2e−3xdx = −1

3
x2e−3x +

2

3

∫
xe−3xdx

To this we substitute our result
∫
xe−3xdx = −1

3
xe−3x − 1

9
e−3x + C :∫

x2e−3xdx = −1

3
x2e−3x +

2

3

∫
xe−3xdx

= −1

3
x2e−3x +

2

3

(
−1

3
xe−3x − 1

9
e−3x + C1

)
= −1

3
x2e−3x − 2

9
xe−3x − 2

27
e−3x + C

3.8 Integration of rational functions

[17] Understanding the meaning of partial fractions and how to write them is crucial before

studying the integration process using them.

We know that a rational function is a ratio of two polynomials P (x)/Q(x). Now, if the degree of

P (x) is lesser than the degree of Q(x), then it is a proper fraction, else it is an improper fraction.

1. First case if P (x)/Q(x) is an improper fraction

In this case P (x)/Q(x) = H(x)+P1(x)/Q(x), where H(x) is a polynomial and P1(x)/Q(x)

is a proper rational fraction.

2. Second case if P (x)/Q(x) is a proper fraction

Let’s say that we want to evaluate
∫
[P (x)/Q(x)]dx, where P (x)/Q(x) is a proper rational

fraction.

In this case, it is possible to write the integrand as a sum of simpler rational functions by using
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3.8 Integration of rational functions

partial fraction decomposition.

We follow the following rules in the decomposition process:

Each linear factor (x− r) of Q(x) corresponds to a partial fraction A
x−r

Each power linear factor (x− r)m of Q(x) has a corresponding m partial fractions

A1

(x− r)
+

A2

(x− r)2
+

A3

(x− r)3
+ · · ·+ Am

(x− r)m

where Ai are constants

Each irreducible quadratic factor ax2+ bx+ c, (ax2+ bx+ c has no real roots; ∆ < 0) ofQ(x)

corresponds to a partial fraction Bx+C
(ax2+bx+c)

, where B and C are constants.

Each irreducible power quadratic factor (ax2 + bx+ c)
n of Q(x) has a corresponding n partial

fractions

B1x+ C1

(ax2 + bx+ c)
+

B2x+ C2

(ax2 + bx+ c)2
+

B3x+ C3

(ax2 + bx+ c)3
+ · · ·+ Bnx+ Cn

(ax2 + bx+ c)n

where Bi and Ci are constants.

To find the constants, we equate P (x)
Q(x)

with the sum of all these partial fractions, then we solve

the undetermined coefficients.

After the decomposition process, we discuss the integration of partial fractions, which takes one

of the following forms:

1.
∫

1
(x−r)n

dx

2.
∫

1
(t2+1)n

dt

3.
∫

Ax+B
(ax2+bx+c)n

dx

Integration of partial fractions

1. I =
∫

1
(x−r)n

dx

There are two cases

n = 1 −→ I = ln |x− r|+ C

n ̸= 1 −→ I = −1
(n−1)(n−r)n−1 + C

2. In =
∫

1
(t2+1)n

dt

There are three cases
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3.8 Integration of rational functions

n = 1 −→ In = arctanx+ C

n = 1
2
−→ In = ln

∣∣t+√t2 + 1
∣∣+ C

n ̸= 1, n ̸= 1
2
−→We use the Substitution variable t = tanx

3. In =
∫

Ax+B
(ax2+bx+c)n

dx

When ax2 + bx+ c is irreducible quadratic factor (∆ < 0)

We integrate this In through the following steps

First step: we write the numerator in terms of the derivative of the denominator

(ax2 + bx+ c) i.e

Ax+B

(ax2 + bx+ c)n
=

α (2ax+ b)

(ax2 + bx+ c)n
+

β

(ax2 + bx+ c)n

Second step we use the typical form ax2 + bx + c = a
[(
x+ b

2a

)2 − ∆
4a2

]
for the

fraction β
(ax2+bx+c)n

Third step we use the Substitution variable t =
√

4a2

−a

(
x+ b

2a

)
We obtain

In = α

∫
(2ax+ b)

(ax2 + bx+ c)n
dx+ λ

∫
1

(t2 + 1)n
dt

The integral
∫ (2ax+b)

(ax2+bx+c)n
dx in the forme

∫ f
′
(x)

f(x)
dx

The integral
∫

1
(t2+1)n

dt in the forme 2.

Example 3.13

Integrate the following integral by the method of partial fractions.∫
3x+11
x2−x−6

dx

First, we factor the denominator as much as possible and then, we obtain the form of the partial

fraction decomposition.
3x+ 11

x2 − x− 6
=

A1

x− 3
+

A2

x+ 2
(3.4)

Then,
3x+ 11

(x+ 2) (x− 3)
=
A1 (x+ 2) + A2 (x− 3)

(x+ 2) (x− 3)

Now, we need to found A1 and A2 , the numerators of these two are equal for every x, so 3x + 11 =
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3.8 Integration of rational functions

A1(x+ 2) + A2(x− 3)

Two ways to proceed are available at this point. The first option is always successful, but it’s a

lot more work. The second option is often quicker when it does work. We’ll use the quickest method

in this instance since both will work, but we’ll examine the other method in future examples.

To find A1, we multiply both sides of the equality 3.4 by (x− 3),

3x+ 11

(x+ 2)
= A1 +

A2 (x− 3)

x+ 2

Then we replace x with 3, we found A1 = 4

To find A2, we multiply both sides of the equality 3.4 by (x+ 2),

3x+ 11

(x− 3)
=
A1 (x+ 2)

x− 3
+ A2

Then we replace x with −2, we found A2 =
5
−5

= −1, so

3x+ 11

x2 − x− 6
=

4

x− 3
+
−1
x+ 2

Now, we can integrate ∫
3x+ 11

x2 − x− 6
dx =

∫ (
4

x− 3
− 1

x+ 2

)
dx

= 4

∫
1

x− 3
dx−

∫
1

x+ 2
dx

= 4 ln |x− 3| − ln |x+ 2|+ C

Example 3.14

Integrate the following integral by the method of partial fractions.∫
x2 − 29x+ 5

(x− 4)2 (x2 + 3)
dx

The partial fraction decomposition is

x2 − 29x+ 5

(x2 − 4) (x2 + 3)
=

A

x− 4
+

B

(x− 4)2
+
Cx+D

x2 + 3

x2 − 29x+ 5

(x2 − 4) (x2 + 3)
=

A (x− 4) (x2 + 3) +B (x2 + 3) + (Cx+D) (x− 4)2

(x− 4)2 (x2 + 3)

Then we obtain,

x2 − 29x+ 5 = A (x− 4)
(
x2 + 3

)
+B

(
x2 + 3

)
+ (Cx+D) (x− 4)2
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3.8 Integration of rational functions

We propagate the right side and collect all the like terms together, then we get:

x2 − 29x+ 5 = (A+ C)x3 + (−4A+B − 8C +D)x2 + (3A+ 16C − 8D)x− 12A+ 3B + 16D

To find A,B,C, and D, we must establish the coefficients of like powers of x equal

Coefficient of x3 : A+ C = 0

Coefficient of x2 : −4A+B − 8C +D = 1

Coefficient of x1 : 3A+ 16C − 8D = −29

The constants: −12A+ 3B + 16D = 5


⇒

A = 1

B = −5

C = −1

D = 2

Now, we calculate the above integral.

∫
x2 − 29x+ 5

(x− 4)2 (x2 + 3)
dx =

∫ (
1

x− 4
− 5

(x− 4)2
+
−x+ 2

x2 + 3

)
dx

=

∫ (
1

x− 4
− 5

(x− 4)2
− x

x2 + 3
+

2

x2 + 3

)
dx

=

∫
1

x− 4
dx−

∫
5

(x− 4)2
dx−

∫
x

x2 + 3
dx

+

∫
2

x2 + 3
dx

= ln |x− 4|+ 5

x− 4
− 1

2
ln
∣∣x2 + 3

∣∣
+

2√
3
arctan

(
x√
3

)
+ C

Example 3.15

Find
∫

4x+5
x2+x+2

dx

Solution

Q (x) = x2 + x+ 2 =⇒ ∆ = −7 < 0

First step: we write the numerator in terms of the derivative of the denominator

4x+ 5

x2 + x+ 2
=

α (2x+ 1)

x2 + x+ 2
+

β

x2 + x+ 2

=
α (2x+ 1) + β

x2 + x+ 2
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Chapter 3 Exercise

α (2x+ 1) + β = 4x+ 5 so,  2α = 4

α + β = 5

=⇒

 α = 2

β = 3

4x+ 5

x2 + x+ 2
=

2 (2x+ 1)

x2 + x+ 2
+

3

x2 + x+ 2∫
4x+ 5

x2 + x+ 2
= 2

∫
(2x+ 1)

x2 + x+ 2
dx+ 3

∫
1

x2 + x+ 2
dx

= 2 ln
∣∣x2 + x+ 2

∣∣+ 3J + C

Second step: to find the integral J we use the typical form

x2 + x+ 2 =

(
x+

1

2

)2

+
7

4

Third step: we use the substitution variable

t =

√
4

7

(
x+

1

2

)
, thendt =

√
4

7
dx

J =

∫
1

x2 + x+ 2
dx =

∫
1(

x+ 1
2

)2
+ 7

4

dx

=

∫ √
7
4

7
4

[(
x+ 1

2√
7
4

)2

+ 1

]dx

=

√
7
4

7
4

∫
dt

t2 + 1

= 3

√
4

7
arctan

(√
4

7

(
x+

1

2

))
+ C

K Chapter 3 Exercise k

1. Exercise 1

Calculate the following integrals:
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Chapter 3 Exercise

∫ +2

−2
dx
x7 ,

∫
e−5xdx ,

∫
cosx sin5 xdx∫

2x2

x3+1
dx ,

∫ π
6

0

√
sinx cosxdx ,

∫ 3

1

√
x−1
x
dx∫

x (x2 + 1)
2024

dx ,
∫

x2
√
1−x3dx ,

∫
4x

(x2−5)1/7
dx∫ 3

−3
sin9 xdx ,

∫ π/3

0

(
cos2 x− sin2 x

)
dx ,

∫ cos(tanx)
cos2 x

dx∫
x sinxdx ,

∫
ex sin axdx ,

∫
x2 lnxdx∫

x2eaxdx ,
∫

x2
√
5+x3dx ,

∫
3x+1
3x−1

dx∫ √
arctgx
x2+1

dx ,
∫ 1

0
ln(x+ 1)dx ,

∫
sinx
cos3 x

dx∫ π
4

0
tanxdx ,

∫
1

x4−x
dx ,

∫
1

x(1−x2)
dx∫ 2π

0
sin5(3x) cos(3x)dx ,

∫ 4

1
1

(3x−7)2
dx ,

∫ 1

0
dx

(x2+1)2
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Chapter 4 Differential Equations

Introduction

h Classification of Differential Equations

h Solution of Differential equations

h First Order Differential Equations

Linear Equation

Linear homogeneous equation

Linear non-homogeneous

Nonlinear Equation

Bernouli equation

Separable equations

Euler Homogeneous

h Second Order Differential Equations

Linear homogeneous equation

Linear non-homogeneous

In this chapter we study several types of differential equations and their corresponding methods

of solution.

Definition 4.1 (Ordinary differential equations)

♣

An ordinary differential equation is an equation relating an unknown function y depends on

a single independent variable x over an interval I , and contains one or several its derivatives

y
′
, y

′′
, ..., y(n), it can be written in the form:

F
[
x, y, y

′
, y

′′
, ..., y(n)

]
= 0 (4.1)

In this course, we will only focus on ordinary differential equations, so we won’t use the term

ordinary anymore.

Example 4.1

We list the following differential equations:(
y

′′
)2

+ xy
′
y − sinx = 0

d3y

dt3
+
dy

dt
+ 5y = cos t



4.1 Classification of Differential Equations

√
x
d3y

dx3
+ x2

d2y

dx2
y = 0

3y
′′
+ cosxy

′
+ y = x2

4.1 Classification of Differential Equations

Differential equations can be classified into various categories based on their properties.

Order

Linearity

Homogeneous

Constant coefficients

Definition 4.2 (Order)

♣

[22] The order of a differential equation is the highest derivative order that appears in the

equation

Definition 4.3 (Linearity)

♣

If the function F is linear in the dependent variable y and their derivatives y, y′
, y

′′
, ..., y(n), the

differential equation is said to be linear. The general nth order linear differential equation can

be written as:

a0 (x) y + a1 (x) y
′
+ a2 (x) y

′′
+ .....an−1 (x) y

(n−1) + an (x) y
(n) = b (x)

Where an (x) ̸= 0. Otherwise, the equation is called nonlinear.

The functions a0 (x) , a1 (x) , ....., an−1 (x) , an (x) are called the variable coefficients.

The nth order linear differential equation has constant coefficients if the functions a0 (x) ,

a1 (x) , ....., an−1 (x) , an (x) are constants.

The nth order linear differential equation is homogeneous, if and only if b(x) = 0

a0 (x) y + a1 (x) y
′
+ a2 (x) y

′′
+ .....an−1 (x) y

(n−1) + an (x) y
(n) = 0

Otherwise, the equation is called non-homogeneous.
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4.2 Ordinary Differential Equations

Example 4.2

Classify each of the differential equations listed below by indicating the order of each equation

and determining whether it is linear or nonlinear, homogeneous or non-homogeneous, with constant

coefficients or with variable coefficients.

y
′′
+ xy

′
y = 0 (4.2)

d4u

dt4
− 4

d2u

dt2
+ 5u = sin t (4.3)(

dy

dx

)3

+ 5y = 5x (4.4)

d3y

dx3
+ x2

d2y

dx2
+ exy = x3 (4.5)

y
′′
+ cosxy

′
+
√
x− 1y = 0 (4.6)

The differential equation (4.2) is second order, is nonlinear.

The differential equation (4.3) is 4thorder, is nonhomogeneous, is linear, constant coefficients.

The differential equation in (4.4) is first order, is nonlinear.

The differential equation (4.5) is 3rd order, is nonhomogeneous, is linear, variable coefficients.

The differential equation (4.6) is second order, is homogeneous, is linear, have variable coeffi-

cients.

4.2 Ordinary Differential Equations

4.2.1 Solution of Ordinary Differential Equations

Definition 4.4

♣

[22] Any real-valued function ψ : I ⊂ R −→ R which satisfies the following equation over the

interval I is called a solution of the differential equation

F
[
x, ψ, ψ

′
, ψ

′′
, ..., ψ(n)

]
= 0

Example 4.3
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4.3 First Order Differential Equations

The function f defined for all real x by

f (x) = 5 sinx+ 4 cosx

is a solution of the differential equation

y
′′
+ y = 0 (4.7)

Note that f has a second derivative for all real x

We have

f
′
(x) = 5 cosx− 4 sinx

f
′′
(x) = −5 sinx− 4 cosx

Substituting f (x) = y, f
′′
(x) = y

′′
, in the equation 4.7 , we obtain

−5 sinx− 4 cosx+ 5 sinx+ 4 cosx = 0

Which holds for all real x

4.3 First Order Differential Equations

A first order differential equation is an equation of the form [7, 22]

F
(
x, y, y

′
)
= 0 (4.8)

4.3.1 Linear Equation

The first-order differential equation (4.8) is linear if it can be written in the form

a1 (x) y
′
+ a0 (x) y = b (x) , where a1 (x) ̸= 0

4.3.1.1 Linear homogeneous equation

[9, 12] A first order homogeneous linear differential equation is one of the form

y
′
+ a (x) y = 0 (4.9)
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4.3 First Order Differential Equations

Theorem 4.1 (Solution of linear homogeneous equation)

♡

[22, 28] If the function a is continuous on open interval I , then the general solution of the

homogeneous equation (4.9) is

y = Ke−
∫
a(x)dx (4.10)

Proof we can solve the homogeneous equation (4.9) in the usual way

dy

dx
= −a(x)y

1

y
dy = −a(x)dx∫

1

y
dy = −

∫
a(x)dx

ln |y| = −A (x) + C

y = ±e−A(x)+C

y = Ke−A(x)

where A (x) is a primitive of a(x) i.e A (x) =
∫
a(x)dx

Example 4.4

Solve the differential equation given by

dy

dx
+ y sinx = 0

Solution

dy

dx
= −y sinx⇒ −dy

y
= sinxdx

⇒
∫
dy

y
= −

∫
sinxdx

ln y = cosx+ C

y = kecosx

4.3.1.2 Linear non-homogeneous equation

[9, 12] A first order non-homogeneous linear differential equation has the standard form

y
′
+ a (x) y = b (x) (4.11)
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4.3 First Order Differential Equations

Where b(x) ̸= 0

Property If the functions a, b are continuous, then the equation

y
′
+ a (x) y = b (x)

has solutions given by yG = yH + yP , where yH is the solution of a related (homogeneous) equation

and yP is a particular solution of the non-homogeneous differential equation

How to find the general solution yH

yH is the solution of homogeneous equation, which given in theorem 4.1 ie

yH = Ke−
∫
a(x)dx

How to find the particular solution yP

The variation of constant method is a general method that can be used to find the particular

solution of a differential equation, by replacing the constant K in the solution yH of a related

(homogeneous) equation by function K (x), in other word , we put yP = K (x) e−
∫
a(x)dx and

determining this function K (x) by derivative of yP and substituting in the equation 4.11, finally we

can obtain the expression of particular solution as

yP = e−
∫
a(x)dx

∫
b (x) e

∫
a(x)dxdx

Example 4.5

Solve the following differential equation

y
′ − 4xy = −4x3 (4.12)

Solution

The solution of the last equation is given by yG = yH + yP

yH =?
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4.3 First Order Differential Equations

First we solve the homogeneous equation y′ − 4xy = 0

y
′

= 4xy ⇒ y
′

y
= 4x

⇒
∫
dy

y
=

∫
4xdx

⇒ ln |y| = 2x2 + C

⇒ yH = Ke2x
2

yP =?

We can find the particular solution, using Variation of constant method

yP = K (x) e2x
2 ⇒

y
′

P = K
′
(x) e2x

2

+K (x) 4xe2x
2 (4.13)

Determining K (x) by substituting the expression of yP into the equation 4.12,

K
′
(x) e2x

2

+K (x) 4xe2x
2

= 4xK (x) e2x
2 − 4x3

⇒ K
′
(x) e2x

2

= −4x3

⇒ K
′
(x) = −4x3e−2x2

⇒ K (x) =

∫
−4x3e−2x2

dx

Using integration by parts we get

K (x) =

(
x2 +

1

2

)
e−2x2

So,

yP = x2 +
1

2

Finally , we obtain the solution of (4.12)

y = Ke2x
2

+ x2 +
1

2
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4.3 First Order Differential Equations

4.3.2 Nonlinear Equation

4.3.3 Bernouli equation

A Bernoulli differential equation can be written in the following standard form:

y
′
+ a (x) y = b (x) yn

Where a, b are given continuous functions.

If n ≥ 2, the equation is first order nonlinear. However, it can be converted into a linear equation

by changing the unknown function accordingly.

4.3.3.1 Steps to solve Bernouli equation

Divide the Bernoulli equation by yn

y
′

yn
+
a (x)

yn−1
= b (x) (4.14)

Bernoulli equations can be made linear by making the substitution v = 1
yn−1

Differentiating,

v
′
= (1− n) y

′

yn

Thus
y

′

yn
=

v
′

1− n

We substitute this last equation into the equation (4.14) we get

v
′

1− n
+ a (x) v = b (x)

We obtain the linear equation in dependent variable v as

v
′
+ (1− n) a (x) v = (1− n) b (x)

We solve the linear equation for the changed function.

The final step is to transform the altered function back into its original form.

Example 4.6
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4.3 First Order Differential Equations

Find the solutions the differential equation: y′ = −2xy + 2x3y3

Solution

Let the equation

y′ + 2xy = 2x3y3

This is a Bernoulli equation with n = 3 , a(x) = 2x, b(x) = 2x3.

Divide this equation by y3

y
′

y3
+

2x

y2
= 2x3 (4.15)

We use the substitution v = y−2

Differentiating,

v′ = −2y−3y′

Then, we have

y′ = −1

2
y3v′

Substituting for y′ in the differential equation (4.15) we get

−1

2
v′ + 2xv = 2x3

Which is linear equation in variable v

v′ − 4xv = −4x3

The solution is

v = Ke2x
2

+ x2 +
1

2

Substituting v = 1/y2, we have

y2 =
1

v

y2 =
1

Ke2x2 + x2 + 1
2

y = ±
√

1

Ke2x2 + x2 + 1
2
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4.3 First Order Differential Equations

4.3.4 Separable differential equations

[8, 22] A first order differential equation is separable if it can be written in the form

dy

dx
= a (x) b (y) (4.16)

Any separable equation can be solved by means of the following theorem.

Property [Separation of variables]

Let a(x) and b(y) be continuous functions on open intervals I and J , respectively, and assume

that b(y) ̸= 0 on J . Let A(x) be a primitive function of f(x) on I and B(y) be a primitive function of

1
b(y)

on J .

Then a function y solves the differential equation (4.16) if and only if it satisfies the identity

B (y) = A (x) + C

for all x in the domain of y, where C is a real constant

Follow these steps to solve a Seperable Differential Equation

Separate the variables
dy

b (y)
= a (x) dx

Apply the integration operator ∫
dy

b (y)
=

∫
a (x) dx

Since A(x) be a primitive function of f(x) and B(y) be a primitive function of 1
b(y)

, then

B (y) = A (x) + C

Example 4.7

Find all solutions y of the differential equation

y′ =
y − 1

x+ 3

Solution
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4.3 First Order Differential Equations

Dividing both sides of the given differential equation by y − 2 we get

y′

y − 2
=

1

x+ 5

By integration we get ∫
dy

y − 2
=

∫
dx

x+ 5
+ k,

=⇒ ln |y − 2| = ln(x+ 5) + k

Thus |y − 2| = ek(x+ 5) from which y − 2 = ±ek(x+5). If we let K = ±ek, we get

y = 2 +K(x+ 5)

Then, the general solution is

y = 2 +K(x+ 5),

Example 4.8

Solve the differential equation

y′ =
2y sinx

1 + 2y2

Solution
dy

dx
=

2y sinx

1 + 2y2

=⇒
∫

(1 + 2y2) dy

2y
=

∫
sinxdx

=⇒
∫ (

1

2y
+ y

)
dy =

∫
sinxdx+ C

from which we get the solutions:

1

2
ln |y|+ y2

2
= − cosx+ C

where C is an arbitrary constant.

4.3.5 Euler Homogeneous

A first order nonlinear differential equation is an Euler Homogeneous if it has the form

y
′
= F

(y
x

)
(4.17)
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4.3 First Order Differential Equations

Remark

Let the first order nonlinear differential equation

y
′
= f (x, y)

If f (cx, cy) = f (x, y) , then the equation y′
= f (x, y) is Euler Homogeneous.

4.3.5.1 Steps to solve Euler Homogeneous equation

To solve the equation (4.17), we let v = y
x

so that,

y = xv and y′
= v + xv

′

Introducing these expressions into the differential equation for y we get

v + xv
′

= F (v)

v
′

=
F (v)− v

x
dv

dx
=

1

x
(F (v)− v)

dv

(F (v)− v)
=

1

x
dx

Which is separable differential equation

Example 4.9

Find all solutions y of the differential equation y′ = x2+3y2

2xy
.

Solution The equation is Euler homogeneous, since

f(cx, cy) =
c2x2 + 3c2y2

2(ct)(cy)
=
c2 (x2 + 3y2)

c2(2xy)
=
x2 + 3y2

2xy
= f(x, y)

Next we compute the function F

y′ =
x2 + 3y2

2xy
=⇒ y′ =

x2
(
1 + 3 y2

x2

)
x2
(
2 y
x

)
⇒ y′ =

1 + 3
(
y
x

)2
2
(
y
x

) = F
(y
x

)
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4.4 Second Order Differential Equations

Now we introduce the change of functions v = y
x
,

y′ =
1 + 3v2

2v

Since y = xv, then y′ = v + xv′, which implies

v + xv′ =
1 + 3v2

2v
⇒ xv′ =

1 + 3v2

2v
− v =

1 + v2

2v

We obtained the separable equation

v′ =
1

x

(
1 + v2

2v

)
We rewrite and integrate it,

2v

1 + v2
v′ =

1

x
⇒
∫

2v

1 + v2
dv =

∫
1

x
dx

⇒ ln(1 + v2) = ln(x) + C

Then

exp
(
ln(1 + v2)

)
= exp (ln(x) + C)

1 + v2 = c1x ⇒ 1 +
(y
x

)2
= c1x ⇒ y(t) = ±x

√
c1x− 1

4.4 Second Order Differential Equations

The general second order differential equation is of the form [8]

F
(
x, y, y

′
, y

′′
)
= 0 (4.18)

We proceed to study second-order linear equations with constant coefficients

4.5 Second Order Differential Equations with constant

coefficients

The second order differential equation is in a standard form:

a2y
′′
+ a1y

′
+ a0y = b (x) (4.19)

94



4.5 Second Order Differential Equations with constant coefficients

where a2, a1, a0 are constants, and a2 ̸= 0

The homogeneous form of (4.19) is the case when b (x) = 0

4.5.1 Linear homogeneous equation

We start to finding general solutions to linear homogeneous equations

a2y
′′
+ a1y

′
+ a0y = 0 (4.20)

Property

If the functions y1 and y2 are any two (linearly independent) solutions of the homogeneous linear

second order equation

a2y
′′
+ a1y

′
+ a0y = 0 (4.21)

then the linear combination yH = c1y1(t) + c2y2(t) is the general solution of the above equation,

where c1, c2 are constants.

Remark

The functions y1 (x) and y2 (x) are linearly independent if one is not a multiple

of the other, in other words y1(x)
y2(x)

̸= Cte

Solving an homogeneous second order ODE

To solve a differential equation in the above form (4.21), we assume a general solution

y = erx

of the given differential equation, where r is a constant to be determined, and follow the given steps:

Differentiating we find

y = erx ⇒ y
′
= rerx ⇒ y

′′
= r2erx

Substitution into the differential equation (4.21) yields

a2r
2erx + a1re

rx + a0e
rx = 0⇒ erx

(
r2 + a1r + a0

)
= 0
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4.5 Second Order Differential Equations with constant coefficients

Since erx can never be zero, so

a2r
2 + a1r + a0 = 0 (4.22)

This algebraic equation is called the characteristic equation of the differential equation.

In solving the characteristic equation (4.22), the following three possibilities, depending on the

sign of the discriminant ∆ = a21 − 4a2a0

1. If ∆ > 0, then we have r1 and r2 as two real roots to the characteristic equation

r1 =
−a1 −

√
∆

2a2
, r2 =

−a1 +
√
∆

2a2

In this case the general solution of the linear homogeneous equation (4.21) is

yH = c1e
r1x + c2e

r2x

2. If ∆ = 0, we have one root, r = −a1
2a2

In this case the general solution of the equation (4.21) is

yH = c1e
r1x + c2xe

r1x

3. If ∆ < 0, the roots are distinct conjugate complex numbers r1 and r2

r1 =
−a1 − i

√
|∆|

2a2
= α− iβ, r2 =

−a1 + i
√
|∆|

2a2
= α + iβ

In this case the general solution of the equation (4.21) is

yH = eαx (c1 cos βx+ c2 sin βx)

We show the three cases in the following examples:

Example 4.10

Consider the differential equation

4y
′′
+ 2y

′ − 2y = 0

The characteristic equation is

4r2 + 2r − 2 = 0
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4.5 Second Order Differential Equations with constant coefficients

∆ = 36 > 0, then we have r1 and r2 as two real roots

r1 =
−2−

√
36

8
= −1, r2 =

−2 +
√
36

8
=

1

2

the first solution is

y1(x) = e−x

The second solution is

y2(x) = e
x
2 ,

So, a general solution is

yH(x) = c1e
−x + c2e

x
2 .

Example 4.11

Consider the differential equation

y
′′ − 8y + 16 = 0

The characteristic equation is

r2 − 8r + 16 = 0⇒ (r − 4)2 = 0

∆ = 0, then we have one root, r = 4

Consequently, the first solution is

y1(x) = e4x

The second solution is

y2(x) = xe4x,

So, a general solution is

yH(x) = c1e
4x + c2xe

4x.

Example 4.12

Consider solving

y′′ − 6y′ + 13y = 0.
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4.5 Second Order Differential Equations with constant coefficients

The characteristic equation is

r2 − 6r + 13 = 0.

∆ = −16 < 0

the roots are distinct conjugate complex numbers r1 and r2

r1 =
−a1 − i

√
|∆|

2a2
=

6− i
√
16

2
= 3− 2i

r2 =
−a1 + i

√
|∆|

2a2
=

6 + i
√
16

2
= 3 + 2i

The first solution is

y1(x) = e(3−2i)x

The second solution is

y2(x) = e(3+2i)x

The general solution of the equation is given by

yH = e3x (c1 cos 2x+ c2 sin 2x)

4.5.2 Linear non-homogeneous equation

[22] A second order non-homogeneous linear differential equation has the standard form given

above as:

a2y
′′
+ a1y

′
+ a0y = b (x) (4.23)

The general solution of (4.23) is

yG = yH + yP

Where yH is the solution of a related (homogeneous) equation (4.21) and yP is a particular

solution of the non-homogeneous differential equation.

The method we discussed in the previous section can be used to determine yH value since it is
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4.5 Second Order Differential Equations with constant coefficients

the solution of the homogeneous differential equation.

yH = c1y1(t) + c2y2(t)

How to find the particular solution yP

To find the particular solution yP of equation 4.23 there are two ways

First method (variation of constants)

The variation of constants consists of replacing the constants c1 and c2 in the solution of a related

(homogeneous) equation by functions c1 (x) and c2 (x) and determining what these functions must be

to satisfy the original non-homogeneous equation.

Differentiating and substitution into the differential equation (4.23) yields c
′
1 (x) y1 + c

′
2 (x) y2 = 0

c
′
1 (x) y

′
1 + c

′
2 (x) y

′
2 =

b(x)
a2

Example 4.13

Solve the differential equation

y
′′
+ y = sin 2x (4.24)

Solution

The general solution of (4.24) is

yG = yH + yP

Where yH is the solution of a related (homogeneous) equation and yP is a particular solution of the

non-homogeneous differential equation

First we solve the homogeneous equation

y
′′
+ y = 0

The characteristic equation is

r2 + 1 = 0.

∆ < 0
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4.5 Second Order Differential Equations with constant coefficients

The roots are distinct conjugate complex numbers r1 and r2

r1 = −i, r2 = +i

The general solution of the homogeneous equation is given by

yH = C1 cosx+ C2 sinx

Using the method of variation of constants

yP (x) = C1(x) cosx+ C2(x) sinx

The functions C1(x) and C2(x) can be determined from the following system of equations: C ′
1(x) cosx+ C ′

2(x) sinx = 0

C ′
1(x)(cosx)

′ + C ′
2(x)(sinx)

′ = sin 2x

Then  C ′
1(x) cosx+ C ′

2(x) sinx = 0

C ′
1(x)(− sinx) + C ′

2(x) cosx = sin 2x

We can express the derivative C ′
1(x) from the first equation:

C ′
1(x) = −C ′

2(x)
sinx

cosx
(4.25)

Substituting this in the second equation, we find the derivative C ′
2(x) :(

−C ′
2(x)

sinx

cosx

)
(− sinx) + C ′

2(x) cosx = sin 2x,

⇒ C ′
2(x)

(
sin2 x

cosx
+ cosx

)
= sin 2x,

⇒ C ′
2(x)

1

cos x
= sin 2x

⇒ C ′
2(x) = cos x sin 2x

Substituting C ′
2(x) in the equation (4.25), we find

C ′
1(x) = − sinx sin 2x (4.26)

We have sin 2x = 2 sin x cosx C1(x) = −2
∫
sin2 x · cosxdx = −2

3
sin3 x

C2(x) = −2
∫
cos2 x sinxdx = −2

3
cos3 x
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4.5 Second Order Differential Equations with constant coefficients

Thus, the particular solution to the differential equation can be written as:

yP (x) = C1(x) cosx+ C2(x) sinx

= −2

3
sin3 x · cosx− 2

3
cos3 x · sinx

then, the general solution of the non-homogeneous equation:

yG = yH + yP

yG = C1 cosx+ C2 sinx+−
2

3
sin3 x · cosx− 2

3
cos3 x · sinx

Second method

The solution yP can be determined using the second method by guessing it based on the form of

b(x). The table given below shows the possible particular solution yP corresponding to each b(x).

b (x) yP

Pn (x) e
λx

1. If λ is not a root of characteristic equation,

then: yP = (q0 + q1x+ ...+ qnx
n) eλx

2. If λ is a simple root of characteristic equation,

then: yP = x (q0 + q1x+ ...+ qnx
n) eλx

3. If λ is not a multiple root of characteristic equation,

then: yP = x2 (q0 + q1x+ ...+ qnx
n) eλx

Pn (x) e
θx cosσx+

+Qm (x) eθx cosσx

1. If θ + iσ is not a root of characteristic equation,

then: yP = An (x) e
θx cosσx+Bn (x) e

θx sinσx

2. If θ + iσ is a simple root of characteristic equation

then: yP =
(
An (x) e

θx cosσx+Bn (x) e
θx sinσx

)
· x

Example 4.14

Solve the differential equation

y
′′ − 3y

′
+ 2y = e2x (4.27)

Solution
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4.5 Second Order Differential Equations with constant coefficients

The general solution of this equation is

yG = yH + yP

We solve the homogeneous equation

y
′′ − 3y

′
+ 2y = 0

The characteristic equation is

r2 − 3r + 2 = 0.

∆ = 1 > 0

Then we have r1 and r2 as two real roots

r1 = 2, r2 = 1

Hence, the general solution of the homogeneous equation is given by

yH(x) = C1e
2x + C2e

x

where C1, C2 are constant numbers.

Find a particular solution of the non homogeneous differential equation.

Since e2x is one of the solutions of the homogeneous equation, we look for the particular solution

in the form

yP = Axe2x

The derivatives are given by

y′P =
(
Axe2x

)′
= Ae2x + 2Axe2x = (A+ 2Ax)e2x

y′′P =
[
(A+ 2Ax)e2x

]′
= 2Ae2x + (2A+ 4Ax)e2x = (4A+ 4Ax)e2x.

Substituting the function yP and its derivatives in the differential equation yields:

(4A+ 4Ax)e2x − 3(A+ 2Ax)e2x + 2Axe2x = e2x

Then, A = 1
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Chapter 4 Exercise

Thus, the particular solution to the differential equation can be written in the form:

yP = xe2x

The general solution of the non homogeneous equation:

yG = yH + yP

= C1e
2x + C2e

x + xe2x

K Chapter 4 Exercise k

1. Exercise 1

Solve the following first order differential equations with separable variables:

(a). 2y − xy′ = 0

(b). (1 + x2) dy = ydx

(c). y = xy
′
+ y′

4

(d). yy′ + x = 0

2. Exercise 2

Solve the following first order differential equations :

(a). y′ − y = 2ex

(b). y′ + y
x
= ln(x)

(c). y′ − 2y = cos(x) + 2 sin(x)

3. Exercise 3

Solve the following second-order linear differential equations:

(a). y′′ − y′ − 2y = 0

(b). y′′ − y′ + y = 0

(c). y′′ + 2y′ + y = xex

(d). y′′ + y = 2ex + cos(x)
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Chapter 5 Functions of Several Variables

Introduction

h Vector valued functions

h Domain and Range

h Graphs

h Limit of a function of two variables

h Continuity for functions of two variables

h Derivatives of a function of two variables

h Total differential

h Double integrals

h Triple Integrals

5.1 Multivariable vector-valued functions

Definition 5.1

♣

[16] A multivariable vector-valued function is a function f : Rn −→ Rm has the form

f : Rn −→ Rm

(x1, x2,..., xn) 7−→



f1 (x1, x2,..., xn)

f2 (x1, x2,..., xn)

...

fm (x1, x2,..., xn)


Where n and m are positive integers, and f1, f2, ..., fm : Rn −→ R are real-valued functions

of several variables.

Remark

We consider several cases of functions with several variables, according to the values of n and

m,

Where m = 1, the function f is called a real-valued functions of n variables if assigns to each

element of Ω a unique element of R, f : Ω ⊆ Rn −→ R, where the domain Ω is a subset of Rn.

So, for each (x1, x2,..., xn) in Ω, the value of f is a real number f (x1, x2,..., xn) .



5.2 Domain and Range of real-valued functions of several variables

Only real-valued functions of several variables will be considered in this chapter.

5.2 Domain and Range of real-valued functions of several

variables

Definition 5.2

♣

The domain of definition of a function f is the set of all possible input P = (x1, x2,..., xn) of Rn

on which the function f makes sense, it denoted by Df

Df = {P ∈ Rn/ f (x1, x2,..., xn) ∈ R}

Example 5.1

Determine the domain of each of the following

1. f(x, y) = y
√
1− x2

2. f(x, y) =

√
1−y2√
1−x2

3. g(x, y) = ln (9− x2 − 9y2)

Solution

1. f(x, y) = y
√
1− x2

The domain Df are the points (x, y) in the plane defined by:

Df =
{
(x, y) ∈ R2/ 1− x2 ≥ 0, y ∈ R

}
=

{
(x, y) ∈ R2/ x2 ≤ 1, y ∈ R

}
that means −1 ≤ x ≤ +1, −∞ < y < +∞, i.e. the points in the plane between and including

the lines x = 1, and x = −1. It is shown in Figure 5.1.

2. f(x, y) =

√
1−y2√
1−x2

Df =
{
(x, y) ∈ R2/ 1− x2 > 0, 1− y2 ≥ 0

}
=

{
(x, y) ∈ R2/ x2 < 1, y2 ≤ 1

}
The domain Df are the points (x, y) where −1 < x < +1, and −1 ≤ y ≤ +1, it shown in
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5.3 Graphs of real-valued functions of several variables

Figure 5.1: Domain of the function f(x, y) = y
√
1− x2.

Figure 5.2

Figure 5.2: Domain of the function f(x, y) =

√
1−y2√
1−x2

3. g(x, y) = ln (9− x2 − 9y2)

Dg =
{
(x, y) ∈ R2/ 9− x2 − 9y2 > 0

}
=

{
(x, y) ∈ R2/

x2

9
+ y2 < 1

}
Therefore, the domain of g(x, y) is the points interior to an ellipse. See figure 5.3
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5.3 Graphs of real-valued functions of several variables

Figure 5.3: Domain of the function g(x, y) = ln (9− x2 − 9y2)

5.3 Graphs of real-valued functions of several variables

Definition 5.3

♣

Let f : Rn −→ R be a real-valued functions of n variables. The graph of f is the set of point in

Rn+1 denoted by Gf

Gf =
{
(x1, x2,..., xn, xn+1) ∈ Rn+1/ xn+1 = f (x1, x2,..., xn)

}
Example 5.2

f(x, y) = 1− 1
2
(x2 + y2)

The graph of this function is shown in the Figure 5.4

Figure 5.4: Graph of the function f(x, y) = 1− 1
2
(x2 + y2)

Example 5.3

f(x, y) = cos (3x) · sin (3y)

The graph of this function is shown in the Figure 5.5
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5.4 Limit of a function of two variables

Figure 5.5: Graph of the function f(x, y) = cos (3x) · sin (3y)

5.4 Limit of a function of two variables

Definition 5.4

♣

[23] Let f be a function of two variables, x and y. The limit of f (x, y) as (x, y) approaches

(a, b) is l, written

lim
(x,y)→(a,b)

f (x, y) = l

if for each ε > 0, there exists a small enough δ > 0, such that for all (x, y) in the domain of f

∀ε > 0, ∃δ > 0, ∀ (x, y) ∈ Df :

√
(x− a)2 + (y − b)2 < δ ⇒ |f (x, y)− l| < ε

Example 5.4

lim
(x,y)→(3,4)

2xy
x2+y2

= 2·3·4
32+42

= 24
25

Property [Basic Limit Properties of Functions of Two Variables]

Let f and g be functions with

lim
(x,y)→(a,b)

(f(x, y) = L1, lim
(x,y)→(a,b)

g(x, y) = L2

The following limits hold.

lim(x,y)→(a,b)(f(x, y) + g(x, y)) = L1 + L2

lim(x,y)→(a,b)(f(x, y)− g(x, y)) = L1 − L2
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5.5 Continuity for functions of two variables

lim(x,y)→(a,b)(cf(x, y)) = cL1

lim(x,y)→(a,b)(f(x, y)g(x, y)) = L1L2

lim(x,y)→(a,b)
f(x,y)
g(x,y)

= L1

L2
for L2 ̸= 0

lim(x,y)→(a,b)(f(x, y))
n = Ln

1

5.5 Continuity for functions of two variables

The definition of continuity for functions of two variables is similar to that of functions of one

variable.
Definition 5.5

♣

[23] Let f be a function of two variables, x and y, let (a, b) ∈ Df .

A function is continuous at a point (a, b) if:

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

We say f is continuous on Df if f is continuous at every point (a, b) in Df .

Example 5.5

Show that the function

f(x, y) =
−x+ 4y

x+ y + 1

is continuous at point (7,−2).

Solution

Df =
{
(x, y) ∈ R2/ 1 + x+ y ̸= 0

}
=

{
(x, y) ∈ R2/ x+ y ̸= −1

}
In this example, a = 7 and b = −2.

f(a, b) ∈ Df because 7 −2 ̸= −1. Furthermore,

f(a, b) = f(7,−2) = −7 + 4(−2)
7 + (−2) + 1

=
−15
6
.

lim
(x,y)→(7,−2)

f(x, y) exists.
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5.6 Derivatives of a function of two variables

Remark

The sum of continuous functions is continuous

The product of continuous functions is continuous

The composition of continuous functions is continuous

5.6 Derivatives of a function of two variables

Definition 5.6

♣

Let f : Df ⊆ R2 −→ R be a function of two variables, and (a, b) ∈ Df

The partial derivative of f with respect to x , written as ∂f
∂x

, or fx is defined:

f
′

x(a, b) =
∂f

∂x
(a, b) = lim

h→0

f (a+ h, b)− f (a, b)
h

The partial derivative of f with respect to y , written as∂f
∂y

, or fy is defined:

f
′

y(a, b) =
∂f

∂y
(a, b) = lim

h→0

f (a, b+ h)− f (a, b)
h

5.6.1 Calculating partial derivatives

The intuitive idea of computing a partial derivative ∂f
∂x

is: Using the usual way of differentiating

f(x, y) with respect to x, we calculate using y as a constant, similarly, the partial derivative of f with

respect to y is performed while holding x as a constant.

Example 5.6

Calculate ∂f
∂x

and ∂f
∂y

for the following functions

1. f(x, y) = sin(x2y − 5x+ 3)

2. g (x, y) = ln (x2 + y2 + 9)

Solution

1. To calculate ∂f
∂x

, treat the variable y as a constant. Then differentiate f(x, y) with respect to x

∂f

∂x
=

∂

∂x

[
sin(x2y − 5x+ 3)

]
= (2xy − 5) cos(x2y − 5x+ 3)
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5.7 Total differential

To calculate ∂f
∂y

, treat the variable x as a constant. Then differentiate f(x, y) with respect to y

∂f

∂y
=

∂

∂y

[
sin(x2y − 5x+ 3)

]
= x2 cos(x2y − 5x+ 3)

2. To calculate ∂g
∂x

, treat the variable y as a constant. Then differentiate g(x, y) with respect to x

∂g

∂x
=

∂

∂x

[
ln
(
x2 + y2 + 9

)]
=

2x

(x2 + y2 + 9)

To calculate ∂g
∂y

, treat the variable x as a constant. Then differentiate g(x, y) with respect to y

∂g

∂y
=

∂

∂y

[
ln
(
x2 + y2 + 9

)]
=

2y

(x2 + y2 + 9)

5.7 Total differential

Definition 5.7

♣

Let f be a function of two variables x and y

The differential , also called the total differential of f , is defined as

df =
∂f

∂x
dx+

∂f

∂y
dy

Definition 5.8

♣

Let f be a function of two variables x and y, (x0, y0) ∈ Df

If f is differantiable at the point (x0, y0) , then the differential of f at (x0, y0), is defined as:

df (x0, y0) =
∂f

∂x
(x0, y0) dx+

∂f

∂y
(x0, y0) dy

Property

Let f and g be two differantiable functions of two variables The following properties hold.

d (f + g) (x0, y0) = df (x0, y0) + dg (x0, y0)

d(c · f (x0, y0)) = c · d(f (x0, y0))

d (f · g) (x0, y0) = df (x0, y0) · g (x0, y0) + f (x0, y0) · dg (x0, y0)
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5.8 Double integrals

Example 5.7

Let f : R2 −→ R be a function of two variables, defined as:

f(x, y) = x2y2 − 5xy + 3x

then
∂f

∂x
(x, y) = 2xy2 − 5y + 3

∂f

∂y
(x, y) = 2yx2 − 5x

The differential of f , is given by:

df =
∂f

∂x
dx+

∂f

∂y
dy

=
(
2xy2 − 5y + 3

)
dx+

(
2yx2 − 5x

)
dy

5.8 Double integrals

Definition 5.9

♣

Let f : R2 −→ R be a function of two variables, let D be a closed bounded region in R2, We

denote the double integral of the function f over D by∫ ∫
D

f (x, y) dxdy

5.8.1 Basic properties of the Integral

Property

Let D be a closed bounded set

D =
{
(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d

}
Let f , g : R2 −→ R be two continuous bounded functions on D. Then if α and β are any constants,

we have:∫ ∫
D

(αf + βg) (x, y) dxdy = α
∫ ∫
D

f (x, y) + β
∫ ∫
D

g (x, y) .
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5.8 Double integrals

∀ (x, y) ∈ D, f ≥ 0⇒
∫ ∫
D

f (x, y) dx ≥ 0.

If D = D1 ∪D2 and D1 ∩D2 = ∅ ,
∫ ∫
D

f (x, y) dxdy =
∫ ∫
D1

f (x, y) dxdy +
∫ ∫
D2

f (x, y) dxdy.

If f (x, y) ≤ g (x, y)⇒
∫ ∫
D

f (x, y) ≤
∫ ∫
D

g (x, y) dxdy.∣∣∣∣∫ ∫
D

f (x, y)

∣∣∣∣ ≤ ∫ ∫
D1

|f (x, y)| dxdy

5.8.2 Integrals over rectangular regions

Property [Fubini’s theorem 1] Let D be a closed bounded set

D =
{
(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d

}
Let f : R2 −→ R be a continuous bounded function on D. We define an integral for a function f over

the rectangular region D as∫ ∫
D

f (x, y) dxdy =

b∫
a

 d∫
c

f (x, y) dy

 dx =

d∫
c

 b∫
a

f (x, y) dx

 dy

The notation
b∫
a

(
d∫
c

f (x, y) dy

)
dxmeans that we integrate f (x, y)with respect to ywhile holding

x constant. Similarly, the notation
d∫
c

(
b∫
a

f (x, y) dx

)
dy means that we integrate f (x, y) with respect

to x while holding y constant.

Example 5.8

Use Fubini’s theorem 1 to evaluate the double integral of f over the rectangular region D =

[0, 1]× [0, 4],

f(x, y) = 3x2 − y

Solution

First integrate with respect to y and then integrate with respect to x :∫ 1

0

∫ 4

0

(
3x2 − y

)
dydx =

∫ 1

0

(∫ 4

0

(
3x2 − y

)
dy

)
dx

=

∫ 1

0

[
3x2y − y2

2

∣∣∣∣y=4

y=0

]
dx

=

∫ 1

0

(
12x2 − 16

2

)
dx = 4x3 − 8x|x=1

x=0 = 4.
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5.8 Double integrals

First integrate with respect to x and then integrate with respect to y :∫ 4

0

∫ 1

0

(
3x2 − y

)
dxdy =

∫ 4

0

(∫ 1

0

(
3x2 − y

)
dx

)
dy

=

∫ 4

0

[
x3 − xy|x=1

x=0

]
dy

=

∫ 4

0

(3− y)dy = 3y − y2

2

∣∣∣∣y=4

y=0

= 4

So, ∫ 1

0

∫ 4

0

f (x, y) dydx =

∫ 4

0

∫ 1

0

f (x, y) dxdy

Remark

If f (x, y) = g (x)h (y) , where g and h are continuous on [a, b] and [c, d] then:∫ ∫
D

f (x, y) dxdy =

∫ b

a

g (x) dx

∫ d

c

h (y) dy.

Example 5.9

Evaluate the integral
∫ 1

0

∫ 2

1
ex−ydxdy∫ 1

0

∫ 2

1

ex−ydxdy =

∫ 1

0

exdx

∫ 2

1

e−ydy = (e− 1)
(
e−1 − e−2

)

5.8.3 Double integrals over non rectangular regions

Property [Fubini’s theorem 2]

Let [a, b] be an closed bounded interval in R, h1, h2, g1 and g2 are continuous valued function

on [a, b] .

Let D be one of the following closed bounded sets

Type I: D =
{
(x, y) ∈ R2 : a ≤ x ≤ b, h1 (x) ≤ y ≤ h2 (x)

}
Or

Type II: D =
{
(x, y) ∈ R2 : g1 (y) ≤ x ≤ g2 (y) , c ≤ y ≤ d

}
If f : D −→ R is countinuous function then:

Type I:
∫ ∫

D

f (x, y) dxdy =

∫ b

a

(∫ h2(x)

h1(x)

f (x, y) dy

)
dx
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5.8 Double integrals

Type II:
∫ ∫

D

f (x, y) dxdy =

∫ d

c

(∫ g2(y)

g1(y)

f (x, y) dx

)
dy

Remark

A regions D of Type I and Type II are shown in Fig 5.6 and Fig 5.7

Figure 5.6: A Type I region lies between two vertical lines and the graphs of two functions of x

Figure 5.7: A Type II region lies between two horizontal lines and the graphs of two functions of y

Example 5.10

Evaluate the integral∫∫
D

cos(xy)dxdy, D =
{
(x, y) ∈ R2 : 2 ≤ x ≤ 4, 0 ≤ xy ≤ π

2

}
Solution

D =
{
(x, y) ∈ R2 : 2 ≤ x ≤ 4, 0 ≤ y ≤ π

2x

}
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5.8 Double integrals∫ ∫
D

cos(xy)dxdy =

∫ 4

2

∫ π/2x

0

cos (xy) dydx =

∫ 4

2

[
sinxy

x

]π/2x
0

dx =

∫ 4

2

dx

x

= ln 4− ln 2.

5.8.4 Double integral with variable substitution

Definition 5.10

♣

Let D and A be are two closed bounded sets, and φ a bijective differentiable function with

continuous partial derivatives:

φ : A −→ D

(u, v) 7−→ [x (u, v) , y (u, v)]

Let the Jacobian matrix of partial derivatives of φ at the point (u, v)

J =

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v


If det J = ∂x

∂u
∂y
∂v
− ∂y

∂u
∂x
∂v
̸= 0, then:∫ ∫

D

f(x, y)dxdy =

∫ ∫
A

f [(x (u, v) , y (u, v)] |det J | dudv

Example 5.11

Evaluate the integral∫∫
D

cos(xy)dxdy, D =
{
(x, y) ∈ R2 : 2 ≤ x ≤ 4, 0 ≤ xy ≤ π

2

}
We use the following variable substitution: u = xy

v = x

⇒

 x = v

y = u
v

0 ≤ u ≤ π
2
, 2 ≤ v ≤ 4;

J =

 0 1

1/v −u/v2

 , detJ =
−1
v
̸= 0

|det J | =
1

v
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5.9 Triple Integrals∫ ∫
D

cos(xy)dxdy =

∫ 4

2

∫ π/2

0

1

v
cosududv =

∫ π/2

0

cosudu

∫ 4

2

dv

v

= [sinu]
π/2
0 [ln v]42 = ln 4− ln 2.

Example 5.12∫∫
D

√
x2 + y2dxdy, D =

{
(x, y) ∈ R2

+ : 1 ≤ x2 + y2 ≤ 4
}

.

D =
{
(x, y) ∈ R2

+ : x2 + y2 ≥ 1
}
∩
{
(x, y) ∈ R2

+ : x2 + y2 ≤ 4
}

We use polar substitution:  x = r cos θ

y = r sin θ

, 1 ≤ r ≤ 2, 0 ≤ θ ≤ π

2
,

detJ = r ̸= 0∫∫
D

√
x2 + y2dxdy =

∫ 2

1

∫ π/2

0

r2drdθ

∫ 2

1

r2dr

∫ π/2

0

dθ =
7π

6

5.9 Triple Integrals

Now that we know how to integrate over a two-dimensional region we need to move on to

integrating over a three-dimensional region. We used a double integral to integrate over a two-

dimensional region and so it shouldn’t be too surprising that we’ll use a triple integral to integrate

over a three dimensional region. The notation for the general triple integrals is:∫∫∫
E

f(x, y, z)dV

Let’s start simple by integrating over the box

B = [a, b]× [c, d]× [r, s]

Note that when using this notation we list the x’s first, the y’s second and the z’s third.

The triple integral in this case is∫∫∫
B

f(x, y, z)dV =

∫ s

r

∫ d

c

∫ b

a

f(x, y, z)dxdydz

Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no reason

to the integrals in this order.
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5.9 Triple Integrals

Example 5.13

Evaluate the following integral.∫∫∫
B

8xyzdV , B = [2, 3]× [1, 2]× [0, 1]

Solution

Just to make the point that order doesn’t matter let’s use a different order from that listed above.

We’ll do the integral in the following order.∫∫∫
B

f(x, y, z)dV =

∫ 2

1

∫ 3

2

∫ 1

0

8xyzdzdxdy

=

∫ 2

1

∫ 3

2

[
4xyz2

]1
0
dxdy

=

∫ 2

1

∫ 3

2

4xydxdy

=

∫ 2

1

[
2x2y

]3
2
dy

=

∫ 2

1

10ydy = 15

There are six different possible orders to do the integral in and which order you do the integral in

will depend upon the function and the order that you feel will be the easiest.

First case, we define the region E as follows

E = {(x, y, z)/x ∈ [a, b] , u1(x) ≤ y ≤ u2(x), v1(x, y) ≤ z ≤ v2(x, y)}

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(x)

u1(x)

(∫ v2(x,y)

v1(x,y)

f(x, y, z)dz

)
dy

)
dx

Second case we define the region E as follows

E = {(x, y, z)/y ∈ [a, b] , u1(y) ≤ x ≤ u2(y), v1(x, y) ≤ z ≤ v2(x, y)}

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(y)

u1(y)

(∫ v2(x,y)

v1(x,y)

f(x, y, z)dz

)
dx

)
dy

Third case we define the region E as follows

E = {(x, y, z)/z ∈ [a, b] , u1(z) ≤ x ≤ u2(z), v1(x, z) ≤ y ≤ v2(x, z)}
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5.9 Triple Integrals

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(z)

u1(z)

(∫ v2(x,z)

v1(x,z)

f(x, y, z)dy

)
dx

)
dz

Fourth case we define the region E as follows

E = {(x, y, z)/z ∈ [a, b] , u1(z) ≤ y ≤ u2(z), v1(y, z) ≤ x ≤ v2(y, z)}

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(z)

u1(z)

(∫ v2(y,z)

v1(y,z)

f(x, y, z)dx

)
dy

)
dz

Fifth case we define the region E as follows

E = {(x, y, z)/y ∈ [a, b] , u1(y) ≤ z ≤ u2(y), v1(y, z) ≤ x ≤ v2(y, z)}

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(y)

u1(y)

(∫ v2(y,z)

v1(y,z)

f(x, y, z)dx

)
dy

)
dz

Sixth case we define the region E as follows

E = {(x, y, z)/x ∈ [a, b] , u1(x) ≤ z ≤ u2(x), v1(x, z) ≤ y ≤ v2(x, z)}

In this case we will evaluate the triple integral as follows∫∫∫
E

f(x, y, z)dxdydz =

∫ b

a

(∫ u2(x)

u1(x)

(∫ v2(x,z)

v1(x,z)

f(x, y, z)dy

)
dz

)
dx

Example 5.14

Evaluate the following integral. ∫∫∫
E

x√
y − x2

dxdydz

E =
{
(x, y, z) ∈ R3, z ∈ [1, 2] , 0 ≤ x ≤ √y, 0 ≤ y ≤ z2

}
Solution
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Chapter 5 Exercise

∫∫∫
E

−x√
y − x2

dxdydz =

∫ 2

1

(∫ z2

0

(∫ √
y

0

−x√
y − x2

dx

)
dy

)
dz

=

∫ 2

1

(∫ z2

0

[
−
√
y − x2

]√y

0
dy

)
dz

=

∫ 2

1

(∫ z2

0

√
ydy

)
dz =

∫ 2

1

[
2

3
y

3
2

]z2
0

dz

=
2

3

∫ 2

1

z3dz =
1

6

[
z4
]2
1
=

5

2

K Chapter 5 Exercise k

1. Exercise 1 Find the definition set of the following function

f (x, y) =
2xy

x2 + y2

then study the limit at the point (0, 0)

2. Exercise 2

Calculate the partial derivatives of the function defined by

U (x, y) = sin
(
ax+ by + cy2

)
3. Exercise 3

Calculate the total derivative of the function

U (x, y) = ex
2+y2 sin2

(
x+ 3y2

)
4. Exercise 4

Evaluate the integral ∫ ∫
D

x2exydxdy

D =

{
(x, y) ∈ R2 : 0 ≤ x ≤ 2,

1

2
x ≤ y ≤ 1

}
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Chapter 5 Exercise

Terminology

Zero matrix ية الصفر المصفوفة Constant of integration المكاملة ثابت
Squar matrix مربعة مصفوفة Continuous function مستمر تابع
Diagonal matrix المصفوفة قطر Elementary functions معروفة دوال
Identity matrix الواحدية المصفوفة Indefinite integrals محدود غير تكامل
Upper Triangular matrix ية علو مثلثية مصفوفة Definite integrals محدود تكامل
Lower Triangular matrix سفلية مثلثية مصفوفة Linearity of the integral التكامل خطية
Symmetric matrix ية تناظر مصفوفة Linearity of the integral التكامل خطية
Special matrices خاصة مصفوفات Limits of integration التكامل حدود
Inverse of a matrix مصفوفة معكوس integration Methods التكامل طرق
Matrix row مصفوفة سطر Integration by Substitution متغير يل بتحو التكامل
Matrix column مصفوفة عمود Integration by Parts بالتجزئة التكامل
Equality of two matrices المصفوفات تساوي Partial fractions الجزئية الـكسور
Transpose of a matrix مصفوفة منقول Trigonometric functions مثلثية دوال
Trace of a square matrix مصفوفة اثر Dffierential equations التفاضلية المعادلات
Augmented matrix موسعة مصفوفة Independent variable مستقل متغير
Sub matrix جزئية مصفوفة Order درجة
Determinants المحددات Linearity الخطية
Cofactor matrix المرافقة المصفوفة Homogeneous متجانسة
Minor matrix الصغرى المفوفة Non homogeneous متجانسة غير
Rank of a matrix مصفوفة رتبة Variable coefficients المتغيرة الماملات
Elementary Transformations اولية يلات تحو Constant coefficients ثابتة معاملات
Equivalent matrix متكافئة مصفوفات General solution عام حل
Linear equations خطية معادلة Particular solution خاص حل
System of Linear equations خطية معادلات جمل Variation of constant الثابت تغيير
Variables متغيرات Nonlinear equation خطية غير معادلة
Unknowns المجاهيل Bernouli equation بارنولي معادلة
Coefficients المعاملات Separable dffierential equation منفصلة تفاضلية معادلة
Constants الثوابت Euler Homogeneous المتجانسة اولر
Solution set الحلول مجموعة Characteristic equation المميزة المعادلة
Homogeneous linear system متجانسة خطية جمل Several variables المتغيرات متعدد
Unique solution وحيد حل Domain يف التعر مجال
Infinitely many solution الحلول من مالانهاية Range الصور مجموعة
Infinitely many solution الحلول من مالانهاية Graph بيان
Elementary operations الاولية العمليات Limit of a function الدالة نهاية
No solution حلول لاتوجد Multivariable function المتغيرات متعدد
Inconsistent system متعارضة جمل vector valued functions شعاعية دوال
Matrix form المصفوفي الشكل Limit of a function دالة نهاية
Cramer`s rule كرامر قاعدة Continuity الاستمرار
Matrix inversion مصفوفة مقلوب Partial derivatives الجزئية المشتقات
elimination method الاختزال يقة طر Dffierential التفاضل
Elementary operations الاولية العمليات Total dffierential التام التفاضل
Equivalent systems المتكافئة الجمل Double integrals المزدوج التكامل
Primitive functions الاصلية الدوال Bounded region محدود مجال
Derivative functions الدوال مشتق Jacobian matrix اليعقوبية المصفوفة
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