Peoples’ Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Constantine 1 Mentouri Brothers
Faculty of Exact Sciences

Department of Mathematics

2 o
kék’ﬁ‘ —

Pedagogic Handout

Courses in Mathematics 2

Author: Rabiaa OUAHABI

FOR FIRST YEAR STUDENTS IN SCIENCE AND TECHNOLOGY

SECOND SEMESTER 2023-2024







Introduction

This Handout, the result of teaching experience, is aimed at first year students in Science and
Technology. Its objective is to guide students efficiently through the fundamental principles and
computation techniques to be qualified to deal with mathematical problems.

Five chapters are included in this Handout:

Chapter 1 deals with Matrices, we learn about matrices, we are studying operations on the matrices,
types of matrices, inverse of a matrix, also, a second method (Gauss-Jordan elimination method) for
finding a matrix inverse will be outlined. we will learn about a characteristic quantity associated with
square matrices-the determinant.

The determinant which studied in Chapter 2 plays an important role in matrix calculus and solving
linear systems. It allows us to know whether a matrix is invertible or not. We start by giving the
expression for determinant of a matrix and also cofactor method of finding the inverse of a square
matrix.

Systems of linear equations and their solutions constitute one of the major topics that we will study
in the chapter 2. In the first section we will introduce some basic terminology then, We have a brief
discussion of methods for solving such systems.

Chapter 3 deals with Integrals end primitive functions.

Integration started as a method to solve problems in mathematics and physics, such as finding the area
under a curve, or determining displacement from velocity. Today integration is used in a wide variety
of scientific fields.

Integrals refer to the concept of an anti-derivative, a function whose derivative is the given function;
in this case, they are also called indefinite integrals.

Both the integral and differential are related to each other by the fundamental theorem of calculus,
which provides a method to compute the definite integral of a function when its anti-derivative is
known.

In this chapter, we will learn about some important methods for calculating integrals.



In the fourth chapter, we will study the ordinary differential equations and their corresponding methods
of solution, especially first-order ordinary differential equations, as well as second-order differential
equations with constant coefficients.

The last chapter is devoted to the functions of several variables. We will present some basic definitions
of derivatives and multiple integrals, especially the double integral.

Finally, we hope that this cours will be a means to help students understand the lessons and be able to

apply them.
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Chapter 1 Matrices and Determinants

Introduction

A Definition of a Matrix (A Change of basis (Transit matrix)

A Special Matrices (A Determinant of a Square Matrix

A Operations on Matrices o Properties of Determinants

A The inverse of a matrix o Det of particular matrices

(A Matrix of a linear application o, Inverse of a matrix using cofactor
A Linear map of matrix 1 Rank of a Matrix

1.1 Definition of a Matrix

Definition 1.1 (Matrix)

A matrix A is a rectangular array (table) of elements of k. See [3]

o It is said to be of order m x n if the table has m rows and n columns, enclosed within a
bracket (either round or square)

o The numbers m and n are called the dimensions of the matrix.

o The numbers in the table are called the coefficients of A.

o The coefficient in the i"row and in the j" column is denoted by a;;.

o The matrices is denoted with capital letters, like A, B, C' etc. &

A short hand method of writing a general m X n matrix is the following.

aixy Qa2 -+ Qip
Q21 Q22 -+  QAap
Amxn = = (a;j)1<i<m (1.1)
: : : 1=j<n
Am1 Qm2 - Qmp

mXxn



“

1.1 Definition of a Matrix

Remark
o k denotes a field wich is Q, R or C.
o If m = n, in equation (1.1) we say that matrix A is of order n.
o A matrix having only one column is called column matrix (or vector column), and a matrix with
only one row is called a row matrix (or row vector).
o We denote the set of matrices of order m x n by M,,,«, (k).
Example 1.1

Let be the following matrices

-8
-5 0
1 0 7 2
A= , B=1 7 -3 ,C=(9—31>,D=
2 -3 0 0
3 4
-5

A is a matrix of order 2 x 3, with two rows and three columns,

suchas ¢, = 1, ao=0, a3=7, asg =2, asx =-—3, ax=0~0.
B is a matrix of order 3 x 2, B € M3ys (R).

C'is a row matrix (row vector), with three columns.

D is a column matrix (column vector), with four rows.

1.1.1 Equality of two matrices

Definition 1.2

[3, 5] Two matrices A = (a;;) and B = (b;;) are said to be equal if:

o They possess the same number of rows and the same number of columns

o Ifa;; =0;,Vi=1,...mandVj=1,..,n

Exercise 1.1

Set the coefficients « and [ that the two matrices A and B are equal

A: 7_B:



1.2 Special Matrices

Solution

1.2 Special Matrices

1.2.1 Zero-matrix

Definition 1.3

[3, 6] If every coefficient in a matrix A,,xn, = (aij)1<i<m in (1.1) is zero, it is known as a zero
1<j<n

matrix and denoted by 0,5 ,. &

For example:

O3x2=1 0 0 |,03x3=1]1 0 0 0

1.2.2 Square matrix

Definition 1.4

[3, 6] A matrix that has equal numbers of rows and columns (n = m) is known as a square

matrix. We call this matrix A of order n, and is represented by n only i.e. A € M,, (k). &

For example

1 0 9
2 1
A= eM;(R),B=] 2 -3 2 | e M3(R)
_\/§ 0
5 4 1



1.2 Special Matrices

1.2.3 Diagonal matrix

Definition 1.5

A square matrix A = (a;;) is said to be a diagonal matrix if a;; = 0 for i # j, and at least one

element a; # 0. See [6, 20].

&
For example
2 0 00
0 —4 0 0 -2 0
A= and B =
0O 0 00 0 8
0 0 01
1.2.4 Identity Matrix
Definition 1.6
[3, 5] A square matrix whose diagonal elements are equal to 1 is called identity matrix and
1,i=
denoted by I, in other words a;; = .
0, 0%
&
For example:
1 00
10
Isi=101 0 |and L=
0 1
0 01
1.2.5 Upper Triangular matrix
Definition 1.7
A square matrix A = (a;;) is said to be an upper triangular matrix if a;; = 0 for i > j See [3,
6]. &

For example



1.3 Operations on Matrices

A=10 =8 0 and B =

1.2.6 Lower Triangular matrix

Definition 1.8

A square matrix A = (a;;) is said to be an lower triangular matrix if a;; = 0 for i < j See [3,

6]. &

For example

A=19 -3 ¢ |and B=
3 V13 1

1.2.7 Symmetric Matrix

Definition 1.9
A square matrix A = (a;;) said to be a symmetric if a;; = aj; for all i and j See [3, 5]. &

For example

2 5 =T
A= 5 —3 /3 | isasymmetric Matrix.
-7 V3 1

1.3 Operations on Matrices

The matrix operations include the addition, subtraction, multiplication of matrices, transpose of

a matrix, and inverse of a matrix.



1.3 Operations on Matrices

1.3.1 Scalar multiple of a matrix

Definition 1.10 (Scalar multiple of a matrix)

Let A = (a;j) Muyxn (R), then for any scalar X € R, we defind NA by: AA = (Aa;j)1<i<m ,
155<n
Aair Aaiz o0 Aa,
g1 Aagy - Q2n,
A =
/\aml )\amZ T )\amn
See [3, 11] [
For example
3 0 =5 9 0 -=15
A=11 -5 V2 [=34=[ 3 -15 3V2
5 2 3 15 6 9

Remark

Multiplying a scalar by a matrix is commutative, ie AA = A\

1.3.2 Addition of Matrices

Definition 1.11 (Addition of Matrices)

Let A = (a;;) and B = (b;;) be are two matrices with same order m x n, Then the sum A + B

is defined by: A+ B = (a;j)1<i<m + (bij)1<i<m = (aij + bij)1<i<m , see [11]

1<j<n 1<j<n 1<j<n
a1 +bnn  aip+bia - a4 by
a1 +ba1  age +bay - ag, 4+ by
A+ B =
Am1 I bml Am2 I bm2 o Amp I bmn

Example 1.2



1.3 Operations on Matrices

0 5 -9 1 0 9

V3 0 2 2 -3 4
Find 34, A+ B, 3A — 2B.

Solution
0 15 —27 1 5 0
3vV3 0 6 243 -3 6
0 15 —27 2 0 -18
3A—2B = -
3V3 0 6 4 —6 8
-9 15 —45
3V3—4 6 —2
Property

Let A, B and C be matrices of order m x n, and let A\{, \y € R. Then [3]
o A+ B=B+A

o (A+B)+C=A+(B+C)

o (M +A)A=XMA+ XA

° ()\1)\2) A= )\1 ()\QA)

1.3.3 Multiplication of Matrices

Definition 1.12 (Multiplication of Matrices)

Let A = (a;j) € Mpxn (R) and B = (bjz) € My, (R). The product AB is a matrix

C' = (cix) of order m X p, defined by: [20, 27]

Ci, = Za“ X by, where
=1
1 < i<m,1<k<p mmnpeN

Example 1.3

7
Obtain the product AB if A = and B =



1.3 Operations on Matrices

Solution
7 —1 2 4 1
AB = X
2 -3 3 20
2 11 4 r 111
7 —1 7 —1 7 —1
3 - 412 - - 10
2 11 4 r 111
2 -3 2 -3 2 -3
3 412 - 10
11 26 7
-5 2 2
Remark

1. The multiplication of a matrix A by a matrix B is defined only when the number of columns of
the first matrix A equals the number of rows of the second matrix B.

2. In general, the matrix multiplication is not commutative: AB # BA.

Example 1.4
-2 4 1 3
3 5 2 —4
We have:
-2 4 1 3 6 —22
AB = X e
3 5 2 —4 13 —11
1 3 -2 4 7 19
2 -4 3 5 —-16 —12
Thus, AB # BA
Property

Assuming that the sizes of the matrices are such that the indicated operations can be performed,
the following rules of matrix arithmetic are valid, See [3].
o (AB)C = A(BC)

o A(B+C)=AB+ AC



1.3 Operations on Matrices

o Al, =1,A=A

o A" =AXxA..xA neN*
|

n factors
In general

o (A+ B)*# A?+2AB + B?
o (A—B)># A2 —2AB + B?

o (A+B)(A-B) # A - B?

1.3.4 Transpose of a Matrix

Definition 1.13 (Transpose of a Matrix)

The transpose of matrix A = (a;j)1<i<m , written AT, or A'( is the matrix obtained by writing
1<j<n

the rows of A in order as the columns of A and writing the columns of A as the rows of Al, see

[20]. Y

Example 1.5

For example:

1 2 5)
10 9 1
0 -3 4
LetA=1] 2 -3 V2 6 = Al =
9 V2 1
5 4 1 —4
1 6 -4

Remark

If A€ M,,un(R),then A € M,, ., (R).

1.3.5 Properties of the matrices transpose of a matrix

Let A and B be matrices, and let A € R. [3, 6] Then
o (A+B) =A+ B!
o (A =A

o (MA)" = MA?, \is a scalar.



1.3 Operations on Matrices

o (AB)! = B'A!
o If A' = A, the matrix A is symmetric
#:  Exercise 1.2

Show that the matrix C'is symmetric, where:

5 4 8
Solution
Taking the transpose of C'
1 2 5
C'=1|2 -3 4 [;
5 4 8

Clearly C* = C so C is a symmetric matrix.

1.3.6 Main diagonal

Definition 1.14 (Main diagonal)

The Main diagonal (Principal diagonal) of a square matrix, A = (a;;) € M,, (R) , is the list

of entries a;j where i = j, that mean (a1, G2, ...... Qnn), See [3] &

Trace of a square matrix

Definition 1.15

Let A € M,, (R), a square matrix of order n, the trace of A denoted tr(A), is defined to be

the sum of elements on the main diagonal; see [3].

tr (A) = Zaii = a1 + aog + ....... P @
=1 &

Example 1.6

10




1.4 The inverse of a matrix

1.3.7 Properties of trace of matrix

A and B two square matrices of the same order, then [10]:
o tr(A+ B) =tr(A) + tr(B).
o tr (AA) = Atr (A).
o tr(A) =tr(A").
o (AB)' = BtA!
#  Exercise 1.3

Classify the following matrices (and, where possible, find the trace):

7 8 0 1
9 2 14 7 0
2 10 0 8
A=1 9 1 |,B=131 6 9 |,C=
-8 12 -3 1
11 2 10 -3 4
1 4 7 5

Solution
Ae M3><2 (R) , B e ./\/l3><4 (R), Ce M4 (R)

The trace is not defined for A or B. However, tr(C) =7+ 10+ (—=3) + 5 =19

1.4 The inverse of a matrix

Definition 1.16

Let A € M,, (R) a square matrix, if there exists a square matrix B of order n; (B € M,, (R))

such that

AB=BA=1,

we say that A is invertible. We call B the inverse of A and we denote it A~ [6, 10] &

11



1.4 The inverse of a matrix

Example 1.7
1 2
Let A= , To study if A is invertible is to study the existence of a matrix
0 3
z Yy
B = such that AB = BA = I,
z t

AB =1 is equivalent to:

1 2 Ty 10
0 3 z t 0 1
rT+2z y+2t 1 0
= =
z 3t 01
(
r+2z2=1
y+20=0
z=0
t=1
\
1 2 0, t L
xr = _ —— z = — —
7y 37 ) 3
2
1 =3

There is therefore only one possible matrix, namely B = ;

To prove that it is suitable, we must also show the equality BA = I,. The matrix A is therefore

2

invertible and A~! = 3

1
0 3
Remark

Not all square matrices have an inverse matrix.

Example 1.8
0 2 Ty
The matrix A = , is not invertible. Indeed, let B = any matrix. So
0 7 z 1
Ty 0 2 0 22+ Ty
the product BA = = , can never be equal to the identity
z 07 0 2247t

12



1.4 The inverse of a matrix

matrix.

Remark
o The zero matrix O,, of order n is not invertible.

» Inverse of the inverse If A be an invertible matrix, then A~ is also invertible and we have:
(A7) = 4
o Inverse of product If A and B be two invertible matrices of the same order, then AB is invertible

and [6]
(AB) ' =p7'A™!

#  Exercise 1.4

1. Compute C? — 2C — 815

2. From the previous relation, prove that C' is revertible and find its inverse.

Solution
02 2 0 2 2
C*=CxC=120 2 2 0 2
2 2 0 2 20
8 4 4
C*’=14 8 4
4 4 8

13



1.4 The inverse of a matrix

o Calculate : C? —2C — 81,

8§ 4 4 0 2 2 100
C*~20-8; = | 484 |-2[202]|-8[010
4 4 8 2 20 0 01

0 00

= 0 00

000

o Proofthat C is invertible and find its inverse
C?*—20—-8I; = 0+<=C?-20=281

s(C—203)-C=1I

According to the definition of the inverse of a matrix, we can conclude that C' is revertible and its

inverse is given by

1
C_l - §(0—213>
0 2 2
1
= - -2
3 2 0 2
2 20
-2 2
1
cl==Z —_
3 2 2
2 2
Thus
_1 1
1 1
Cct= 11
4 4
1 1
4 4

14

=

N

AT,



1.4 The inverse of a matrix

1.4.1 Computation of the Matrix Inverse

1.4.1.1 Inverse of a Matrix using Elementary Row Operations (Gauss-Jordan

method)

Steps to find the inverse of a matrix using Gauss-Jordan method

[19] Let A € M, (R) be a square matrix.

In order to find the inverse of the matrix following steps need to be followed [1, 2]:

Form the augmented matrix by the identity matrix (A |[,).

On the rows of this augmented matrix, we carry out elementary operations until we obtain the
matrix (1, |B)

The following row operations are performed on augmented matrix when required:

o ar; — r;, with a # 0 : multiply each element in a row by a non-zero constant «

o7 +ar; — r;, with o € R and ¢ # j : replace a row by the sum of itself and a constant

multiple of another row of the matrix.
o 1r; < r; interchange any two row (swap rows).

Example 1.9

Using elementary row operations, find A~ for the matrix

-5 0 —12
A=1 3 1 -1
1 0 3
Solution
The identity matrix is given by
1 00
Is=1010
0 01

Form the augmented matrix by the identity matrix (A |1,,) as follows:

15



1.4 The inverse of a matrix

~5 0
(AlL)=1 3 1
1 0

We use the row operation 71 <+ 73 to give

1 0
3 1
-5 0

—12

=121 0 0O
-1 70 10
3 |0 0 1
0 01
010
100

The pivot in the second row can be turned into a zero entry by use of the row operation o —3r; —

9, glving
1 0
0 1
-5 0

3

—10

—12

0 0 1
01 -3
10 0

A similar row operation can be applied to the third row. The row operation 3 + 5r; — 73 thus

obtains:

—10

00 1
01 -3
1 0 5

At this point, we choose to change the new pivot in the third row, so that it is equal to 1. We use

the row operation %Tg — 73 to find:

10
01

0 0

3

—10

1

Wl

To obtain the identity matrix on the left side, we need to remove the two nonzero entries which

16



1.4 The inverse of a matrix

are above the pivot in the third row. The row operations o + 10r3 — r9 and r; — 3r3 — 1 give
1 0 0/—-1 0 —4

01 0|L 1 4

001 L o 3

We have obtained precisely the form that we were looking for, which means that the right side of

the augmented matrix is the inverse

-1 0 —4
-1 _ 10 41
4 3 1 3
1 5
3 0 3

1.4.2 Rank of a matrix using elementary transformations

Let A € M,,«, (R) be a matrix having columns C1, Cs, ..., C,, and rows Ry, Ry, ...., R,,.

We can use elementary row/column transformations and convert the matrix into upper triangular

form or in lower triangular form.

A row (or column) transformation can be one of the following: [26]

o Interchanging two rows I; +— RR;.
o Multiplying a row by a non-zero scalar « R; — R;, with o # 0.

o Multiplying a row by a scalar and then adding it to the other row R; + alR; — R;, witha € R
and 7 # j.

Equivalent Matrix

[18] A matrix B is said to be equivalent to a matrix A if B can be obtained from A, by forming

finitely many successive elementary transformations on a matrix A. Denoted by A ~ B.

Here are the steps to find the rank of a matrix [21].

o Convert the matrix into upper triangular form or in lower triangular form using row/column

transformations.

o Then the rank of the matrix is equal to the number of non-zero rows in the resultant matrix.

17



1.4 The inverse of a matrix

Example 1.10 Find the rank of each of the folowing matrices:

-1 25 3 2 —6
A= 1 2 3 |,B= 1 1 =2
-2 8 1 -3 -3 6

1 2 3 4 3 1 =2

C=| 2 4 6 [|.D=| -3 -1 -2 4

-3 —6 -9 6 7 -1 2

Solution

Performing elementary row operations, we get

-1 2 5 -1 2 5
Ro+Ri— Ry
ILA=1 1 23 0 4 8 [Hs—fo— Ry
-2 8 1 0 4 -9
The last equivalent matrix is in row-echelon form. It has three non-zero rows. So, RK (A) = 3.
3 2 —6 3 2 —6 3 2
Ry — %Rl——> Ry
2.B=111 =2 0 % 0 R3; —4Ry— R3 | 0 %
Ry — $R1— Ry ’
4 4 -8 »\ 0 5 0 0 0

Now it is in Echelon form and so now we have to count the number of non-zero rows.

The number of non-zero rows is 2. Therefore, RK (B) = 2.
1 2 3 1 2 3
R2—2R1——> R2
3. C= 2 4 6
R3+3R1——> Rg
-3 -6 -9 >
The number of non-zero rows is 1. Therefore, RK (C’ ) =1
4 3 1 =2 4 3 1 =2
R2+%R1——> Rg
4. D=1 -3 -1 -2 4 02 =2 3
R3 — %Rl—% Rg
6 7 -1 2 »\ 02 P2 5

18



1.5 Matrix associated with a linear application

4 3 1 =2
00 0 O

The number of non-zero rows is 2. Therefore, RK (D) = 2.

1.5 Matrix associated with a linear application

[30] A linear application (or linear transformation, linear map) between two finite-dimensional
vector spaces can always be represented by a matrix, called the matrix of the linear map.

Let U and V' be two vector spaces over a field £ such: dimU = n,dimV =m

Let B = {u1,uy,....,u,} is a basis of vector space U and B = {v1,vs, ...., v, } is a basis of
vector space V'

Let f be a linear transformation (map) from U to V'
(
f (ul) = a11V1 + a91V2 + ... + @p1Um

f (Ug) = a12V1 + [055X%) + ...+ Ay2Um

| (un) = a1nv1 + @202 + o+ G

Then, the matrix defined by A = (a”)lléém € M, (k) is the matrix associated of the linear
<j<n
application f and is denoted by M (B, B')..
Remark
o If dimU = dimV = n, then the associated matrix of linear map will be a square matrix of
order n.

o The matrix associated with a null map is the null matrix.

o The matrix associated with an identity application is the identity Matrix matrix.

Example 1.11

19



1.6 Linear application (map) associated with a matrix

Let f be a linear map defined by
f: R —R3
(z,y) = bz +y,—x + 3y, z — y)
Find the associate matrix of linear map f with canonical basis in R? and R?
Solution
The canonical basis in R? is {(1,0), (0,1)},
and the canonical basis in R3 is {(1,0,0), (0,1,0), (0,0,1)}

We have
f(,0 = (5,-1,1)=5(1,0,0)—1(0,1,0) +1(0,0,1)
f(,1) = (1,3,-1)=1(1,0,0)4+3(0,1,0) —1(0,0,1)

Then the associated matrix of f is defined by

Remark
o The associated matrix A of a linear map f is invertible if and only if the transformation f is
bijective

o Rank(M; (B, B')) = dim (Imf)

1.6 Linear application (map) associated with a matrix

Definition 1.17

[27] Let M = (ai;)1<i<m be a matrix of order m x n and let U and V' be two vector spaces
1<j<n

such that dim U = n, dim V' = m.

Let B = {uy,uy, ....,u,} is a basis of U and B' = B = {v1,va, ..., vy, } is a basis of V',

We call the application linear f : U — V an associated linear application of the matrix M if

/ (Uj> = A1;V1 + AV + ... + Uy foralll < j <n

20



1.7 Change of basis (Transit matrix)

It is denoted by f);. &

Example 1.12

4 0
Let f:R? — R3, Let M = | _1 1 | beamatrix of order 3 x 2
2 3

Let B = {ey, ey} be the canonical basis in R?, and B" = {e1, 5, e3} is the canonical basis in R?

There existe an unique linear application f); : R*> — R3 such
fur (e1) = arer + arper + arzes = (4,—1,2)
far (e2) = agieq + agges + agzes = (0,1, 3)
Let (z,y) € R?
fu(@yy) = fur (zer +yes)
= xfu(e1) +yfu (e2)
= x(4,-1,2)+y(0,1,3)

Remark

o If f is bijective, and M; (B, B') is the associate matrix of f , then M1 (B', B) is the
associate matrix of f~! in the basis (B', B)

o Let M is the associate matrix of f and M, is the associate matrix of g, then M., = M - M;

1.7 Change of basis (Transit matrix)

The change of basis is a technique that allows us to express vector coordinates with respect to a

“new basis” that is different from the old basis” originally employed to compute coordinates.

Property

If V is a vector space with basis {uy, us, ...., u, }, then every vector v € V can be written

uniquely as a linear combination of uy, us, ...., Uy.
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1.8 Determinants

Definition 1.18

[4] Let V be a vector space. Let B = {uy,us, ....,u,} and B = {vy, vy, ...., v, } be two basis

for U. Then, there exists a matrix P, denoted by Py,_, 5 and called change-of-basis matrix from
B to B', such that, P = (a;;) € M,, (k) where (a;;) € k defined by:
(

U] = a11V1 + a19vV2 + ... + A1nUn

Ug = A21V] + A2V + ... + QopUy,

Up = Ap1V1 + GpaU2 + ... + Apply

) &

Example 1.13

Consider the vector space R? of two basis: B = {u; = (1,0), uy = (1,—1)} and B =

{Ul = (0, ].), Vg = (1, ].)}

We have
U = —V1 + Vg
UL = —209 + V9
the change-of-basis matrix is
-1 =2
P =
B—B
1 1

1.8 Determinants

1.9 Determinant of a Square Matrix

To define the determinant of a matrix, we have to know about sub-matrices of a matrix.

Definition 1.19 (Sub-matrix)

Let A = (aij) € M xn (R) be matrix of order m x n. The matrix A;; obtained by deleting the

it" row and 7' column of A is called a sub-matrix of A. &
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1.9 Determinant of a Square Matrix

Definition 1.20 (Determinant)

[4] Let A = (a;;) € M,, (R) be a square matrix of order n.
The determinant of the matrix A can be defined as a linear application defined from the set of

square matrices M,, (R) to R, written det(A) or |A| given by:
det: M, (R) — R

a, if A=(a), (n=1)
Z (-1)1+] Qay; det (Alj) 5 lfn 2 2
j=1
where Ay is the sub-matrix of A, which is obtained by deleting the first row and j™" column. &

Remark
o The determinant of the matrix A can be calculated according to any row ¢ and according to any
column j, it is given by the following relations:

o according to the row i == det (A) = 3 (=1)" a,; det (Aj;)

,_.

(—1)i+j CLZ']' det (AU)

=1

J=
o according to the column j = det (A)

where A;; is a sub-matrix of A.

Definition 1.21 (Minor and Cofactor)

[4] Let A;; a square sub-matrix of A = (a;;) € M,, (R).

1. The determinant M;; = det (A;;) is called the minor of the element a;; of A.

2. Cij = (1) M is called the cofactor of a;;.

So, we can defined the determinant of a matrix A using minors and cofactors as:

n

det (A) = Zaz’j (—1)™ My = Zaw ij

J=1

Example 1.14

o Let A= ,Sodet A=3x(—2)—4x5=-26
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1.9 Determinant of a Square Matrix

-1 2 5
o Let A = 1 2 3 |, we calculate the determinant of the matrix A according to the first
-2 8 1
row
-1t 2= 5°*
2 3 1 3 1 2
1 2 3 = +(-1) -2 +5
8 1 -2 1 -2 8
-2 8 1

= (-1)(2x1-3x8) —2(1x1—-(-2)x3)+5(1x8—-(-2)2)
= 68

We calculate the determinant of the matrix A according to the second column

-1 -2 5

1 3 -1 5 -1 5
1 42 3 = -2 +2 —8

-2 1 -2 1 1 3
-2 -8 1

= 2(I1x1—(-2)x3)+2((—-1)x1—(-2)x5)—8((—1) x3—1x5)
= 068
Remark

To facilitate the calculations, we have to choose the row or column that contains the largest
number of zeros.

Example 1.15

Calculate the determinant of the following matrix

3 =7 9 3

0 O 2 0
B =

0O 1 10 3

0 4 -85

We calculate the determinant of the matrix A according to the first column ( it contains the largest
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1.9 Determinant of a Square Matrix

number of zeros.)

3 =7 9 3
0 2 0
0 0 2 0
det B = =31 10 3
0 1 10 3
4 -8 5
0 4 -85
1 3
= 3x(-2) =(—6)(1 x5—3x4)
4 5
= 42

1.9.1 Important Properties of Determinants

[4,29] Let A € M,, (k) be a matrix having columns Cy, Cy, ..., C,, and rows Ry, Ry, ...., R,,.
1. If all the elements of a row (or column) are zero, then det A = 0.
2. The interchange of any two rows (or columns) of the determinant of A changes its sign.

Example 1.16
-1 2 5

Al=| 1 2 3

-2 8 1

|IBl| =12 1 3 |(interchange of columns 1 and 2)

|C|=1] 1 2 3 |(interchange of rows 1 and 3)

|A| = 68 (previous example)
1Bl =2(1+6)+ (20— 24) +5(—4 — 8) = —68

So |A| = —|B].
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1.9 Determinant of a Square Matrix

IC]=(-2)(1—-6)—8(5+3)+10(2+2) = —68
So |[A| = —|C].
3. A determinant remains unaltered under an operation of the form
Cit Y 0,C; — G

=15

Or

Ri—F i OéjRj — Rz

=15
(This property is used to make zeros appear on a row (or column))

Example 1.17

Let: detA = 1 2 3| + Ry

-2 8 1 +— R4

Replacing the first column by: C + %CQ — ()

-1 2 5 —-14+1 2 5 0 2 5| «— Ry
1 2 3(=] 1+1 2 3|=[2 2 3| <« Ry
-2 8 1 —2+44 8 1 2 8 1| <R3
Replacing the second row by: Ry — R3 — R»

0 2 5 0 2 5 0 2 5
2 23] = |2-22-83-1|=]0 —6 2
2 81 2 8 1 2 8 1

2 5

= 2 =2(4+30) =68
—6 2

4. If all the elements of a row (or column) of a determinant are multiplied by a non-zero constant,
then the determinant gets multiplied by the same constant.
o Special case: det («A) = o™ - det A, where A € M,, (k)

Example 1.18
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1.9 Determinant of a Square Matrix

Al =

-1 2 5

-2 8 1

1 2 3

-1 2

-2 8

—15

-3

Ol =

-1 2 5

2 46

-2 8 1

|A| = 68 (previous example)

In | B|, the third column is multiplied by (—3)
-1 2 —15
IBl=| 1 2 —9 |=(-1)(-60+72)—2(-3—18) —15(8+4)
-2 8 -3

So, | B| = —204, that means |B| = —3|A]|.
In |C| the second row is multiplied by 2

-1 2 5

ICl=| 2 4 6|=(—1)(40—48) —2(20+ 12) +5(16 + 8)
-2 8 1

So, |C| = 136, that means |C| = 2|A|.

5. If all elements of a row (or column) are proportional (identical) to the elements of some other
row (or column), then det A = 0.

Example 1.19
-1 2 4
A= 1 2 4

-2 8 16

The third column is proportional to first column

-1 2 4
[Al=| 1 2 4 |=(-1)(32-32)—2(16+8)+4(8+4) =0.

-2 8 16

1.9.2 Determinants of particular matrices
Let A, B € M,, (k) two square matrices of order n, then
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1.9 Determinant of a Square Matrix

1. If A is a Zero-matrix, then det A = 0.

2. If A = (ay;) is an Upper triangular matrix (or Lower triangular matrix), then

a1 iy e e Qi
Qo1 Qg o+ o0 Qo
det A = : o : =11 - A92 * . Uy
Ui Gpy -+ Oy
Special cases:
o If A is Diagonal matrix, then det A = a1 - ass - ... * Q-
o det I, = 1.
3. det A = det A
Example 1.20
Let
-1 25
A= 1 2 3
-2 8 1
|A| = 68.
-1 1 -2
Al=1 2 2 38
5 3 1
|AY| = (—1) (20 — 24) — (20 — 40) + (—2) (6 — 10) = 68
So, |A] = |A!|

4. det AB =det A-det B

o Special case: det AA™ =det A-det At =1=det A" = 5

Example 1.21
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1.9 Determinant of a Square Matrix

-1 2 5 -10 0
Let A = 0 2 3 |.B= 0 3 0
0 0 1 0 0 —2

A is upper triangular matrix, then det A = |A] = (—=1) x 2 x 1 = —2.
B is diagonal matrix, then det B = |B| = (—1) x 3 x (—2) = 6.

det A x det B =(—2) x 6 = —12

-1 2 5 10 0 1 6 —10
AB=1 0 2 3 0 3 0 |=]06 -6
0 0 1 0 0 —2 00 —2

AB is upper triangular matrix, then det AB = |AB| =1 x 6 x (—2) = —12
det AB = —12, sodet AB = det A - det B.
Remark
o det (A4 B) # det (A) + det (B).

o det (a- A) # - det (A).

1.9.3 Inverse of a square Matrix using Cofactor Matrix

Definition 1.22

[15] Let A = (aij), <, ;<, be a square matrix of order n, where det A # 0

We can calculate the inverse of matrix A as follows:

SYNE N
" detA

CofA = (Cij)i<;jen » and Cij = (= 1)+ M,

CofA) (1.2)

Where M;;, denote the minor of the element a;;, C; is the cofactor of a;;.

Example 1.22

Let A =
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1.9 Determinant of a Square Matrix

Calculate the inverse of the matrix A

According to equation (1.2) we have: A~1 = L (CofA)’
det A = 14 # 0, then A is invertible
Cn Crio it
CofA = ,and Cy; = (=1)"7 My,
Car Co
Cu = (-1)" x4=4,
Cio = (_1)3 X2==2
Oy = (=1)* x 3= =3,
Cop=(-1)'x5=5
4 =2 . 4 -3
CofA = = (CofA)" =
-3 5 -2 5
4 -3 : =
— _ 7 14
So, A7t =4 = Al = o
Example 1.23
Calculate the inverse of the matrix
2 4 -6
A=17 3 5
1 -2 4
det A = 54 # 0, then A is invertible.
CofA = (Cij)ye;en»and Cij = (1) M;;
| 305 |75 703
Ciy = (—1) =22, Cpp=(-1) =23, Cy3=(-1) =17,
-2 4 1 4 1 -2
L4 =6 |2 -6 2 4
021 = (—1) = —4, 022 = (—1) = 14, 023 - (—1) == 8,
-2 4 1 4 1 -2
A 4 —6 5 2 —6 6 2 4
031 — (—1) — 38, 032 — (—1) — —52, 033 — (—1) - —22
3 5 7 5 7 3
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1.10 Rank of a matrix using determinant

99 —923 —17 29 —4 38
CofA=| —4 14 8 |=(CofA)'=| —23 14 —52
38 —52 —922 17 8 —22

229 —4 38

1

At =g —23 14 —52

—-17 8 =22

1.10 Rank of a matrix using determinant

Definition 1.23

Let A be any matrix of order m X n.

A matrix A is said to be of rank r if [13]
1. It has at-least one non-zero minor of order r

2. Every minor of order greater than r of A is zero.

The rank of a matrix A is denoted by RK (A) .

Remark
o If Ais azero matrix , then RK (A) = 0.
o If A is not a zero matrix , then RK (A) > 1.

o If A is a matrix of order m x n, then RK (A) < min (m,n).

If A is a square matrix of order n, then (A invertible )<= (RK (A) =n).

1.10.1 Finding Rank of a Matrix by Minor Method

Here are the steps to find the rank of a matrix A € M,,,, (R) by the minor method.
o Find the determinant of A (if A is a square matrix A € M,, (R) ). If det(A) # 0, then the rank

of A =n.
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1.10 Rank of a matrix using determinant

o If either det A = 0 (in case of a square matrix) or A is a rectangular matrix, then see whether
there exists any minor of maximum possible order is non-zero. If there exists such non-zero
minor, then rank of A is the order of that particular minor.

o Repeat the above step if all the minors of the order considered in the above step are zeros and
then try to find a non-zero minor of order that is one less than the order from the above step.

Example 1.24

Find the rank of each of the following matrices:

-1 2 5 3 2 —6
A= 1 23 |,B= 1 1 =2
-2 8 1 -3 -3 6
1 2 3 4 3 1 =2
=12 4 6 [, D=] -3 -1 -2 4
-3 —6 -9 6 7 -1 2
Solution
-1 2 5
1. Let be A = 1 2 3 |, Aisasquare matrix of order 3, we compute the det A, |A| = 68
-2 8 1
(previous example). det(A) # 0, then the RK (A) = 3.
3 2 —6
2. Letbe B = 1 1 =2 |, Bisasquare matrix of order 3, we compute the det B.
-3 -3 6

det(B) =0, then the RK (B) < 3.

Next consider the second-order minors of B.

3 2
we find that the second-order minor =140, then the RK (B) = 2.

11
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Chapter 1 Exercise

1 2 3
3. Let C = 2 4 6 , C'is a square matrix of order 3, we compute the det C.
-3 —6 -9

det(C) = 0, then the RK (C) < 3.

Next consider the second-order minors of C.

2 4 2 6 2 4

M11: :()7 MIQZ :07 M13: :07
-3 —6 -3 -9 -3 —6
2 3 1 3 1 2

M21 - - 07 M22 - - 07 M23 = = 07
—6 -9 -3 =9 -3 —6
2 3 1 3 1 2

M31 = = 07 M32 = = 07 M33 = = OJ
4 6 2 6 2 4

All the second-order minors of C are zero, and C' is not a zero matrix , then RK (C) = 1.
4 3 1 =2
4. LetD=| —_3 —_1 —2 4 , D is a matrix order 3 x 4. So RK (D) < min (3,4) = 3.

6 7 -1 2

We search for non-zero third-order minor of D

We have
4 3 1 4 3 =2 4 1 -2 3 1 -2

-3 -1 —21=0,] -3 -1 4 |=0,l -3 —2 4 |=0,| -1 =2 4 |=0.

6 7 -1 6 7 2 6 -1 2 7T -1 2
So, RK (D) < 3. Next, we search for a non-zero second-order minor of D.
3 =2
We find that =10+#0.So RK (D) = 2.
-1 4

= Chapter 1 Exercise <~

1. Exercise 1
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Chapter 1 Exercise

We consider the following matrices:

1 0
3
A=<—147>,B= ,C=| -4 1|,
1
-1 2
-2 1 0
-2 1
D = , H=1 -1 =2 0
1 1
0 1 4

(a). What are the possible matrix products? What are square matrices and symmetric matrices?
(b). Calculate :C,C +2C,C.D, D?.
2. Exercise 2

Let A be a matrix defined by:

1 2 3
A= 0 0 1
-1 0 =2

(a). Calculate A% + A% + A.
(b). Express A~ in terms of A2, A and I5. Detremine A~!.
3. Exercice 3

Let A be a matrix defined by:

(a). Find a,b € R such that A2 = a.I5 + b.A.
(b). Deduce that A is invertible and give its inverse..
4. Exercise 4

Calculate the determinants
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Chapter 1 Exercise

3 0
-2 1 0
2 -1 4 =2
v =1 =2 0 |
4 3 8§ —1
0O 1 4
6 0
5. Exercise 5
Prove using the properties of determinants that:
2 3 =5 0 o
20 3a —Ha| = 0, | —a 0
4 -1 8 -5 =

6. Exercise 6

Calculate the determinants of the following matrices:

5 5 5 5
11 1 1
A= . B=
6 4 2 -8
1 -2 -3 5
30 0 0 11
4 -2 0 0 1 -1
X
8§ -1 -2 0 11
60 1 4 11
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Chapter 2 System of Linear Equations

Introduction

A Introduction 1 Gauss method

A Study of the solution set o Equivalent Systems

A Matrix form of linear equations o Elementary Operations

A Methods to solve systems o Solving systems using Gauss elimi-
o Cramer's rule nation

o Matrix Inversion method

2.1 Introduction

Systems of linear equations and their solutions constitute one of the major topics that we will
study in this chapter. In the first section we will introduce some basic terminology and discuss a
methods for solving such systems as Cramer’s rule, Matrix inversion method, and Gauss method.

An equation of the form
a121 + asxo + asrs + ...... + apxy, = b 2.1

is called a linear equation in the n unknowns (variables) =1, x2, x3, ..., T,,.
ai, as, as, ..., a, denote real numbers (called the coefficients of =1, x5, x3, ..., x,, respectively).
b is a number (called the constant term of the equation).
Example 2.1
3r + 4y = 2,
r—1y—z=—6.
are linear equations, but
y+yz=3

sin(2z) — cos(3y) = 2 are not.



2.2 Study of the solution set

2.2 Study of the solution set

A vector (s, So, ..., Sp,) is called a solution of this equation if it satisfies the equation (2.1)
That means

@181 + asS9 + azSs + ...... + a,S, = b

The set of all such solutions is called the solution set for the equation.

m linear equations in n unknowns x1, Zs, x3, ..., £, of the form

(

a1121 + a12T2 + @133 + ...... + 1Ty = b1
(911 + A92X9 + Go3T3 + ...... + a9 Ty = bg
(2.2)
| @m171 + amats + Am3xs + ...... + Ay Tr = b

is called a system of linear equations

We abbreviate this system by

n
E A5 = bi, 1= 1,m
=1

where a;; and b; are all real numbers.

Such a linear system is called an homogeneous linear system if
by =by=0b3=..=0b,=0.

If (sq, 2, ..., S,) is a solution of the above system of equations, then it is a solution of each of the
m equations in the system.
The set of all solutions of the linear system is called the solution set of the system. To solve a
system is to find its solution set.
Remark Any system of linear equations has one of the following states [25].
o No solution.
o Unique solution.

o Infinitely many solutions.
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2.2 Study of the solution set

Example 2.2
Consider the system two equations in two Variables
20—y =1
3r+2y =12
The unique solution of the system is given by x = 2 and y = 3. Geometrically, the two lines
represented by the two linear equations that make up the system intersect at the point (2,3). See

Figure 2.1

LA
L

Figure 2.1: Unique solution

Example 2.3
Consider the system
20 —y =1
6xr —3y =3
The system of two equations is equivalent to the single equation 2z — y = 1. Thus, any ordered pair
of numbers (x,y) satisfying the equation 2z — y = 1 constitutes a solution to the system.
So, there are infinitely solutions of the system. Geometrically, the two equations in the system

represent the same line, and all solutions of the system are points lying on the line see Figure 2.2.

Example 2.4

Consider the system
20 —y =1

6xr — 3y = 12
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2.3 Matrix representation of linear equations

Jlx—-y=

fir—3v=3

un

L

Figure 2.2: Infinitely solutions

By the first equation, we obtain the equation y = 2z — 1, substituting this expression into the second
equation gives 0 = 9.
which is impossible. Thus, there is no solution to the system of equations.

We see at once that the lines represented by these equations are parallel see Figure 2.3.

4 ._-i_'_'_'_,..g'—'-:'l—_ll=|

Johx—3y =12

Lh =

Figure 2.3: No solution

Definition 2.1

[25] We say that the system of linear equations is consistent if it has a solution (unique solution

or infinitely many solutions ). Otherwise the system is called inconsistent (no solution). Y
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2.3 Matrix representation of linear equations

2.3 Matrix representation of linear equations

Consider a system of m linear equations in n unknowns

(

a111 + a12T2 + @133 + ...... + a1nT, = b1
a21T1 + A92X2 + A23T3 + ...... + oy, = bg
(2.3)
| amit + Qoo + Am3Ts + ...... + Ay Tr = b

We can write the system of equations (2.3) in matrix form as:
AX =B

Where A = (a;;)1<i<m comprised of the coeflicients of the variables,
1<j<n

11 A2 - Aip

Q21 Q22 -+ QAap
A= ,

Am1 Am2 **° Amn

The n unknowns (variables), is written in a single column X = (z;),j =1....n
T

T2

Ty
The constant matrix B = (b;), 4 = 1...,m of order m x 1 is written in a single column and in

the same order as the rows of the coefficient matrix.
b

by

Remark
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2.4 Methods to solve systems of linear equations

The matrix form of homogeneous linear equations is AX = 0 called the associated homogeneous
system.

The augmented matrix is the coefficient matrix with the constant matrix as the last column, ie.

[A|B]
a1; Qa2 -+ Aip by
a21 Q22 -+ Q2p by
[A|B] =
Am1 Am2  * Qmp bm

2.4 Methods to solve systems of linear equations

The following methods are useful to solve linear equation
1. Cramer‘s rule
2. Matrix Inversion method
3. Gauss elimination method
Remark
The first two methods (Cramer‘s rule and Matrix Inversion methods ) are applicable only when

m = n i.e. to solve system of n equations in n unknowns.

2.4.1 Cramer's rule

Definition 2.2 (Cramer‘s rule)

[20, 24]Let AX = B be a linear system with n equations in n unknowns, where:

11 Q12 - Qin X1 by

Q21 Q22 -+ A2y 4 by
A= L X = , B=

Am1 Am2 - Qmp Tn bm
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2.4 Methods to solve systems of linear equations

If |A| # 0O, then the unique solution to this system is

. A .
X = (z;), gj=1..,n, and z; is given by: x; = %, j=1..n

where A; is the matrix obtained from A by replacing the j column of A by the column vector

B, in other words

aj; Q2 - A15-1 by aij+1 - Qin

Qg1 Q22 -+ A25-1 by agj4+1 - Q2p
A=

Am1 Am2 - Amj—1 bm Amji+1 ° OAmn

Example 2.5

Solve the following system by using Cramer’s Rule
(
T—y+z=-8

3r+y—2z=—12

20+ 3y — 22 =28
\
Solution

The given system can be written in the matrix form AX = B

1 -1 1 x -8
3 1 =2 y | = —12
2 3 =2 z 8
We start with the coefficient determinant
1 -1 1
1 -2 3 =2 31
Al = |3 1 —2|=1 - (=1 +
3 =2 2 =2 2 3
2 3 =2

= (=246)+(-6+4)+(9—2)
=9

|A| # 0, then the unique solution to this system is given by: x; = %, 7 =1223.
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2.4 Methods to solve systems of linear equations

Now we compute the other determinants |A;|

-8 -1 1
1 -2 —12 -2 ~12 1
A= -12 1 —2| = -8 —(-1) +1
3 -2 8 -2 8 3
8 3 -2
= —8(—2+6)+ (24+16) + (—36 — 8)
= —324+40—44
= —36
1 -8 1
—12 -2 3 -2 3 —12
Aol =3 —12 —2|=1 — (—8) +1
8 -2 2 —2 2 8
2 8 -2
= (24+416) +8(—6+4) + (24 + 24)
— 40 — 16 + 48
= 72
1 -1 -8
1 —12 3 —12 31
As|=13 1 —12|= 1 —(-1) +(=8)
3 8 2 8 2 3
2 3 8

36

Now, the solutions given by the formulas

(8 + 36) + (24 + 24) — 8(9 — 2)

44 4 48 — 56

L, - Al Y= A2 - _ 4]

Al Al | Al
—36 79 18 1
Ty YT T® F T3 9
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2.4 Methods to solve systems of linear equations

2.4.2 Matrix Inversion method

Definition 2.3

[20, 24] Let AX = B be a non-homogeneous linear system with n equations in n unknowns,

11 Q12 - Qin Z1 by

Q21 Q22 --° Q2n X2 by
A= , X = , B=

Am1 Am2 - Qmp Tn bm

If |A| # O, then the system has unique solution given by

_a-1
X=A"B &

Example 2.6 Solve the system of equations using matrix inverses
(

rT—2y+z=3

2r+y+—2=5

v —y+2z=12
\

The given system can be written in the matrix form AX = B

1 -2 1 T 3
2 1 -1 Y = 5)
3 -1 2 z 15
We start with the coefficient determinant
1 -2 1
1 -1 2 —1 2 1
Al = |2 1 -1|=1 —(-2) +1
-1 2 3 2 3 —1
3 -1 2
= 10

|A] = 10 # 0. Hence A™! exists and the system has unique solution given by
X=A"'B

Find A~! using cofactor matrix

1

A—l
|Al

(CofA)
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2.4 Methods to solve systems of linear equations

1 -1 2 -1 2 1
+ — +
-1 2 3 2 3 —1
-2 1 11 1 -2
CofA=| — + —
—1 2 3 2 3 —1
-2 1 11 1 -2
+ — +
1 -1 2 —1 2 1
1 -7 -5
CofA=113 -1 -5
1 3 5

So,
1 3 1
1
A= —| _7 _
0 7 -1 3
—5 =5 5
Finally X = A™'B
1 3 1
z 010 10 3
= =7 -1 3
Y 0 0 10 5
z S 21 12
x o X3+ X544+ x 12
y | =] x3-Fx5+3x12
-1 1 1
z 5 X3—5xd+5x12

T 3
y [ =11
z 2

Then the unique solution is givenby x =3,y =1, z = 2.
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2.5 Gauss method

Remark

Let AX = 0 be an homogeneous linear system with n equations in n unknowns,

11 A2 - Aip X

Q21 Q22 -+ QA2p X2
A= L X =

Am1 Am2 **° Amn Tp

If |A| # 0, then the system has unique solution given by

This solution is called trivial solution.

2.5 Gauss method

The Gauss method will apply to linear systems of any size, including systems where the number
of equations and the number of variables are not the same.

To solving systems of linear equations of any size, we write a series of systems, one after the
other, each equivalent to the previous system.

Each of these systems has the same set of solutions as the original one; the aim is to end up with

a system that is easy to solve.

2.5.1 Equivalent systems and elementary operations

Definition 2.4

[20, 24] Two systems of equations are equivalent if they have the same solution set. Y

Remark (Elementary operations that produce equivalent systems])

A system of linear equations is transformed into an equivalent system if
(a) Two equations are interchanged.
(b) An equation is multiplied by a non-zero constant.

(c) A constant multiple of one equation is added to another equation.
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2.5 Gauss method

2.5.2 Solving linear systems using augmented matrices (Gauss elimination)

[20, 24] Consider a system of m linear equations in n unknowns

(

a1, + a19x9 + a13T3 + .. + ATy = b1
211 + Q92T9 + G233 + ...... + Qopty, = bg
2.4)
| Gm171 + amas + Qmaxs + ...... + Ay Tr = b

We use rank of matrices to determine consistency or inconsistency of a system.

2.5.3 Steps of the Gauss elimination method

Find the ranks of the coefficient matrix A and augmented matrix (A |B) for which,
Reduce the augmented matrix (A | B ) by elementary row operations on matrices to get the upper
triangular form.
This form gives the rank of the augmented matrix (A |B) and also the rank of A.
1. If rank(A) # rank(A |B), then the system has no solution.
2. If rank(A) =rank(A | B) = n, then the system has a unique solution.
3. If rank(A) =rank(A |B) < n, then the system has infinitely many solutions.
Remark
An m x n homogeneous system AX = 0 has
o infinitely many solutions if rank(A) < n,
o unique (trivial) solution if rank(A) = n.
Example 2.7
Solve the following system of equations.
( —4r 4+ 8y —z=—12

r—3y+z2z=10 (2.5)

3r—Ty+2z2=24
\

Solution
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2.5 Gauss method

We can write the linear system (2.5) in matrix form as

-4 8 -1 x —12
1 =3 1 y | = 10
3 =7 2 z 24
We create the augmented matrix
-4 8 —-1|-12
(AlB)=1 1 -3 1|10
3 =7 2| 24

Use the elementary row operations to reduce the augmented matrix (A |B)

—12

10

24

10

—12

24

10

28

—6

Ry <— Ry

~J

Ro+4R;— Ry

~Y

Rg —3R;— R3

Y

R3 + %Rg—% Rg

1 -3 1

—4 8 -1

3 -7 2
1 -3
0 —4
0 2
1 -3 1
0 —4 3
0 0 1

rank(A) =rank(A |B) = 3, then the system has unique solution

So, the solution is given by

Example 2.8

{z

r—3y+2z2=10
—4y 4+ 32 = 28
1, _
52’—8

16, y =5, z =
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—12

24

10

28

10
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2.5 Gauss method

Find all solutions (if any) to the following system of linear equations.

(
3r+3y—2z=1
T+ 2y=4

10y + 3z = -2

\ dr — 6y — 22 =10
This is a system of 4 linear equations in 3 unknown

The given system can be written in the matrix form AX = B

3 3 -2 1
x
1 2 0 4
y =
0 10 3 -2
z
4 —6 -2 10
The augmented matrix
3 3 -2 1
1 2 0] 4
(A[B) =
0 10 3 | -2
4 —6 —2|10

We use the elementary row operations to reduce the augmented matrix (A |B)

33 2|1 1 2 0|4
R2—3R1——>R2
1 2 0|4 | Ri+— R | 3 3 2|1
0 10 —3|-2 ~ 0 10 —3|-2
R, —4R,— R,
4 -6 -2/ 10 4 —6 -2/ 10
1 2 0] 4 1 2 0| 4
Rs+ Y Ry— Rs
0 -3 -2|-11 0 -3 —2|-11
0 10 —3| -2 0 0 -2 -4
R4—%4R2——>R4
0 —14 —2| —6 0 0 —3|-18
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2.5 Gauss method

1 2 0 4 1 2 0 4
;—SRg——) Rg

0 -3 —-2|-11 0 -3 —-2|-11

0 0 1 4 0 0 1 4
g—jR4——> R, R, — Rg—-) R,

0 0 1 4 0 O 0 0

rank(A) =rank(A | B) = 3= number of unknowns therefore the given system is consistent and
has unique solution

from the above form, the given equivalent system reduces to
(

r+2y=4

-3y —2z=—-11

Thus the unique solutionisz =2,y =1, z = 4.
Example 2.9

Find all solutions (if any) to the following system of linear equations.
(

3r+y—4z= -1

r+ 10z =5

8+ 2y + 122 =2
\

The given system can be written in the matrix form AX = B

31 —4 T —1
10 10 y | =1 5
8 2 12 2 2

Solution The corresponding augmented matrix is
31 —4]-1
(A[B)=1 10 10| 5

8§ 2 12| 2
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2.5 Gauss method

Create the first leading one by interchanging rows 1 and 2

31 -4
1 0 10
8 2 12
1 0 10| 5
31 —4]-1
8§ 2 12| 2

—1

RlHRQ
)

~

2

Ry —3R;— R,

~

Rg —8R;— Rg

Now subtract row 2 from row 3 to obtain

10
0 1

0 2

10
—34

—68

5

—16

—38

rank(A) = 2, but rank(A |B) = 3,

~

R3 — 2Ry— Rg

10

3 1

8 2

10
01

0 2

1

01

rank(A) #rank(A |B) , then the system has no solution.

it is clear that the following reduced system

.

r+ 102 =5
y— 34z = —16
0=—-6

\

10

—4

12

10

—34

—68

10

—34

—16

—38

—16

has no solution, which is equivalent to the original system. Hence the original system has no solution.

Example 2.10

Find all solutions (if any) to the following system of linear equations.

;

rT—2y—z+3t=

20 —4y+z=5

\
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The given system can be written in the matrix form AX = B

-2

Solution The augmented matrix is

(AlB) =

—1

X

2

5

4

Use the elementary row operations to reduce the augmented matrix (A |B)

Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives

1 -2 -1 3|1
2 -4 1 015
1 -2 2 =34

Now subtract row 2 from row 3 and multiply row 2 by % to get

1 -2 -1 1

3

3

R2—2R1—% R2
Rg—Rl——) Rg
Rs — Ro— R3

1

%RQ——)RQ

0

0
1 -2 0 1]2
0 01 =211
0O 00 0|0
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Chapter 2 Exercise

The corresponding reduced system of equations is

rank(A) =rank(A |B) = 2 < number of unknowns,

Therefore the given system has infinitely many solutions given by

Where y,t is arbitrary in R.

= Chapter 2 Exercise <

1. Exercise 1

Find the solution to the following system of linear equations, if any

(a).

(b).

(c).

(

\7”

\ 7~

\

6r—2y+1=0
r—>5y—3=0

dr+ Ty —17=0
8r —10y —2=0
20+y+6=0
20 +4y—20=0
20 +3y —2=10

dr +6y —32=0

2. Exercise 2

r—=2y+t =
z—2t =
0 =

242y —1

Y

142t

Do the following systems have a non-zero solution or not? Then find it if it exists
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Chapter 2 Exercise

(a).

(b).

\/

20+ 6y — 4z =0
r—8y+82=0 5
—6x+9y —32=0
r+2y—52=0
—6x +4y —62=0

122 — 8y + 162 =0

3. Exerci\se 3

Find the solution to the following system of linear equations using Gauss’s method.

(a).

(b).

;

\/

Ty + 229 + 5x3 = =9

2x1 — 229 4+ 623 =4

3x1 — 629 —x3 =25

201 — 2x9 — 43 — 224 =4
dxy + 209 — 623 + 2204 = 12

—$1—$2—$3—$4:—7
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Chapter 3 Integrals and Primitive functions

Introduction

(A Primitive functions arithmic and Exponential Functions

(A Indefinite integrals o, Integration of Trigonometric Func-
o Properties of Indefinite integrals tions

A Definite integrals o Integration by Substitution
o Properties of Definite integrals o, Integration by Parts

A Integration involves Trigonometric, Log- A Integration of rational functions

3.1 Primitive functions

Let f be a continuous function in an interval I, we call F' is a primitive function of the func-

tion f onthe interval [, If F'is differentiable at each point of  and the derivative of F'is f, in other word:

The function f is differentiable in an interval / F'is a primitive function of f
<~
andVz € I, F' () = f (2) in an interval /
Example 3.1

o The function F'(x) = \/ is a primitive of f(z) = 5= on ]0; +o0l,

o The function F(z) = arctan z is a primitive of f(z) = -5 on R,

o The function F'(z) = % is a primitive of f(z) = x on R,

f(z) = x have an infinite number of primitives, such as ‘%2 -1, %2 +4, %2 — 7, etc. Thus, all

the primitives of x can be obtained by changing the value of ¢ in F'(z) = % + ¢, where c is an

arbitrary constant.

xn+1

o The power function f(z) = z" has primitive F'(z) = 2

+cifn # —1,and F(z) = In|z|+c

ifn=-1.



3.1 Primitive functions

Property [14, 17]
o If f is continuous function on interval I, then f has a primitive function F on I.

o Let F be a primitive function of f on 1. Then the set of all primitive functions of f on I is:

{F +¢ ceR}

3.1.1 Primitive functions of elementary functions

By reversing the direction of formulas for derivatives of elementary functions we get the following

table of primitive functions [14, 17]:

Definition domain Function f(x) Primitive F'(z) + C' (C": constant )

R " "’;"ln: +C
]0; +o0] 2 In|z|+C
R e’ e’ +C
R sin x —cosz + C
R sin(azx + b) —< cos(ax +b) + C
R cosx sinx + C
R cos(ax + b) L sin(az 4+ b) + C
R—{(2k+1)7r/2;k € Z} | 5= =1+ tan’z tanx + C
R—{Q2k+1)n/2;k € Z} tan —In|cosz|+C
] —1;1] ey arcsinz + C
] —1;1] —= arccos x + C
R ) arctanz + C
R 1;}62 arccotanx + C

We will also assume knowledge of the following well-known, basic integral formulas:
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3.2 Types of Integrals

Function Primitive function
f(a) - () " (@) +Con # ~1
e In|f (z)| + C

f’ (Q;) . ef (@) ef@) L ¢

f(x)-sin(f () | —cos(f(x))+C

f (x) - cos (f (x)) | sin(f(z))+C

cosQl((x()x)) tan (f (z)) +C

arcsin (f (x)) +C

arccos (f (z)) + C

arctan (f (z)) + C

1 x
, arctan £ + C

3.2 Types of Integrals

Integration can be classified into two different categories, namely;

o Indefinite Integrals

o Definite Integrals

3.3 Indefinite Integrals

Definition 3.1

[14, 17] If a function f(x) has one primitive F(x), then it has an infinite number of primitives.

The set of all primitives {F + ¢, ¢ € R} of f(x) is called the indefinite integral of f(x) with

respect to x. The integration of a function f(x) is represented by:

[t@

de =F (z) +c

3.1)

o The function f(x) under the integral sign is called the integrand.

o The x is the integration variable.
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3.4 Properties of indefinite integrals

o The symbol dz is the differential of x.

o An arbitrary constant c is said to be a constant of integration.

3.4 Properties of indefinite integrals

[14, 17] Let f and g two continuous functions
. [f(z)dr=f(x)+c,cER
2 (f f(2)dz) = f (x)
3. (k=constant), [k- f(z)dr ="k [ f(x)dx
o JU @) + gz = [ f(a)d + [ g(a)ds

Properties 3 and 4 give the linearity of the integral operator in the following equation.

[lasta)+ sataliz = a [ s+ 5 [ gorts (2
Below some examples are provided to evaluate the indefinite integral using table of usual primitive
functions and linearity of the integral.
Example 3.2
1. Evaluate: [ (22 + 32® + 7z — 5) dx.

Using the linearity of the integral in equation (3.2), we have:

/(x2+3:1:3+7$—5)dx:/x2dx+/3$3dx+/7xdx—/5dx
:/IQda:+3/x3dm+7/xda:—5/dx

.773 [L’4 2

T

2. Evaluate: [ (72° + 3cosz)du.

/ (7$3 + 3cos 33) dr = /7$3d:)3 + /3 cos xdx

:7/x3dx+3/cosxda:

2
:7-Z+3-sinx—|—0

74
:%+3sinx+0
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3.5 Definite Integrals

3. Evaluate: [(sinz — 2cosz)d.
/(sin xdr — 2cosx)dx = /sin xdxr — 2 / cos xdx

= —cosx —2sinz + C

4. Evaluate: [ (3cosz — te”) du.

/(3(308%—%630) de = 3/cosxda:—%/e$dx

1
= 3sinz — 5em+C’

3.5 Definite Integrals

Definition 3.2

[14, 17] Suppose f(x) is a continuous real-valued function on [a, b] and also suppose that F'(x)

is any primitive for f(x). The value F (b) — F (a) is called the definite integral of the function

f, we read the integral from a to b of the function f and we write:

| )iz =1 @)= F ) - F @
. s

On a definite integral, above and below the integral symbol are the boundaries of the interval,
[a, b]. The numbers a and b are called the limits of integration; where « is the lower limit and b is
the upper limit. The definite integral of a real function can be imagined as the area between the z-axis

and the curve y = f(x) over an interval [a, b], see Fig 3.1

¥ f(x)

[ —~—
/—\/- b

) A= [ Six) dx
Area under a
the curve
The definite integral of
a ! ) v b ¥ f(x) between x=a & x=b

Figure 3.1: Definite Integral (from a to b)
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3.6 Properties of definite integrals

3.6 Properties of definite integrals

The properties of indefinite integrals apply to definite integrals as well, definite integrals also
have properties that relate to the limits of integration [14, 17].

1. Multiplication by a constant ( k& = constant)

/abk-f(x)d:c = k/abf(x)da:

/abf(x)dx _ /baf(x)dx

Ay

b a
-~

Figure 3.2: Reversing the interval

2. Reversing the interval Fig 3.2

3. Chasles relation a < ¢ < b Fig 3.3

/abf(m)dac _ /acf(x)der/cbf(x)dx

X
|acb>

Figure 3.3: Chasles relation for definite integral

4. Interval of zero length Fig 3.4

/a " @)z =0
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3.6 Properties of definite integrals

10.

Figure 3.4: Zero integral

. The integral of a sum functions

/ab[f(:c) + g(z)]dx = /abf(:c)da: + /abg(x)d:c

.Leta <)

o If f is a positive function on [a, b] ; then [ f(z)dz > 0

o If f is a negative function on [a, b ; then [ f(z)dz <0

o ItVa € [a, ], f(x) < g ()] = [ f(2)dx < [ g(x)da
[} fa)de| < [715(@)|do

. If f is an even function, then

/_ @)z = 2/Oaf(x)dm

/ f@)dz =0

if f is an odd function, then

If f is periodic, of period 7" then

/;JrT flz)dz = /OTf(x)da:

Example 3.3

1.

Determine the value of || 12 2xdx

2opde = (227 =22 -12 =3
1 1

61



3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

2. Determine the value of fol sin(z)dx

Ay  y=sin(x)
X
D 1
1
/ sinvdr = [~ cosz], = —cosl— (—cos0)
0
= 0.46
3. Evaluate: f15 |z — 3| dx
r—3, >3
|z — 3| =
—r+3, r<3

/f\x—i%\da: = /13(—w+3)da:+/:(x—3)dx

3.7 Integration involves Trigonometric, Logarithmic and
Exponential Functions

There are many methods of integration involves Trigonometric, Logarithmic and Exponential

Functions, that are used to solve mathematical operations.

3.7.1 Integration of Trigonometric Functions
3.7.1.1 Integral of the types
o [ f(sinz)coszdx

62



3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

o [ f(cosz)sinzdx
o [ f((tanz)dx
1. If the integral is in the form [ f(sinx) cos zdx
We use the following variable change: v = sinx, du = coszdx
The integral is written: [ f(u)du.
2. If the integral is in the form [ f(cos ) sinzdx
We use the following variable change: © = cosx, du = sinzdzx
The integral is written : | f(u)du
3. If the integral to integrate only depends on tanx : [ f((tanz)dx

Let’s use the following variable change:

u=tanz, x = arctanu=-dr = ugl—il
We obtain [ f(tanz)de = [ f(u)-#

Example 3.4
Find [ sin® z cos zdx

By changing the variable:u = sinx, du = cosxdx

/sin5:1:cos:cd:c = /u5du

1
= —u’+
6u c
1
/sin5 zrcosxzdr = 6 sin®x + ¢
Example 3.5
Find [ cos® z sin zdx
By changing the variable: v = cosx, du = —sinxdx
/cos Peinxdr = / —uddu
1y
= —Zu +c
/ 3 1 4
cosx’sinxzdr = ~1 cosxz” + ¢
Example 3.6
Find f sin® zdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

[sin®zdx = [sin*xsinzdr = [ (1 — cosx?)sin zdx

By changing the variable: v = cosz, du = —sinxdx
/ (1 — cos? x) sinzdr = /— (1 — u2) du

= /quu—/du

1 4
= -u —u-+c
3
. 3 1 3
sin® xdx = gcos T —CcosSx+c¢
Example 3.7
tan
cos? ¢
We have: cos?r = —1— =— =1+ tan®z.

1+tan? z 0052 x

By substituting this relation into the above integral:

/tanxdx = /tanx(1+tan2x)dx

cos? x
= /tanxda:+/tan3 rdx

3 /t dt . /t3 dt
B 241 2+ 1
1241 241

y

[t = [t [ (=)

= Jeatti o [t
/

Were t = tan z, and <i =t—

tdt = —t2
5 +c

Substituting the value of t, we get,

t 1
/ anxdx: §tan2x+C’.

cos? x

3.7.1.2 Integral of the types:

o [ sinpz cosgrdz,
o [ sinpzsinqrdx

o [ cospz cosqrdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

In this case, we use the following formulas:
. L. .
sin px cos qgr = 5[5111(19 + q)x + sin(p — q)x]
. : 1
sin px sin gx = §[cos(p — q)x — cos(p + q)x]

1
COS PT COS qT = §[cos(p — q)x + cos(p + q)x]

Example 3.8

Find [ cos 2 cos £dx

oo (55) e (55) ]
() 7o ()]

-1 n 7 d
olex cos 757 | 4z

x T
cos — cos —dr =
4 3

N = DN =

/cos % coS %dm =

7
cos —dx + / COS Exdm}

12

DO = l\DIl—\

12 7
1281n—x—|— —Sm—x +c

/COSECOS—dl’ 6S1H——|—§Sln11}—|—c
4 37 6 7 12

3.7.1.3 Integral of the types:

I,,= /sinp x cos? zdx 3.3)

we consider two cases:

1. First case p = 2k + 1 is an odd number

Y2

I, = /sin(%H) x cos? xdx

= /sm% zsinz cos? zdx = / (1 — cos? x) cos? z sin zdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

In this case we use the following variable change
u=-cosxr du= —sinzdr
Substituting these expressions into equation 3.3, we find

I, = / (1 — cos? x)kcosqxsinxdx = — / (1 - uQ)kuqdu

We proceed in the same way if ¢ is an odd positive number

2. Second case if p and ¢ two even positive numbers

Using the following formulas, we can transform the expression 3.3:
sin®z = %(1 — cos2x), cos’x = %(1 + cos2x) and sinz cosx = 3 sin 2z
Example 3.9
Find [ sin® z cos® zdx
p = 3 1s an odd positive number
/ sin® z cos® xdx = / sin? o sin x cos® xdx
= / (1 — cos? a:) sin z cos’ zdx
= / cos* z sin zdx — / cos® z sin zdx
With the change of the variable mentioned above, we obtain.:

1 1
/sin3 x cost xdr = /—u4du + /uﬁdu = —?u7 + ?u7 +c

1 1
/SiHSCECOSG zdr = —? COS7ZL” + ? cos7x +c

3.7.1.4 integral of type

I = [R(sinz, cosz)dx
where R is rational fraction of the functions sin, cos

In general method, we put ¢ = tan 7, thus, we find the following relationships

2
1442

1—¢2
1+¢2°

_2
142

sinx =

t =tan§ = v = 2arctant = dr = dt, cosx =
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

thus, we find

20 1—t\ 2
I=[R dt
/ (1+t2’ 1+t2)1+t2

Remark
o In integrals of the form I = [ R (sinz) - cos zdx, we put t = sinx
o In integrals of the form / = [ R (cosz) - sinzdx, we putt = cosx
o In integrals of the form I = [ R (tanz) dz, we put ¢ = tanz

Example 3.10

Find [ S22y

1+4cosx

1—t2
1+t27

_2
1+¢2

/ sin x / 2t 2
S . dt
1+ cosx (1+t2)(1+1*t) 14 ¢2

14t2
2t
_ /———ﬁ
1+¢2

= In[l+¢[+C

2t

Let’s putt = tan § = dx = dt, cosx = sinz = 135

= ln’l—l—tanzg‘—i—(?

3.7.2 Integration by Substitution

In order to solve the difficulty of some integration, we use the substitution by introducing a new
independent variable t = g(z) in the integral function [ f(t)dt, we get, % = ¢ (z) or dt = ¢ (z) dx

Thus, from the above substitution ,we get,

[ Flg(@)).g (z)dx = [ f(t).dt

The substitution rule can transform a complicated integral into a simple one.
Remark

o The substitution Rule for definite integrals is given by

b g(b)
Ht—g@%ﬂM{/f@@deﬂw—/})ﬂﬂﬁ

Example 3.11

67



3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Evaluate the following integrals
1. I} = [xsin (2* + 3) dz
2. I, = f ﬁdx
3. =[S da
4. I, = f tan? xcoz;znx—i-f) dx
5. I = f /T + ldx
I = f; mdx
Solution
o I = [wsin(2? + 3)dx
Let ¢t = 2% + 3, therefore dt = 2zdx.
dt =2zxdx = %dt = zdx.

We can now substitute

/xsin(x2+3)dx = /sin(xz—l—?))@

= / —sin tdt

1
= —gcos t+C (by replacing ¢ with % + 3 we get)

N[ —

1
= —5cos (2 +3) + C.
Thus [ @ sin (22 + 3) do = —5 cos (2 + 3) + C.

° ]2 = f :vlil:vdx

We choose t = In x then dt = 1/xdx, which gives

/mnx /m;dl‘
:/—dt
t

=h|t|+C

=In|lnz|+C.

arcsln T

o L= [ S
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Solution:
Let t = arcsin z, then dt = 11_962 dx
earcsina: .
s / V1— 22
= ¢ +C

Substituting the value of ¢, we get

earCSIH xT .
[ — / dx — earCSln xT _"_ C
’ Va7

f tan? z— 2tanx+5dx

cos? x
Let ¢t = tan z makes dt = mdm
t — 2t 5
I = /anx 2an:c—|— d :/(t2—2t+5)dt
cos?
t3
= g—t2+5t+(]

Substituting the value of ¢, we get

tan®’x — 2tanx + 5 1
[4—/ 5 dr = —tan®z —tan®’ x + Stanz + C
cos’x 3

= [zvx + ldz.
Solution

Putt =z + 1, then j—fc =1, so dt = dx, then
/x\/:v+1d:c:/ (z +1)2dz /xt%du.

By the substitution ¢ = x + 1, it follows that z = ¢t — 1, then we obtain

/xtl/th = /(t—l)t%dt
= /(t~t%—t5)dt
= /(ti—t%)dt
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Thus

1 1,
Iy = ——titty —— 2t 4 O
S 1/2+1

2 2
5) + 3 +
2 2
= 5\/%5 + g\/g3 +C

2 2
= 5\/x+15+§\/x+13+0

3.7.3 Integration by Parts

Integration by Parts can be used to integrate any given function if the integration function is
represented as a multiple of two or more functions.

The product rule of derivation will be the starting point for the integration by part:
(f(2).9(2)) = f(2).g () + [ (x).9(x)
Now, integrate both sides of this.
[targ@y i = [ (5015 @ + @ () ds
= f@gle) = [ fe)g@dnt [ ()@
The integration by parts formula can be reached by rewriting the formula as follows:

f(@).g(x) = [ f(2).g(x)dw

Remark

o In definite integral, we use the formula:

b b
/a f(x).g (x)dw = [f(x).g9(x)], - / f(x).9(x)de
o To use this formula effectively, it is necessary to accurately identify both the f(z) and the ¢ (z).
The choice is not randomly made.
o Integration by parts can be used more than once.
Example 3.12

Evaluate the following integrals
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

—

Y fxe‘”dm

\S}

. Iy = [z cosadx

98]

I3 = fx”lnxdm

o

L= farcsin xdx

9,

. I = [zarctan zdx
6. Iy = fe’” sin xdx
7. I, = f:p2e*3"”dx
Solutions
o [} = f zerdx
We will integrate this by parts, using the formula
/f’ngg—/fg’
Let g(x) = x and f’(z) = e® Then we obtain ¢’ and f by differentiation and integration.
fl(x)=¢€" flz) =e"
g(x) == g'(x) =1
[ f'g=fg— [ fg becomes
/:L‘emdx = re’ — /6"”d:t =zxe’ —e"+C
o I, = [xcoszdx
Let g(z) = z and f'(x) = cosx
Then we obtain ¢’ and f by differentiation and integration.
f'(x) =cosx f(z) =sinzx
g(x) =z g'(r) =1
[flg=fg— [ fg becomes

/xcosxdx:Isinx—/sinxdx:xsinx—(—cosx) =axsinz +cosx + C

o Iy = [2"Inxdx

Let g(z) = Inx and f'(x) = 2"
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Then we obtain ¢’ and f by differentiation and integration.
n xntl
f'x) = flr) = 55
—
g(x) =Inz g'(x) =

[flg=fg— [ fg becomes

n+1 n+1 1
I3 = /:z:”ln:cdlen:c- a —/ * .
n+1 n+1

2" ng 1 / .
— — z"dx
n+1 n+1
2" nzx 1 [

— — : C
n—+1 n+1 n+1+

n+1 1
S Inz — +C
n+1 n—+1

8|

o Iy = [arcsinzdx
Let g(z) = arcsinz and f'(z) = 1.
Then we obtain ¢’ and f by differentiation and integration.

flz)=1 flx) ==z
_

g(x) = arcsinx g (r) = -

1—x

2

We compute the integral [ \/%de by substitution.

Lett =1 — 22. Then dt = —2xdx and so dz = _d—gm.

r dt

T
S S L e
/\/1—332 ! Vit —2x
B _1 1dt
- 3/ 7
1

= —§/t1/2du

Thus the entire integral is
I, = /arcsinxdx = garcsinx — (—\/1 — x2> +C =uzarcsinz +vV1—22+C

o I5 = [zarctanzdx
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Let g(z) = arctanz and f’(x) = = Then we obtain ¢’ and f by differentiation and integration.

fz) = flz) =%
_—
g(x) = arctan x g (x) =

[flg=fg—[fg becomes

2 2
1
I = /xarctanxdx: %arctanx—/%-x2+1dx
x? 1 x?
= —arctanz — — dx
2 2) 22+1

x? 1 2 +1 1
= ?arctanx—§ {/ﬁ—kldx_/:ﬂ——i—ldx}

x? 1
= 5 arctanx — 5 [z — arctan x] + C

o Is = [e"sinxzdx
Let g(z) = sinz and f’(z) = e (Notice that if yo choose, g(z) = €* and f’(x) = sin x would
also work.) We obtain ¢’ and f by differentiation and integration.

fl(z) = e flz)=e"
—
g(x) =sinz g'(z) = cosx
[ flg=fg—[fg becomes
/ez sinxdr = e*sinx — /em cos xdx

It looks like our method produced a new integral, [ e* cos zdx that also requires integration by
parts.

Let g(x) = cosx and f’(x) = e*. We obtain ¢’ and f by differentiation and integration.

f'(x) = e flx) = e

=
g(x) = cosz ¢ (z) = —sinz

[flg=fg— [ fg becomes
/ex coszdr = €* Cosm—/ex(— sin:v)dx:excoszx—l—/ezsinxdx

Thus / e® coszdr = e* cosx + / e sin xzdx

Now the result contains the original integral, [ e*sinz.
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3.7 Integration involves Trigonometric, Logarithmic and Exponential Functions

Recall that we denote [ e®sinz by Ig. Let us review the computation again:
/e’” sinzdr = e*sinx — / e’ cos xdx
= e"sinz — (e”‘“ cosx + / e’ sin xdm)
= e"sinz — e’ cosx — /e’” sin xdx
This is the same as
Ig =e*sinx — e*cosx — I
This is an equation that we can solve for /.
. 1 :
2l = e"sinx — " cosxlg = §e$(smx — COS )
Thus the answer is

1
Is = Eex(sinx —coszx) + C.

o [; = f:pze*&”dx

We will need to integrate by parts twice. First, let f'(z) = ¢7* and g(x) = 2. Then

pa=et | = ten
=
g(z) ==
[ f'g=fg— [ fg becomes

1 1 1 2
/:EQe_gwdx = —56_335 (xQ) — / (—56_3””) 2xdr = —§$26_3w + g/xe_?’xd:p

and we can compute [ xe”3*dx by integrating by parts. Let f'(z) = e™** and g(x) = z. Then

fay=e® | fa)=—je

—
g(z) ==z J(x) =1

[ f'g=fg— | fqg becomes
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3.8 Integration of rational functions

1 1
/xe_?"'”dx = —56_333(1‘)—/(—56_396) dx

1 1

= —gxe?’x—l—g/e?’xdx
1 1 1 .

= —5936_3$ + 3 <—§€_JI) +C
1 1

— _gxe—&v _ §€—SCL’ + C

We need to compute the integral [ z?e **dz. So far we had this much:

1 2
/a:ze?"’”dx = —gxze*:“ + 3 /xegxdx

To this we substitute our result [ ze™3*dz = —3ze™ — e + C':
/a:Qe_?’xdx = —lee_gw + 2 / re 3% dx
3 3
_ 11267330 % (_%Ie?)x_%eiix_i_c)
_ :_1595263:” ;xe 3x_227 30

3.8 Integration of rational functions

[17] Understanding the meaning of partial fractions and how to write them is crucial before
studying the integration process using them.
We know that a rational function is a ratio of two polynomials P(x)/Q(z). Now, if the degree of
P(z) is lesser than the degree of (), then it is a proper fraction, else it is an improper fraction.
1. First case if P(x)/Q(x) is an improper fraction
In this case P(x)/Q(z) = H(x)+ P1(x)/Q(z), where H(z) is a polynomial and P1(x)/Q(z)
is a proper rational fraction.
2. Second case if P(z)/Q(x) is a proper fraction
Let’s say that we want to evaluate [[P(z)/Q(z)]dx, where P(x)/Q(z) is a proper rational
fraction.

In this case, it is possible to write the integrand as a sum of simpler rational functions by using
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3.8 Integration of rational functions

partial fraction decomposition.

We follow the following rules in the decomposition process:

Each linear factor (x — r) of Q(x) A

Each power linear factor (x — r)™ of Q(x) has a corresponding m partial fractions

A + A + As I A—m
(x—r) (z—7)2 (x—r)3 (x —r)m™

where A; are constants
Each irreducible quadratic factor az? + bz + ¢, (ax? + bx + ¢ has no real roots; A < 0) of Q(z)

corresponds to a partial fraction i BetC_ \where B and C are constants.

az?+bz+c)’

Each irreducible power quadratic factor (ax? + bx + ¢)" of Q(x) has a corresponding n partial

fractions

Bz + Cl Box + 02 BgZL‘ + 03 anlf + Cn
2 2 3ttt n
(ax? +bx+c)  (ax?+br+c)®  (ax? +br+c) (ax? + bz +¢)
where B; and C; are constants.

To find the constants, we equate ggig with the sum of all these partial fractions, then we solve

the undetermined coeflicients.
After the decomposition process, we discuss the integration of partial fractions, which takes one

of the following forms:

1

Az+B
3. f(ax2+bx+c dx

Integration of partial fractions
_ 1
1. [ = f—(x_r)nd:c
There are two cases
en=1—I=llz—r/+C

n1+C

_ —1
o T 7£ 1— 1= —(n—l)(n—r) —

2. I, =] tm) e dt

There are three cases

76



3.8 Integration of rational functions

en=1— 1, =arctanx + C
sn:%—>In:1n’t—|—\/t2—|—1|+C
oenF£1,n# % —We use the Substitution variable ¢ = tan x

Az+B
3. ]n:fmdx

When ax? + bx + c is irreducible quadratic factor (A < 0)
We integrate this /,, through the following steps
o First step: we write the numerator in terms of the derivative of the denominator
(az®+br +c)i.e
Ar+ B _ a(2az +0) 5}

(ax2 +br+c¢)"  (ax?+br+c¢)" (ax?+bx+c)"

o Second step we use the typical form az® + bx + ¢ = a [(x + %)2 — ﬁ] for the

; 8
fraction @2 T ”

o Third step we use the Substitution variable ¢t = / % (:c + %)

We obtain

(2ax + b) / 1
I, = dr+ A [ ———at
a/(ax2+bx+c) v (t2+1)

The integral [ %dz in the forme | %dft

The integral [ Wdt in the forme 2.
Example 3.13

Integrate the following integral by the method of partial fractions.

3x+11
xQ—:L‘—de

First, we factor the denominator as much as possible and then, we obtain the form of the partial

fraction decomposition.

3r+11 Ay Ay
= 4
22 —x—6 x—3+x+2 (3.4)
Then,
3r+11 A+ 2)+ Ay (- 3)
(r+2)(x—3) (z +2) (z —3)

Now, we need to found A; and A, , the numerators of these two are equal for every z, so 3x + 11 =
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3.8 Integration of rational functions

Ai(z+2) + As(z — 3)

Two ways to proceed are available at this point. The first option is always successful, but it’s a
lot more work. The second option is often quicker when it does work. We’ll use the quickest method
in this instance since both will work, but we’ll examine the other method in future examples.

o To find A;, we multiply both sides of the equality 3.4 by (z — 3),

3x—i—11_A Ay (x —3)

(z +2) )
Then we replace = with 3, we found A; = 4
o To find As, we multiply both sides of the equality 3.4 by (x + 2),
3z +11 Ay (v +2)

A
(x —3) x—3 T
Then we replace = with —2, we found A, = %5 = —1, so
3xr+ 11 4 -1

ﬁ—x—6_x—3+x+2

/33:~|—11 g _/ 4 1 g
xQ—x—Gx N r—3 xz+2 v
1 1

= 4/ d:z:—/ dx
r—3 T+ 2

= 4lnjz—-3|-Injz+2|+C

Now, we can integrate

Example 3.14

Integrate the following integral by the method of partial fractions.

/ 2 —29x +5
5 dx
(x —4)" (22 + 3)

The partial fraction decomposition is

2?2 — 292 +5 _ A L B +Cx—l—D

(22 —4) (2 + 3) r—4  (z—4)7 2243

22 —290+5  A(x—4) (2> +3)+B@*+3)+ (Cx+ D) (v — 4)°
(x2 —4) (22 +3) (z —4)* (22 + 3)

Then we obtain,

2? — 297+ 5= A(z — 4) (12—1—3)—I—B(x2—|—3)+(0m—|—D)(x—4)2
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3.8 Integration of rational functions

We propagate the right side and collect all the like terms together, then we get:
1° =292 +5=(A+ C)2* + (—4A+ B — 8C + D)z* + (34 + 16C — 8D)x — 12A + 3B + 16D

To find A, B, C, and D, we must establish the coefficients of like powers of x equal

Coefficientof 23 : A+ C =0 \ A=1
Coefficientof 2 : —4A+B—-8C+ D =1 . B=-5
Coefficient of 2! : 3A + 16C — 8D =—29 C=-1
The constants: —12A+3B+16D =5 ) D=2

Now, we calculate the above integral.

/ r? — 29z + 5 Qe — /( 15 +—x+2)d$
(x —4)% (22 4 3) r—4 (x—4)2 22+3
1 5 T 2
- /(x—4_(x—4)2_:z:2+3+x2+3>d$

1 5 x
= dv — | ———=dv — | ——d
/$_4x /($—4)2x /x2+3$

2
d
+/x2+3w
50 1.,
+2 arct <x)+0
—=arctan | —
V3 V3

Example 3.15

. 4x+5
Find | — FT dx
Solution
Q)=2>+12+2=A=-7<0

First step: we write the numerator in terms of the derivative of the denominator

dr+5 a2z 41) 6}
22+r+2 24 ar+2 224z +2
ae+1)+p
2 +x+2
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Chapter 3 Exercise

a(2r+ 1)+ =4z + 5 so,

20 =4 a=2
=

a+p=5 £=3

dr+5  2(2x+1) 3

2+ +2 a24+x+2 24z +2
4r +5 (2x +1) 1
— = 2| ————dx+3 | ——=d
/x2+:t+2 /x2—|—x+2 v /x2+:t+2 o
= 2In|e* +2+2|+3J+C
Second step: to find the integral J we use the typical form
n\? 7
2
2= = -
0+ x4+ (x+2> —1—4

Third step: we use the substitution variable

4 4
t:\/;(x—i— ) thendt = 7da:

1 1
J = /2—d / ———da
arer 2t ) e

Sy
. 3ﬁm (Vi(+3)) e

= Chapter 3 Exercise <~

1. Exercise 1

Calculate the following integrals:
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Chapter 3 Exercise

+2 dg
2 Z7

2
2x dr

341

[ x(2*+ 1)** da

| 3’3 sin® zdx
[ xsinzdx
f x2e dyx

varctgr
[ Vade

f(? tan xdx

fo% sin®(3x) cos(3x)dx

fe*“r"”dx

fog Vsin x cos xdx

J e

fOW/B (cos2 x — sin® x) dz
[ e*sinaxdx

J e

fol In(z + 1)dx

f x4lfxdm

f4 —1__dx

1 (3z—T7)2
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f cos z sin® xdx

f13 lde

T

f (962:1950)1/7 dx

f cos(tan ) dz

cos? z
2
[ 2? Inzdx

3z+1
32_1dl'

sinz
f cos3 x dx

fl dx
0 (a241)°




Chapter 4 Differential Equations

Introduction

A Classification of Differential Equations e Bernouli equation
(A Solution of Differential equations e Separable equations
A First Order Differential Equations e Euler Homogeneous
o Linear Equation (A Second Order Differential Equations
e Linear homogeneous equation o Linear homogeneous equation
e Linear non-homogeneous o Linear non-homogeneous

o Nonlinear Equation

In this chapter we study several types of differential equations and their corresponding methods

of solution.

Definition 4.1 (Ordinary differential equations)

An ordinary differential equation is an equation relating an unknown function y depends on
a single independent variable x over an interval I, and contains one or several its derivatives

v,y ..., y™ it can be written in the form:

Flz,y,y,y . y™| =0 (4.1)

In this course, we will only focus on ordinary differential equations, so we won’t use the term
ordinary anymore.
Example 4.1

We list the following differential equations:

" 2 ’
(y) +ayy—sinx =0

Py dy
@+%+5y:cost



4.1 Classification of Differential Equations

d*y o %y

3y” + cos xy, +y = x
4.1 Classification of Differential Equations

Differential equations can be classified into various categories based on their properties.

o Order

Linearity

o Homogeneous

o Constant coefficients

Definition 4.2 (Order)

[22] The order of a differential equation is the highest derivative order that appears in the

equation »

Definition 4.3 (Linearity)

If the function F is linear in the dependent variable y and their derivatives y,vy .y, ...,y™, the
differential equation is said to be linear. The general n'" order linear differential equation can

be written as:

1"

ao (@) y+ a1 (2)y +az(2)y + .ana (@) g™ + a, (2) y™ = b(2)

Where a,, (z) # 0. Otherwise, the equation is called nonlinear. &

o The functions ag (x) , a1 (x),.....,a,—1 (z), a, (x) are called the variable coefficients.
o The n' order linear differential equation has constant coefficients if the functions a (z),
a (x),.....,apn—1 (), ay (x) are constants.

o The n'* order linear differential equation is homogeneous, if and only if b(z) = 0

ao () y+ a1 (2)y +az @)y + oottny (2) y" Y +a, (2) y™ =0

Otherwise, the equation is called non-homogeneous.
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4.2 Ordinary Differential Equations

Example 4.2
Classify each of the differential equations listed below by indicating the order of each equation
and determining whether it is linear or nonlinear, homogeneous or non-homogeneous, with constant

coefficients or with variable coeflicients.

y +ayy = 0 (4.2)
d*u d*u .
i 4@ +5u = sint 4.3)
dy 3
Ir +5y = bx “4.4)
d? d?
d_xz + :L‘Qd—;g +e'y = a8 4.5)
Y +coszy +Vr—1y = 0 (4.6)

The differential equation (4.2) is second order, is nonlinear.

The differential equation (4.3) is 4thorder, is nonhomogeneous, is linear, constant coefficients.
The differential equation in (4.4) is first order, is nonlinear.

The differential equation (4.5) is 374 order, is nonhomogeneous, is linear, variable coefficients.
The differential equation (4.6) is second order, is homogeneous, is linear, have variable coeffi-

cients.

4.2 Ordinary Differential Equations

4.2.1 Solution of Ordinary Differential Equations

Definition 4.4

[22] Any real-valued function 1) : I C R — R which satisfies the following equation over the

interval I is called a solution of the differential equation

F [x,w,w’,w”,...,w)] — 0

Example 4.3
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4.3 First Order Differential Equations

The function f defined for all real x by
f(x)=>5sinz+4cosz
is a solution of the differential equation
y +y=0 4.7)

Note that f has a second derivative for all real x

We have

f (x) = bcosx —4sinx

f (z) = —bsinx —4cosx

Substituting f (z) = v, f* () =y, in the equation 4.7 , we obtain
—dsinx —4cosw + SHsinx +4cosx =0

‘Which holds for all real x

4.3 First Order Differential Equations

A first order differential equation is an equation of the form [7, 22]

F (:L‘,y,y,> =0 (4.8)

4.3.1 Linear Equation

The first-order differential equation (4.8) is linear if it can be written in the form

ar (2)y + ag (z)y = b(x), where a; (x) # 0

4.3.1.1 Linear homogeneous equation

[9, 12] A first order homogeneous linear differential equation is one of the form

Yy +a(x)y=0 (4.9)
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4.3 First Order Differential Equations

homogeneous equation (4.9) is

Theorem 4.1 (Solution of linear homogeneous equation)

[22, 28] If the function a is continuous on open interval I, then the general solution of the

_ — [a(z)dz
y = Ke (4.10) ¢

Proof we can solve the homogeneous equation (4.9) in the usual way

d

ﬁ = —a(z)y
1
—dy = —a(x)dx
) ()

Injly = —A(x)+C
y = j:e_A('T)""C
y = Ke 4@

where A () is a primitive of a(z) i.e A (z) = [ a(z)dx

Example 4.4

Solve the differential equation given by

Solution

y =

d
el +ysinz =0
dx

—d
—ysinz = Y _ sinzds

d
Y9 _ —/sinxdaz
Yy

cosz +C

kecos xT

4.3.1.2 Linear non-homogeneous equation

[9, 12] A first order non-homogeneous linear differential equation has the standard form

y +a(@)y=>b(x) 4.11)
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4.3 First Order Differential Equations

Where b(z) # 0

Property If the functions a, b are continuous, then the equation

y ta(x)y=>b(z)
has solutions given by yo = yg + yp, where yy is the solution of a related (homogeneous) equation
and yp is a particular solution of the non-homogeneous differential equation

o How to find the general solution v

yx 1s the solution of homogeneous equation, which given in theorem 4.1 ie
Y = Keffa(ac)dm

o How to find the particular solution yp

The variation of constant method is a general method that can be used to find the particular
solution of a differential equation, by replacing the constant K in the solution yy of a related
(homogeneous) equation by function K (z), in other word , we put yp = K (z)e~J*@)d and
determining this function K (z) by derivative of yp and substituting in the equation 4.11, finally we

can obtain the expression of particular solution as

yp = e—fa(:c)dr / b (l’) efa(z)da:dx

Example 4.5

Solve the following differential equation
y — Adzy = —42° (4.12)

Solution

The solution of the last equation is given by yo = yg + yp

yg ="
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4.3 First Order Differential Equations

First we solve the homogeneous equation ' — 4zy = 0

’

y/ = 4xy:>y—:4
Y

i
d
= / Y _ / dxdx
)
= Inly|=222+C
= Yg = K62x2
yp =7
We can find the particular solution, using Variation of constant method
yp = K(z)e¥ =
yp = K (2)¢* + K (z)4ze®™
Determining K (x) by substituting the expression of yp into the equation 4.12,
K (2)e® + K (2)4ze*” = 42K (x) 2 — 4o

/ 2

= K (z)e* = —4a°

!

= K'(z) = -4
Using integration by parts we get
So,

Finally , we obtain the solution of (4.12)

1
y:K62I2+$2+§
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4.3 First Order Differential Equations

4.3.2 Nonlinear Equation

4.3.3 Bernouli equation
A Bernoulli differential equation can be written in the following standard form:
y +a@)y=>b(x)y"

Where a, b are given continuous functions.
If n > 2, the equation is first order nonlinear. However, it can be converted into a linear equation

by changing the unknown function accordingly.

4.3.3.1 Steps to solve Bernouli equation

Divide the Bernoulli equation by "

L 2753? — b () (4.14)

<
S

Bernoulli equations can be made linear by making the substitution v = y,},l

Differentiating,
’ yl
v=(1-n)=
yn
Thus
y/ B UI
ym l—n

We substitute this last equation into the equation (4.14) we get

!/

v

1_n+a(:c)v:b(:v)

We obtain the linear equation in dependent variable v as

’

v+(1-—n)a(z)v=(1-n)b(z)

We solve the linear equation for the changed function.
The final step is to transform the altered function back into its original form.

Example 4.6
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4.3 First Order Differential Equations

Find the solutions the differential equation: iy’ = —2xy + 2233
Solution

Let the equation

Y+ 2zy = 2233

This is a Bernoulli equation withn = 3 ,a(z) = 2z, b(x) = 2.

Divide this equation by 1

rRvie 21° (4.15)
We use the substitution v = 15>

Differentiating,

UI — _Qy—Sy/
Then, we have

1
/ 3,/
= ——y’v
Y 2?J

Substituting for y' in the differential equation (4.15) we get
1 ! 3
——v + 2zv =2z
2
Which is linear equation in variable v

v — dxv = —42°

The solution is

v=Ke¥ 4224 -

Substituting v = 1/y°, we have

Ke2® 4 g2 —i—%

1
= 4+
Y \/K62$2—1—x2+%
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4.3 First Order Differential Equations

4.3.4 Separable differential equations

[8, 22] A first order differential equation is separable if it can be written in the form

dy _
dr

a(z)b(y) (4.16)
Any separable equation can be solved by means of the following theorem.
Property [Separation of variables |

Let a(x) and b(y) be continuous functions on open intervals I and J, respectively, and assume
that b(y) # 0 on J. Let A(x) be a primitive function of f(x) on I and B(y) be a primitive function of

1
@onj.

Then a function y solves the differential equation (4.16) if and only if it satisfies the identity

for all x in the domain of y, where C' is a real constant
Follow these steps to solve a Seperable Differential Equation

o Separate the variables

o Apply the integration operator
dy /
—— = [ a(z)dx
/ b(y) ()

o Since A(x) be a primitive function of f(z) and B(y) be a primitive function of @, then

Example 4.7

Find all solutions y of the differential equation

Solution
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4.3 First Order Differential Equations

Dividing both sides of the given differential equation by y — 2 we get

/

Y 1

y—2 =45

dy dx
— = k
/y—2 /:)c—i—5+ ’

= Injly—2|=In(z+5)+k

By integration we get

Thus |y — 2| = e*(x + 5) from which y — 2 = +e*@+5)_ If we let K = +e*, we get

y=2+ K(z+5)
Then, the general solution is
y=2+K(z+5),
Example 4.8

Solve the differential equation

,  2ysinz

1+ 2y
Solution
dy 2ysinz
dr 1422
14+ 292
/( +2y7) dy = [ sinzdzx
2y

from which we get the solutions:

1 y2
—1
5 n |y| +

2
where C'is an arbitrary constant.

4.3.5 Euler Homogeneous

A first order nonlinear differential equation is an Euler Homogeneous if it has the form

y = (%) (4.17)
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4.3 First Order Differential Equations

Remark

Let the first order nonlinear differential equation

/

Yy :f(x,y)

If f (cx,cy) = f (x,y), then the equation yy' = f (2,v) is Euler Homogeneous.

4.3.5.1 Steps to solve Euler Homogeneous equation

To solve the equation (4.17), we let v = £
so that,

y:xvandy,:v—k:pv/

Introducing these expressions into the differential equation for y we get

v+azv = F(v)
/ F(v)—
o Fl-o
x
dv 1
= — Z(F(v) -
= (P )
dv 1
e
F)-v ~ 2
Which is separable differential equation
Example 4.9
Find all solutions y of the differential equation 3’ = %:;f

Solution The equation is Euler homogeneous, since

021.2 + 302y2 02 (ZEQ + 3y2) ZL‘Z + 3y2 B

f(cx, Cy) = 2(Ct) (Cy) = C2(2£Uy) = 2xy - f(l’, y)
Next we compute the function F
a2 432 / x? (14—33—2)
= —_—

2xy Y 22 (24)

1+3 (g)Q Y
-y e
SEIE) ’



4.4 Second Order Differential Equations

Now we introduce the change of functions v = ~

x’

, 1+ 37
Yy = 9
v
Since y = xv, then y' = v + xv', which implies
, 1+ 30? , 1+ 30? 1+ v?
v+ v = = v = —v =
v 20 2v
We obtained the separable equation
, 1 (1 + vz)
v = —
T 20
We rewrite and integrate it,
v, 1 2v 1
1+ 02 x / 1+ 02 / x

= In(1+v?) =In(z) +C
Then
exp (In(1 +v*)) = exp(ln(z)+ )

2
1+ = ¢z = 1+<E> =cqr = yt)=xzvar—1
x

4.4 Second Order Differential Equations

The general second order differential equation is of the form [8]

Fzyy.y') =0 (4.18)

We proceed to study second-order linear equations with constant coefficients

4.5 Second Order Differential Equations with constant
coefficients

The second order differential equation is in a standard form:

asy + a1y + agy =b (x) (4.19)
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4.5 Second Order Differential Equations with constant coefficients

where as, a1, ag are constants, and ay # 0

The homogeneous form of (4.19) is the case when b () = 0

4.5.1 Linear homogeneous equation

We start to finding general solutions to linear homogeneous equations

a2y” + aly/ +apy =0 (4.20)

Property
If the functions vy, and y, are any two (linearly independent) solutions of the homogeneous linear
second order equation

asy + a1y +agy =0 4.21)

then the linear combination yg = c1y1(t) + cay2(t) is the general solution of the above equation,
where cy, co are constants.
Remark
The functions y; (x) and y» (z) are linearly independent if one is not a multiple
of the other, in other words 52—8 # Cte
Solving an homogeneous second order ODE
To solve a differential equation in the above form (4.21), we assume a general solution
y=e
of the given differential equation, where 7 is a constant to be determined, and follow the given steps:
Differentiating we find

2 rx

y=e* =y =re® =y =r’
Substitution into the differential equation (4.21) yields

asr2e’™ + ayre™ + age™ = 0 = " (7’2 + air + ao) =0

95



4.5 Second Order Differential Equations with constant coefficients

Since €"* can never be zero, so

asr® +arr +ag =0 (4.22)

This algebraic equation is called the characteristic equation of the differential equation.
In solving the characteristic equation (4.22), the following three possibilities, depending on the
sign of the discriminant A = a? — 4asag

1. If A > 0, then we have r; and r, as two real roots to the characteristic equation

—011—\/Z —al—i—\/z

= y To = 2%
2

2&2

In this case the general solution of the linear homogeneous equation (4.21) is
Y = cre”t £ cpe™?

2. If A = 0, we have one root, r = 52t

In this case the general solution of the equation (4.21) is
yg = 1€ + cowe™®
3. If A < 0, the roots are distinct conjugate complex numbers r; and 79

—a —1 ’A‘ —a1+i\/|A\
2&2

7“1:—:06—2.6,7“2: :Oé—f—Zﬁ

2&2

In this case the general solution of the equation (4.21) is

yg = €% (¢q cos B + cosin fx)

We show the three cases in the following examples:
Example 4.10

Consider the differential equation
4yN + 2y/ —2y=0

The characteristic equation is

42 +2r —2=0
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4.5 Second Order Differential Equations with constant coefficients

A = 36 > 0, then we have r; and r5 as two real roots

 —2-/36 244361

rHn=————=-—1.r -
1 8 s 12 8 2
the first solution is
yi(r) =e "
The second solution is
yQ(x) = 6%7

So, a general solution is

ya(z) = e + Coc? .
Example 4.11
Consider the differential equation
y —8y+16=0
The characteristic equation is
P =8r+16=0= (r—4)>=0

A = 0, then we have one root, r = 4

Consequently, the first solution is

The second solution is

So, a general solution is

yu(z) = c1e® 4 cywe®.

Example 4.12
Consider solving

y' — 6y’ + 13y = 0.
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4.5 Second Order Differential Equations with constant coefficients

The characteristic equation is

r? —6r+13 = 0.

A=-16<0

the roots are distinct conjugate complex numbers 7; and

—a; —iy/|A] 6 —iV/16
2

ry = = =3-2
20,2
—ay +iv/|A| 6+ 24/16 )
ry = = =3+
2(12 2
The first solution is
n (ZL’) _ e(3—21’)1
The second solution is
ha(w) = G720

The general solution of the equation is given by

Y = € (c1 cos 22 + ¢y sin 2)

4.5.2 Linear non-homogeneous equation

[22] A second order non-homogeneous linear differential equation has the standard form given
above as:

asy’ + ary + apy = b () (4.23)

The general solution of (4.23) is

Yo = Y +ypr

Where yy is the solution of a related (homogeneous) equation (4.21) and yp is a particular
solution of the non-homogeneous differential equation.

The method we discussed in the previous section can be used to determine yy value since it is
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4.5 Second Order Differential Equations with constant coefficients

the solution of the homogeneous differential equation.

yr = ciyi(t) + caya(t)
How to find the particular solution yp
To find the particular solution yp of equation 4.23 there are two ways
o First method (variation of constants)
The variation of constants consists of replacing the constants ¢; and ¢, in the solution of a related
(homogeneous) equation by functions ¢; (x) and ¢, () and determining what these functions must be
to satisfy the original non-homogeneous equation.
Differentiating and substitution into the differential equation (4.23) yields
¢y (@) g+ ey (2)y2 =0

¢ (2) Yy + & () yy = 22
Example 4.13

Solve the differential equation

y' +y=sin2z (4.24)

Solution

The general solution of (4.24) is

Yo =Yg +yp

Where yy is the solution of a related (homogeneous) equation and yp is a particular solution of the
non-homogeneous differential equation

First we solve the homogeneous equation

The characteristic equation is

A <0
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4.5 Second Order Differential Equations with constant coefficients

The roots are distinct conjugate complex numbers 71 and 75
r=—1, r9 = +1
The general solution of the homogeneous equation is given by
yg = Cicosx + Cysinx
Using the method of variation of constants
yp(z) = Ci(z) cosz + Cy(x) sinx

The functions C'; (z) and Cs(z) can be determined from the following system of equations:

)
Ci(z)cosz + Ch(z)sinz =0

\ C1(z)(cosx) + Ch(x)(sinx) = sin 2z

Then
.

Cl(z)cosz + Ch(z)sinz =0

\ Ci(z)(—sinz) 4+ C4(z) cosx = sin 2z

We can express the derivative ('] (x) from the first equation:

sin x

Ci(z) = —C5 4.25
() 5(x) oS T (4.25)
Substituting this in the second equation, we find the derivative C%(z) :
CpegaSnE o ] L
( OQ(x)cosx) (—sinz) + Cy(x) cosxz = sin2z,
2
= Ci(x) (Sm ~ + cos x) = sin 2z,
cos T
= (!} = sin 2
o(x) ooy Sn2e
= C4y(z) = cosxsin 2z
Substituting C4(x) in the equation (4.25), we find
Ci(z) = —sinxsin 2z (4.26)

We have sin 2x = 2sinx cos x
Ci(z) = =2 [sin®z - coswdr = —2sin’ x
3

Cy(x) = —2fcostsinmd$ = —% cos® x
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4.5 Second Order Differential Equations with constant coefficients

Thus, the particular solution to the differential equation can be written as:

?/P(I) = C1(I)Cosx+02(x)sinx

2 3 2 5
= —gsin’z-cosz — gcos"w-sing

then, the general solution of the non-homogeneous equation:

Yo = Y +typ

. ) 2 .
yg = Cicosx+ Cysinx + —3 sin®z - cosz — gcos3x-smx

o Second method
The solution yp can be determined using the second method by guessing it based on the form of

b(x). The table given below shows the possible particular solution yp corresponding to each b(z).

b(x) yp

1. If )\ is not a root of characteristic equation,
then: yp = (qo + @17 + ... + gua™) M

2. If X is a simple root of characteristic equation,

then: yp =z (qo + Q1 + ... + ga™) e

3. If )\ is not a multiple root of characteristic equation,

then: yp = 2% (o + 1 + ... + gua™) e

1. If & + 70 is not a root of characteristic equation,

P, (z) €% cos o+ then: yp = A, (7) e’ cosox + B, (x) e’ sinox

+Qm (x) e cosox 2.1f 0 + i0 is a simple root of characteristic equation

then: yp = (A, (z) e* cosox + B, (z) ¢*"sinoz) - x

Example 4.14
Solve the differential equation

y// . 3y/ + 2y _ 6258 (427)

Solution
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4.5 Second Order Differential Equations with constant coefficients

The general solution of this equation is
Yo =Yu +yp
We solve the homogeneous equation
y =3y +2y=0
The characteristic equation is
r? —3r+2=0.
A=1>0
Then we have r; and r4 as two real roots
rn=2r=1
Hence, the general solution of the homogeneous equation is given by
yu(x) = C1e% 4+ Che®

where ', Cy are constant numbers.

Find a particular solution of the non homogeneous differential equation.

Since e%* is one of the solutions of the homogeneous equation, we look for the particular solution
in the form

yp = Aze*

The derivatives are given by

yp = (Aa:eh)/ = Ae** + 2Aze* = (A + 2Ax)e*

vp = [(A+ 2Ax)62ﬂ/ = 2Ae* + (2A + 4Ax)e*™ = (4A + 4Ax)e*.
Substituting the function yp and its derivatives in the differential equation yields:

(4A + 4Az)e™ — 3(A + 2Ax)e* + 2Aze™ = ™

Then, A = 1
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Chapter 4 Exercise

Thus, the particular solution to the differential equation can be written in the form:

yp = xe?®

The general solution of the non homogeneous equation:

Yo = Y t+yp

= (Oe* + Che® + ze?®

= Chapter 4 Exercise <

1. Exercise 1
Solve the following first order differential equations with separable variables:
(@. 2y —xy' =0
(®). (14 2?)dy = ydx
©. y=ay +y"
. yy+2=0
2. Exercise 2
Solve the following first order differential equations :
(@). vy —y=2e"
(b). ¥ +% =In(x)
(¢). ¥ — 2y = cos(x) + 2sin(x)
3. Exercise 3
Solve the following second-order linear differential equations:
@. y' —y —2y=0
®). ¥y =y +y=0
©. ¥ +2y +y=xe”

(d). ¥ +y = 2e” + cos(x)
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Chapter 5 Functions of Several Variables

Introduction

A Vector valued functions A Derivatives of a function of two variables
(A Domain and Range A Total differential

A Graphs A Double integrals

A Limit of a function of two variables A Triple Integrals

A Continuity for functions of two variables

5.1 Multivariable vector-valued functions

Definition 5.1

[16] A multivariable vector-valued function is a function f : R" — R™ has the form

f:R* — R™
fl(‘fl,l'g,...,l'n)

( ) R f2 ([El,l’g,...,{)’}n)
L1,X2,-.-; Tn

fm (.1'1,.1'2’...,.%,1)

Where n and m are positive integers, and fi, fa, ..., fm : R" — R are real-valued functions

of several variables. &

Remark

We consider several cases of functions with several variables, according to the values of n and

e Where m = 1, the function f is called a real-valued functions of n variables if assigns to each
element of € a unique element of R, f : 2 C R” — R, where the domain €2 is a subset of R".

So, for each (z1, 25 ..., ;) in 2, the value of f is a real number f (x1, 25 ..., x,) .



5.2 Domain and Range of real-valued functions of several variables

Only real-valued functions of several variables will be considered in this chapter.

5.2 Domain and Range of real-valued functions of several

variables

Definition 5.2

The domain of definition of a function f is the set of all possible input P = (x1, x,..., z,) of R"

on which the function f makes sense, it denoted by D

Dy ={P eR"/ f(x1,2s,...,2,) € R}

Example 5.1
Determine the domain of each of the following
L f(z,y) =yv1—2a?

2. f(x,y) = Y=

—z2

[N

3. g(z,y) =In (9 — 2* — 9y?)
Solution
L flz,y) = yvV1—2a?
The domain Dy are the points (z,y) in the plane defined by:
Dy = {(z,y) eR?/ 1—-2*>0,y e R}
= {(z,y) eR?/ 2" <1, yeR}
that means —1 < z < 41, —00 < y < +00, i.e. the points in the plane between and including

the lines x = 1, and = —1. It is shown in Figure 5.1.

2. f(xa y) = l_yz

l1—x

Dy = {(z,y) eR*/ 1—-2*>0,1—y* >0}
= {(z,9) eR?/ 2* <1, 4* <1}

The domain Dy are the points (x,y) where —1 < = < +1, and —1 < y < +1, it shown in
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5.3 Graphs of real-valued functions of several variables

Zz

x=-1

777/

x=1

Figure 5.1: Domain of the function f(x,y) = yv1 — 22.

Figure 5.2

ﬁ
|
<
%)

Figure 5.2: Domain of the function f(z,y) =

3. g(z,y) =In (9 — 2% — 9y?)
Dy, = {(z,y) €eR?’/ 9—2>—9y> >0}
22
= {(w,y)€R2/ §+ y2<1}

Therefore, the domain of g(z, y) is the points interior to an ellipse. See figure 5.3
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5.3 Graphs of real-valued functions of several variables

--------- 1-'"----'"--.
. 05— .
# ‘1
[ L L | L 1 .
-3 -2 -1 1 2 ,
e _ L
L 035+ o
___________ I I

Figure 5.3: Domain of the function g(z,y) = In (9 — 2% — 93?)

5.3 Graphs of real-valued functions of several variables

Definition 5.3

Let f : R® — R be a real-valued functions of n variables. The graph of f is the set of point in

R"*! denoted by G ¢

Gf = {(561,$27...,£Un,$n+1) € RnJrl/ Tpt1 = f(.ﬁ(}l,(EQ’...,l’n)} &

Example 5.2

fla,y) =1-3@@*+v°)

The graph of this function is shown in the Figure 5.4

Figure 5.4: Graph of the function f(z,y) =1 — 1 (22 4+ ?)

Example 5.3

f(z,y) = cos (3x) - sin (3y)

The graph of this function is shown in the Figure 5.5
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5.4 Limit of a function of two variables

Figure 5.5: Graph of the function f(z,y) = cos (3z) - sin (3y)

5.4 Limit of a function of two variables

Definition 5.4

[23] Let f be a function of two variables, x and y. The limit of f (x,y) as (x,y) approaches

(a,b) is I, written

lim f(z,y) =1

(z,y)—(a,b)

if for each & > 0, there exists a small enough 6 > 0, such that for all (x,y) in the domain of f

Ve > 0,36 >0, ¥(z,9) € Dy \/(w—a) + (y—b)? <6 = |f (z,y) — | <& .

Example 5.4

hm 2¢y  _ 2.34 24

(@,9)—(3,4) z24+y2 T 32442 25
Property [Basic Limit Properties of Functions of Two Variables ]

Let [ and g be functions with

lim x,y) =Ly, lim x,y) =L
e (@ 9) =l 9(@,y) = Lo
The following limits hold.
° lim(x,y)%(a,b)(-f(x7 y) + g($, y)) - Ll + L2

o limy ) an) (f(2,y) — g(z,y)) = L1 — Lo
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5.5 Continuity for functions of two variables

o lim ) ap)(cf(z,y)) = cly

Hew) — Li for Ly # 0

g(z,y) 2

o lim(g ) (a)

° hm(x,y)—)(a,b)(f(l’7 y))n = Lrll

5.5 Continuity for functions of two variables

The definition of continuity for functions of two variables is similar to that of functions of one

variable.

Definition 5.5

[23] Let f be a function of two variables, x and y, let (a,b) € Dy.

o A function is continuous at a point (a,b) if:

lim f (I,y) =f (a’ b)

(z,y)—(a,b)

o We say f is continuous on Dy if f is continuous at every point (a,b) in Dy. &

Example 5.5

Show that the function
o +4y
Caty+l

f(z,y)
is continuous at point (7, —2).
Solution
Dy = {(z,y) eR*/ 14z +y#0}
= {(x,y) cR?* z+y# —1}
In this example, a = 7 and b = —2.

f(a,b) € Dy because 7 —2 # —1. Furthermore,

fla.b) = f(7,-2) = : (+_42()—f>1 _ —55'

lim x,Y) exists.
(:c,y)—>(77—2)f( 2
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5.6 Derivatives of a function of two variables

Remark
o The sum of continuous functions is continuous
o The product of continuous functions is continuous

o The composition of continuous functions is continuous

5.6 Derivatives of a function of two variables

Definition 5.6

Let f : Dy C R? — R be a function of two variables, and (a,b) € Dy

o The partial derivative of f with respect to x , written as , or [, is defined:
4 af f(a+h7b)_f(a7b)
fw(&7 b) a (a b) - 717,—>0 h

o The partial derivative of f with respect to y , written as , or [, is defined:

fy(a,b) = g—i(a, b) = lim %0+ h) — f(a,b)

h—0 h Y

5.6.1 Calculating partial derivatives

The intuitive idea of computing a partial derlvatlve 1s Using the usual way of differentiating
f(z,y) with respect to =, we calculate using y as a constant, similarly, the partial derivative of f with
respect to y is performed while holding = as a constant.

Example 5.6
Calculate and 8f for the following functions
1. f(z,y) = sin(z*y — 5z + 3)
2. g(z,y) =In(2? +y* +9)
Solution

1. To calculate f , treat the variable y as a constant. Then differentiate f(x,y) with respect to

g—]; = (% [sin(z*y — 5z + 3)]

= (2zy — 5) cos(z’y — 5x + 3)
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5.7 Total differential

To calculate %, treat the variable x as a constant. Then differentiate f(x,y) with respect to y

of 0.,
) oy [sin(z*y — 5z + 3)]

= z%cos(z’y — 5z + 3)

2. To calculate %, treat the variable y as a constant. Then differentiate g(z, y) with respect to x

dg

0
5 = 3y (@ +y+9)]

2x
(@2 +y2+9)
To calculate %, treat the variable = as a constant. Then differentiate g(x, y) with respect to y
Yy
dg 0
-4 - 2 1 2 2 9
Dy ay[n(w +y° + )]

2y
(22 4+y2+9)

5.7 Total differential

Definition 5.7

Let  be a function of two variables x and y

The differential , also called the total differential of f , is defined as

0 0
df = 8—£dm + 8—fdy
i &

Definition 5.8

Let f be a function of two variables x and y, (xo, yo) € Dy

If f is differantiable at the point (¢, o) , then the differential of f at (o, yo), is defined as:

0 0
df (zo, %) = 8_£ (w0, yo) dx + 8_5 (w0, y0) dy .

Property
Let [ and g be two differantiable functions of two variables The following properties hold.

o d(f+g)(zo,y0) = df (w0, y0) + dg (o, Yo)

o d(c: f(xo,%0)) = c-d(f (70,90))
o d(f-g) (%o, y0) = df (x0,%0) - 9 (0, Y0) + [ (70, %0) - dg (w0, Yo)
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5.8 Double integrals

Example 5.7

Let f : R?> — R be a function of two variables, defined as:

flx,y) = 2®y* — bay + 3

then
of
5, (1Y) =20y =5y +3
% (x,y) = 2y2* — 5
The differential of f , is given by:
of of
df = —dr+ —d
/ oz " * dy Y

= (2:63/2 — 5y + 3) dz + (2y:1:2 — 5:(:) dy

5.8 Double integrals

Let f : R? — R be a function of two variables, let D be a closed bounded region in R?, We

denote the double integral of the function f over D by

[ [+ @ dsay

5.8.1 Basic properties of the Integral

Property

Let D be a closed bounded set
D:{(x,y)ERQ:angb, cgygd}

Let f, g : R2 — R be two continuous bounded functions on D. Then if o and [3 are any constants,

we have:

° fo (af + Bg) (z,y) dedy = afof (z,y) + Bﬁfg (z,y).
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5.8 Double integrals

o V(z,y) €D, f>0= [ [f(z,y)dz>0.
D
o If D=DyUDyand DiNDy =0, [ [f(x,y)dady = [ [f(z,y)dady+ [ [f (z,y)dzdy.
D Dy Do

o If f(x,y) <gl(z,y) = fof (z,y) < fog (z,y) dady.

s <x,y>\ < [ J1F )l dedy

5.8.2 Integrals over rectangular regions

Property [Fubini’s theorem 1] Let D be a closed bounded set
D:{(x,y)ERz:anSb, cgygd}

Let f : R? — R be a continuous bounded function on D. We define an integral for a function f over

the rectangular region D as
b/ d d

[ [r@uisay=[{ [1@way|i= [ 7f(x,y)da: dy
b

a

d
The notation [ ( [f(z,y) dy> dx means that we integrate f (z, y) with respect to y while holding

a Cc

d /b
x constant. Similarly, the notation [ ( [f(z,y) dx) dy means that we integrate f (z,y) with respect

C a

to  while holding y constant.
Example 5.8
Use Fubini’s theorem 1 to evaluate the double integral of f over the rectangular region D =
[0, 1] x [0, 4],
fla,y) =32" —y
Solution

First integrate with respect to y and then integrate with respect to « :

1 4 1 4
/ / (33:2 = y) dydr = / (/ (Sx2 — y) dy) dz
o Jo 0 0
1 2 |y=4
= / 322y — v dx
0 2 y=0

! 16 _
= / (12;1;2 — ?> do = 42° — 8x|"Z, = 4.
0
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5.8 Double integrals

First integrate with respect to x and then integrate with respect to y :

/04/01(3x2—y)dxdy _ /04(/01(3x2—y)dx)dy

4
= /0 (2% — 2y[22;] dy

4 y2 y=4
= / B-yldy=3y— 5| =4
0 y=0
So,
1 4 4 1
/ / f (2, y) dydx =/ / f (2, y) dvdy
0 0 0 0
Remark

If f(z,y) =g (x)h(y), where g and h are continuous on [a, b] and [c, d| then:

//f .y dxdy—/ (x)dx/cdh(y)dy.

Evaluate the integral fol ff e* Ydxdy
12 1 2
/ / e" Vdrdy = / exda:/ eVdy=(e—1) (e —e7?)
0 Ji 0 1

5.8.3 Double integrals over non rectangular regions

Example 5.9

Property [Fubini’s theorem 2]
Let [a,b] be an closed bounded interval in R, hy, hy, g1 and gs are continuous valued function
on [a,b] .

Let D be one of the following closed bounded sets

Typel: D= {(x,y) ER*:a <z <b hy(2) <y<hy(a)}

Typell: D = {(z,y) ER*: 1 (y) Sw < g2 (y), c <y < d}f

If f: D — R is countinuous function then:

Type I: //f (x,y) dedy = /ab (/hhj()x) f(z,y) dy) dx
5 (@
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5.8 Double integrals

Type II: //f (x,y) dedy = /Cd (/gg:j) f(z,y) dx) dy
5 1

Remark

A regions D of Type I and Type II are shown in Fig 5.6 and Fig 5.7

Yi ¥Yi
¥ = g.(x)
¥ = g.(x)

¥ = gy(x)

ol T -

e [

x 0 x

- [ ——

] [ pp—

Figure 5.6: A Type I region lies between two vertical lines and the graphs of two functions of x

Yi Yi

0 X
Figure 5.7: A Type Il region lies between two horizontal lines and the graphs of two functions of y

Example 5.10

Evaluate the integral

// cos(zy)dzdy, D:{(x,y)€R2:2§x§4, ngygg}
D

Solution

D:{(m,y)€R2:2§x§4,0§y§21}
x
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5.8 Double integrals

/2

4 pr/2z 4 : 4 d
// cos(zy)dedy = / / cos (zy) dydw:/ {smmy] dx = @
D 2 Jo 2 A 2 T

= In4—-In2.

5.8.4 Double integral with variable substitution

Definition 5.10

Let D and A be are two closed bounded sets, and ¢ a bijective differentiable function with

continuous partial derivatives:
0:A — D
(u,0) — [z (u,v), y(u,0)]

Let the Jacobian matrix of partial derivatives of ¢ at the point (u, v)

oz Ou
J — ou Ov
oy oy
ou Ov
Ifdet J =929 _ 209z o4 () then;
[ [ awdzdy= [ [ 7(G (@ 0), (0] det ) dud
D A dh

Example 5.11

Evaluate the integral

[ costonanty, ={wper2<rsa0<m<T)
D

We use the following variable substitution:

u=zy r=0
=
v=2x y=r:
0<u<3,2<v <4
0 1 _
J = , detJ=—#0
/v —u/v?
1
|det J| = -
v
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5.9 Triple Integrals

4 pmw/2 1 /2 4 dv
/ / cos(zy)dxdy = / / — cos ududv = / cosudu [ —
D 2 Jo U 0 2 U

= Jsinu]]*[Inv] =In4 —In2.

Example 5.12
[, Va* +y2dedy, D= {(z,y) eRL:1<a?+y? <4}
D={(z,y) eR}: x> +y* > 1} N{(z,y) eRL: 2” +y* < 4}

We use polar substitution:

x =rcost T

) 1ST§270§0§_7

. 2
y =rsinf
detJ =1 #0

2 pm/2 2 w/2 e
// Va2 + yrdady = / / r2drd9/ 7‘2dr/ df = —
D 1 Jo 1 0 6

5.9 Triple Integrals

Now that we know how to integrate over a two-dimensional region we need to move on to
integrating over a three-dimensional region. We used a double integral to integrate over a two-
dimensional region and so it shouldn’t be too surprising that we’ll use a triple integral to integrate

over a three dimensional region. The notation for the general triple integrals is:
[[[ st
E
Let’s start simple by integrating over the box
B =a,b] x [c,d] x [r, s]

Note that when using this notation we list the x’s first, the y’s second and the z’s third.

The triple integral in this case is

(s [ [ e i

Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no reason

to the integrals in this order.
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5.9 Triple Integrals

Example 5.13

Evaluate the following integral.

[[fsevar . 5o

Just to make the point that order doesn’t matter let’s use a different order from that listed above.

Solution

We’ll do the integral in the following order.

J[[rewzar = [ 2 / 3 / Seyzdzdrdy
B

2 3 .
= / / [4xy22}0dxdy
1 J2
2 3
= / / dxydxdy
1 J2
2

= / [2x2y} 3 dy
1
2
= / 10ydy = 15
1
There are six different possible orders to do the integral in and which order you do the integral in

will depend upon the function and the order that you feel will be the easiest.

o First case, we define the region E as follows

E={(z,y,2)/x € [a,b],ua(2) <y < up(x), va(w,y) <z <o, 9)}

In this case we will evaluate the triple integral as follows

b uz(x) va2(z,y)
///f(x,y,Z)dxddeZ/ / / f(z,y,2)dz | dy | dz
s a u1 () v1(z,y)

o Second case we define the region E as follows

E={(z,y,2)/y € [a,0] ,u1(y) < & <ua(y), vi(x,y) <z <wa(w,y)}

In this case we will evaluate the triple integral as follows

b u2(y) v (z,y)
[ radsagaz= [ [0 [ g 2)az ) dn ) ay
s a u1(y) v1(z,y)

o Third case we define the region E as follows

E={(z,y,2)/z € [a,b] ,u1(2) <z <us(2), vi(z,2) <y <wvg(z,2)}
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5.9 Triple Integrals

In this case we will evaluate the triple integral as follows

b u2(z) vo(z,2)
///f(fv,y,Z)dxdde—/ / / f(x,y,2)dy | dx | dz
a u1(z) v1(z,2)
E

o Fourth case we define the region E as follows

E = {(l’,y, Z)/Z S [a7b] 7u1(z) S ) S U'Q(Z)’ U1<y7z) S €T S U?(y7z)}

In this case we will evaluate the triple integral as follows

b u2(2) v2(y,2)
[t adzaya: = [ [ [ g 2de | ay) a
a u1(2) v1(y,2)
E

o Fifth case we define the region E as follows

E={(r,y,2)/y € la,b],u1(y) < z <wa(y), vi(y,2) <z <waly, 2)}

In this case we will evaluate the triple integral as follows

b u2(y) v2(y,2)
///f(x,y,Z)dwddeZ/ / / f(z,y,2)dx | dy | dz
s a u1(y) v1(y,2)

o Sixth case we define the region E as follows
E={(z,y,2)/x € [a,b] ,u1(2) < 2 < uz(x), vi(2,2) <y < vaw,2)}

In this case we will evaluate the triple integral as follows

b uz(z) va(z,2)
///f(x,y,z)dxdydz :/ / / flz,y,2)dy | dz | dx
a w1 () v1(z,2)
E

Evaluate the following integral.

Example 5.14

/ é / \/ﬁdzxdydz

E={(z,y,2) eR’ z€[1,2], 0< 2 < \fy, 0 <y < 2%}

Solution
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Chapter 5 Exercise

/é/\/%dxdydz - /12 /0

= Chapter 5 Exercise <

. Exercise 1 Find the definition set of the following function

2xy

flx,y) = o

then study the limit at the point (0, 0)
. Exercise 2

Calculate the partial derivatives of the function defined by
U (z,y) = sin (az + by + cy?)

. Exercise 3

Calculate the total derivative of the function
Ul(z,y) = e+ sin? (z + 3y%)

. Exercise 4

Evaluate the integral

120



Chapter 5 Exercise

Terminology

Zero matrix

L a4l Bsaal)

Squar matrix

dny o B 50000

Diagonal matrix

all

Identity matrix

PRRREJAAY

Constant of integration ) b
Continuous function oo Gl:
Elementary functions By dlys
Indefinite integrals 9l JAK;
Definite integrals ded2 J.eK;
Linearity of the integral L s
Linearity of the integral L s
Limits of integration JAK:M 39>
integration Methods &:Kﬂ\ b
Integration by Substitution e b & J»Kﬂ\

Integration by Parts

Bl K

Partial fractions

A sl

Upper Triangular matrix 4 e Bl B yamn
Lower Triangular matrix a4l B a0
Symmetric matrix 4 bl %00
Special matrices Lols Sbsaae
Inverse of a matrix Byias p Sas
Matrix row Byt
Matrix column Bsaa0 548
Equality of two matrices b yzall g4l
Transpose of a matrix B0 J }u
Trace of a square matrix B0 sl
Augmented matrix s g0 B y220
Sub matrix A Bydae
Determinants Slaud]

Cofactor matrix

1 B jhall

Minor matrix

S el B4l

Rank of a matrix B4a.20 40
Elementary Transformations | &Jsl & £
Equivalent matrix e Sy
Linear equations Lhas 9sles
System of Linear equations | alas &Vslas |&
Variables Ol e
Unknowns J,Al.é\
Coefficients SMalall
Constants Sl

Solution set

Jd| %,

Trigonometric functions e Jlys
Dffierential equations Wl Ykl
Independent variable Jwe iz
Order oy
Linearity abd|
Homogeneous Lulloe

Non homogeneous Lullxte &
Variable coefficients ol Ml
Constant coefficients bl OMalas
General solution f\'c J=
Particular solution ol
Variation of constant S
Nonlinear equation Lhs & Yol
Bernouli equation Aol oles
Separable dffierential equation oaiin ol Wolee
Euler Homogeneous Ll J
Characteristic equation 5 el Wl
Several variables Ol gl sdaze
Domain Al dle
Range el i #
Graph ol

Limit of a function Al Ll
Multivariable function Oyl sdaza
vector valued functions Aelad dlys
Limit of a function s wls
Continuity B
Partial derivatives Wil ol
Dffierential Sl

Total dffierential

Double integrals

Homogeneous linear system | dudlxs das Je
Unique solution Ay e
Infinitely many solution Jdl e 3LVl
Infinitely many solution Jdl e 3l
Elementary operations ¥ Slled!
No solution Jolo o 5V
Inconsistent system 4o ylaze Je
Matrix form Gshall K
Cramer's rule ‘/\f sk
Matrix inversion B sa0 Cghte
elimination method el 4
Elementary operations ¥ Sl
Equivalent systems ekl J&!
Primitive functions FAWSNIINIPR
Derivative functions Jladl g2t

Bounded region
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