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"If you know, let others light their candles in it.”

— Margaret Fuller

This course aims to help university students, particularly in their early years,
gain a profound understanding of mathematical analysis and learn how to con-
struct proofs. It focuses on fundamental concepts such as the properties of real
numbers, convergence theory, continuity, differentiation, and integration.

This course is designed based on the programs for first-year university students
in engineering, sciences, and technology. The course covers the following major
concepts:

o Chapter 1 introduces the foundational properties of real numbers: Axioms
of the real numbers, supremum, infimum, and upper completeness.

o Chapter 2 explores sequences, discussing the basic concepts of conver-
gence and related applications.

o Chapter 3 examines real-valued functions of a single real variable, focusing
on limits, continuity, differentiation, L’Ho6pital’s Rule, Rolle’s and the
Mean Value theorems.

o Chapter 4 shows the methodology used to approximate functions using
polynomials.

o Finally, Chapter 5 transitions to the theory and techniques of integration.
These concepts equip students with the essential tools needed to solve advanced
mathematical problems.

Feedback is welcomed and appreciated.



"The art of teaching is the art of assisting discovery”
— Mark Van Doren

Greek alphabet

The Greek alphabet is frequently used in mathematics to represent a wide range
of mathematical variables, constants, and symbols. Here are some of the Greek
letters commonly used in mathematics and their typical mathematical represen-

tations:

Uppercase | Lowercase | Name

A Q@ alpha
beta
gamma
delta
epsilon

> 2 @

zeta
eta
theta
kappa
lambda
mu
nu
xi
omicron
pi
rho
sigma
tau
upsilon
phi
chi
psi
omega
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”The whole of science is
nothing more than a
refinement of everyday
thinking”

e

Albert Einstein

(1879-1955)
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Preliminaries

Various sorts of numbers

Number sets are collections of numbers with specific properties and characteristics. Below, we
introduce some of the most common number sets:

o The empty set (null set) @ denotes the set that contains no elements
and is sometimes represented as { }.

o The set of Natural numbers is represented as N = {0,1,2,... }.

o The set of Integers is represented as
Z=A{...,-2,-1,0,1,2,...}.

o The set of Rational numbers is represented as
Q:{’E’,pEZ,qEZ*}.

Example 0.1
1

Leibniz

= 0.25 (terminating decimals).
5 = 0.3333 (repeating decimals). (1646-1716)
o Irrational Numbers: These are numbers that cannot be expressed as

a fraction, such as —\/§, e,, V.

o Real Numbers R: The set of real numbers includes all rational and

1=

irrational numbers.
o Complex Numbers C: Complex numbers consist of a real part and
an imaginary part. They are written in the form x + iy, where x and
y are real numbers and i is the imaginary unit (4> = —1).
We have

NcZc QcR cC

The universal quantifiers

The notation 7V denotes the universal quantifier.

Vz € R is read: for all real number z.

Peano, Giuseppe

(1858-1932)
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The existential quantifier

The notation - denotes the existential quantification.
Jx € Ris read: there exists a real number .

dlz € R is read: there exists a unique real number x.

Intersection

The intersection of two sets A and B, denoted by A N B is the set
of elements x that are in both A and B. Mathematically, we represent as

follows:
ANB={rxe€eE:rx€ Aandz € B}

ANB

Union

The union of two sets A and B, denoted by A U B, is the set of
elements x that are in A or B (or in both). Mathematically, we express by:

AUB={rx€e E:x€ Aorz € B}

AUB
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Inclusion

We say that a set A is included in a set B, or that A is a subset of B
if every element of A is also an element of B. This relationship is denoted
as A C B.

ACB < Vz (r€ A = x€B).

Principle of mathematical induction

Mathematical induction is a method of mathematical proof used to
establish that a given statement holds for all natural numbers. The tech-
nique consists of two main steps. Let P(n) be a given statement involving
the natural number n such that:

Base Case: Show that the statement is true for the first value in the set of
natural numbers, usually n = 1.

Inductive Step: Assume that the statement is true for some arbitrary
natural number k. Then prove that it must also be true for k£ + 1.

If both of these steps are completed, we conclude that P(n) is true for all

natural numbers n.

Signum function

Let x € R. The sign function, denoted by sgn(x), is defined as:

-1 ifzx <O,
sgn(z) =¢ 0 ifz=0,
1 ifz>0.



Chapter 1 Properties of the real numbers

This chapter presents the fundamental properties of the real number system, which form the basis
of mathematical analysis. Covers the axioms of real numbers, intervals, absolute values, bounded
sets, supremum and infimum, the completeness axiom, the Archimedean principle, and the greatest
integer function. These concepts equip students with the essential tools needed for precise reasoning
and proofs in mathematics. By the end of this chapter, you will be able to:

o State and apply the axioms of the real numbers.
o Calculate absolute values and determine the boundedness of sets.
o Define, find and use the supremum and infimum of a set, using the completeness axiom.

Apply and prove properties involving the Archimedean principle and the greatest integer func-

©

tion.

1.1 Axioms for the real numbers

In this section, we introduce the axioms for the real numbers. Recall that in mathematics,
axioms are the first principles that are accepted as truths without justification and are used to build
mathematical theories. The set of real numbers is denoted by R.

1.1.1 The algebraic properties

There are two operations in R, addition (+) : R x R — R, and multiplication (.) : R x R — R
satisfying the following properties:
o Commutative law for addition: * +y=y+2 Vr,yeR

o Associative law for addition: (v +y)+z=x+ (y+2) Vz,y, z€R

o Existence of identity element (Zero): there exists an element 0 € R such that

O+z=24+0=2, Vel

» Existence of inverses (Additive Inverse) : Vo € R3(—z) € Rsuch that z + (—z) =0

o Commutative law for multiplication: z.y =y.x Vz,y € R

o Associative law for multiplication: (z.y).z = z.(y.z) Vz,y, z € R

o Existence of identity element (One): there exists an element 1 # 0 € R such that 1x = z1 =
r VeR

» Existence of inverses (Multiplicative inverse): for all z € R there exists an element 7! € R
such that zz=1 =1

o Distributive law of multiplication over addition: z(y + 2) = z.y + .z Vz,y, z € R




1.2 Interval

1.1.2 The order properties

R are totally ordered sets. Now we present the axioms of order:

o Vx,y € Rwehave xt <yorx >y

o Vr,ye R;z <yandz > ywehave xr =y
o Vr,y,ze Rif r <yandy < zthenx < 2
o Vr,y,z € Rif 0 < aand x < y then ax < ay
As a consequence of these relations, we have the following.
o Vz,y € Rifx < ythen —x > —y
o Vz,y,z € Rifz < yanda <0 then ax > ay

oV eR: 22> 0

o Vz e Rifz > 0theni <1

o‘v’x,yeRif0<x<ythen0<§<i

1.2 Interval

Ifa,b € Randa < b,

o The open interval:

o The closed interval:

©

The half-open interval:

o The half-closed interval:

o Infinite intervals are:

1.3 The absolute value

We define the absolute value of a real number x, which is denoted by |z| as:

z ifz >0
|z| =

Ja;b[={z € R; a < x < b}

[a;0] = {z € R; a <z < b}

[a;b[={z € R; a <z < b}

la;b) ={z € R; a <z < b}

la;oo[={z € R; z > a}
| —oob[={r e R; z < b}
[a; 00[= {z € R; # > a}
] —o0jb] ={z € R; z < b}

—z ifz <0



1.4 Bounded sets

Clearly that || = 0 if and only if x = 0 and 0 < |z| for all x € R. Some important properties of the
absolute value function are presented below:

I. Vo € R, Yy € R, we have |zy| = |z|.|y|

2. Vz €R, |z]? = 22

3.Vz eR, —|z| <z < |z

4. Vr eR, Vy € R, we have |z + y| < |z] + |y|

1.4 Bounded sets

In this section, let us begin with some definitions.

Definition 1.1

Let A C R be a non-empty set is said to be bounded above if there exists a real number M such
that x < M forall x € A

IMeRVreA: z <M

The number M is called an upper bound for the set A.
A set A C R is said to be bounded below if there exists a real number m such that x > m for

allz € A
dmeRVreA: x>m

The number m is called a lower bound for the set A.
A set A C R is bounded if it is both bounded above and bounded below.

dm, M eRVreA: m<x<M

Example 1.1
For each case, determine if A is bounded above, bounded below, bounded, or unbounded.
o A=]4,9|
o A=]—o00,4
o A=N*
Solution:
o A=]4,9[.
Every © € A satisfies 4 < x < 9, so 4 is a lower bound and 9 is an upper bound. Hence A is
bounded.
o A=]—00,4].

Every x € A satisfies v < 4, so 4 is an upper bound. The set has no real lower bound (it is
unbounded below), hence A is bounded above.

o A=N"={1,23,...}.
Every n € N satisfies n > 1, so 1 is a lower bound, then A is bounded below.

6



1.5 Supremum and infimum

Remark
If A is bounded above with the upper bound a, then any real number greater than « is also an upper
bound of A. Similarly, if A is bounded below with a lower bound b, then any real number smaller than
b is also a lower bound of A.
o If m is a lower bound for A and m € A then m is the minimum of A, denoted by min A.
o Similarly, if M is an upper bound for A and M € A then M is the maximum of A, denoted
by max A. Thus, when they exist, min A and max A belong to A and, forall x € A

min A <z <maxA4

Remark
o Maximum (max): The largest element in the set.
o Minimum (min): The smallest element in the set.
Example 1.2
o ConsiderA = [4,9] we have 4 € A then min A = 4 and we have 9 € A then max A =9
o ConsiderA = [4,9] we have 4 € A and 9 ¢ A then A has a minimum min A = 4 but no

maximum.

1.5 Supremum and infimum

The notions of supremum and infimum are fundamental in real analysis, and they play a crucial
role in establishing the completeness of the real number system. Let’s review the definitions of
supremum and infimum, along with some of their fundamental properties. We begin with some
definitions.

Suppose that A C R is a set of real numbers that are non-empty and bounded.
o If M € R is an upper bound of A such that M < M’ for every upper bound M’ of A, then

M is called the supremum of A, denoted as M = sup A. In other words, the supremum

of a set is its least upper bound.
o If m € R is a lower bound of A such that m > m/’ for every lower bound m' of A, then
m is called the infimum of A, denoted as m = inf A. In other words, the infimum is its

greatest upper bound.

Remark
o sup(A) = inf{M; M is an upper bound of A}.
inf(A) = sup{m; mis a lower bound of A}.

©

o If A has a maximum element, then the maximum is equal to the supremum:
max A =sup AifsupA € A

o If A has a minimum element, then the minimum is equal to the infimum:



1.5 Supremum and infimum

min A =infAifinfAe A

Example 1.3
I. Let A = {2 : n € N*}. Then sup A = 1 belongs to A, so max A = 1. On the other hand,
inf A = 0 doesn’t belong to A and A has no minimum.
2. Consider the set A = {—4,7,9}. sup A = 9, note that 9 € A, then max A = 9. On the other
hand, inf A = —4 and inf A belongs to A, so min A = —4.

Proposition 1.1
If the supremum or infimum of a set A exists, it is unique. If both exist, then inf A < sup A.

Proof
o Suppose that M and M’ are supremum of A. Then M < M’ since M’ is an upper bound of A
and M is a least upper bound; similarly, M’ < M, so M = M’.

o If m and m/’ are infimum of A, then m > m/ since m’ is a lower bound of A and m is the greatest

lower bound; similarly, m’ > m, som = m’.

o The infimum is the greatest lower bound and the supremum is the least upper bound. Therefore,
the infimum cannot be greater than the supremum. If inf A and supA exist, then A is nonempty.
Choose x € A. Then inf A < x < sup A. It follows that:

infA<supA

Now, let’s present the characterization properties of the supremum and infimum:

Proposition 1.2 (Characterization Property)

Let A C R be a nonempty set that is bounded and M, m € R. We have

Vee A, x < M

M =sup A <= {
Ve > 0, dz. € Asuch thatx. > M — ¢

Vee A, x>m

m=inf A < {
Ve >0, dx, € Asuchthatx. < m+¢

Proposition 1.3

If A, B are nonempty sets, then

sup(A+ B) =sup A +sup B, inf(A+ B) =inf A+ inf B,
sup(A — B) =sup A —inf B, inf(A — B) =inf A —sup B

Proof The set A + B is bounded from above if and only if A and B are bounded from above, so
sup(A + B) exists if and only if both sup A and sup B exist. In that case, if x € A and y € B, then

x+y<supA-+supB

so sup A + sup B is an upper bound of A + B and therefore



1.6 Completeness axiom

sup(A+ B) < sup A+ sup B

To get the inequality in the opposite direction, suppose that € > 0. Then there exists t € Aandy € B
such that

r>supA— 5 y>supA— 3
It follows that
r+y>supA+supB —¢

forevery ¢ > 0, which implies that sup(A-+ B) > sup A+sup B. Thus, sup(A+ B) = sup A+sup B
The proof of the results for inf(A + B) and inf(A — B) are similar.

1.6 Completeness axiom

The completeness axiom is a fundamental concept in the theory of real numbers. It provides
a key property that distinguishes the real number system from other number systems, like rational
numbers. The completeness of the real numbers ensures the existence of the supremum and infimum.

The existence of supremum and infimum is one way to define the completeness of R.

Proposition 1.4 (Completeness axiom)

Every nonempty set of real numbers that is bounded from above has a least upper bound (a
supremum). Similarly, every nonempty set of real numbers that is bounded from below has a

greatest lower bound (an infimum).

Remark
o The supremum property and the completeness axiom are equivalent.
o The supremum property does not apply to Q.

Example 1.4

Consider the set A = {r € Q; 2% < 2}

The set A is nonempty and bounded because every element of A satisfies 2 < 2 implying that

—V2<z<V2

Therefore, v/2 is an upper bound for A.
Aiming for a contradiction, suppose that sup A € Q exists and v/2 ¢ Q then

supA # V2 <= sup A > +v2orsup A <2

o Ifsup A < V2
So, using the theorem on the density of Q in R, there exists ; € Q such that sup A < r; < /2

meA <<= rneQ:r?

Therefore from,



1.7 The Archimedean principle

Vre A=z <supA

we have r; € Aandsup A < ry
This contradicts the characterization property of supremum.

o Ifsup A > /2
So, using the theorem on the density of Q in R, there exists r, € Q such that /2 < r, < sup A
Therefore, by the definition of supremum is the smallest upper bound. 75 is an upper bound,
and r, < sup A
which is a contradiction with sup A is the smallest upper bound. Then sup A ¢ Q.

Since there is no rational least upper bound for A.

1.7 The Archimedean principle

The completeness axiom implies an important property of the real numbers, known as the
Archimedean principle. It states that if x and y are real numbers with x > 0, then there exists a natural
number n € N such that

nr > y.

1.7.1 Application
Consider the set A = {4 — 1; n € N*}
Find the sup and inf if there exist.
Taking a,, = 4 — %, we have the set A is nonempty, moreover
Vne N 3<a, <4

Since A is bounded. By the completeness axiom, sup A and inf A exist.
o inf A: Infimum is the greatest lower bound.

VnGN*;éL—%z?)

The set of lower bounds is | — 0o, 3]; then inf A = 3.
o sup A: It seems that 1 is the upper bound of A. Using the characterization property of the
supremum to prove that 1 is the least upper bound for A.

supA=4 <= Ve>0dn. e N; 4 —¢ < a,.

Suppose that: 4 — ¢ < a,,. then4 —e <4 — n% thus n. > %

By Archimedean principle, there exists n. satisfying the above inequality. So sup A = 4.



1.8 The greatest integer function

1.8 The greatest integer function

Definition 1.4

For real numbers x, the greatest integer function denoted as [x] or E(x) gives the greatest

integer not greater than x.

Example 1.5
E9,4) =9, E(r) =3, E(—9,4) = —10.
The greatest integer function has several interesting properties:
o If x is a real number, then

E(z)<z< E(x)+1
o Let z be a real number and let n be an integer. Then
E(x+n)=FE(x)+n

o Ifx,y € Rand z > y, then E(x) > E(y).
o E(z) = x,if x is an integer.

= Chapter 1 Exercises <~

Exercise 1

Prove the following properties:
o Va,y R, |z +y| < |z +[y].
o Yo,y €R, ||z — |yl| < lo —yl.
o Va,y R, |z + [yl < |z +y[+ |z —yl.
o Yz € R, |z| = max{x, —z}.

Exercise 2

If the set A is bounded, find sup A, max A, inf A, and min A if they exist.
1

A={zeR:0<x <9}, A:{Q——,neN*},
n

T

A:{n+2,n€N,n22}, A:{9+l,neN*}
n—1 n

A={zeR:2’> 64}, A={1:4§x§9},




Chapter 1 Exercises

Find the sup, max, inf and min of the following sets and prove your answer.
o A= {nZLH; n €N }

_ [2n+41.
s A= T:L_-i-l’ TLGN}

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
o If A C B, thensup A < sup B and inf B < inf A
o inf(AU B) = min(inf A, inf B)
o sup(A U B) = max(sup A, sup B)

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If AN B # @, then AN B is bounded:

max(inf A, inf B) <inf(AN B) < sup(A N B) < min(sup A4, sup B)

Prove the following properties:
o Vr,ye Rz <y= E(z) < E(y)
o Vz e R,n e N*: B(E0)y — B()

n

12



Chapter 2 Sequences

The concept of sequences has its roots in the earliest stages of mathematics, where ordered
patterns of numbers were studied long before the development of formal analysis. Ancient Greek
mathematicians, such as Pythagoras and Euclid, examined numerical patterns and progressions,
including arithmetic and geometric sequences, as part of their investigations into number theory and
geometry. Later, mathematicians in the Islamic world expanded on these ideas, exploring series and
summations in algebraic contexts.

The modern notion of sequences as a foundation for limits and convergence began to take
shape in the 17th century with the work of mathematicians such as Newton and Leibniz, who used
infinite sequences and series in the development of calculus. In the 19th century, definitions of limits
and convergence, introduced by mathematicians like Cauchy and Weierstrass, provided the formal
framework that underpins real analysis today. The main objectives of this chapter are to:

o Present the formal definition of a sequence of real numbers.
Study bounded sequences and their properties.

©

o Define convergence of sequences and examine its behavior.

Explore monotone sequences and the monotone convergence theorem.

©

o Establish the relationship between limits and inequalities.

Analyze adjacent sequences, subsequences, and their convergence properties.

©

Examine special classes of sequences, including geometric and recursively defined sequences.

©

2.1 Sequence of real numbers

Suppose that for each positive integer n, we are given a real number w,,. Then the list of numbers
U, Uy« vy Uy e o
is called a sequence. This ordered list is usually written as
(ur,ug,...) or (u,) or {u,}.

Formally, a sequence is defined as follows:

Definition 2.1 (Sequence of real)

A sequence of real numbers is a real-valued function whose domain is the set of natural numbers.

We denote a sequence with standard functional notation such as f : N — R. it is customary to
use subscripts, replace f(n) with u,, and denote a sequence {u,} oruy, usy. ...

A natural number n is called an index for the sequence, and the number corresponding to the
index n is called the nth term of the sequence.




2.2 Bounded sequence

2.2 Bounded sequence

Definition 2.2

o A sequence {u,} of real numbers is bounded above if

dM € R such thatVn € N: u,, < M
o A sequence {u,} of real numbers is bounded below if
dm € R such thatVn € N: v, >m
o A sequence {u,} of real numbers is bounded if
dM, m € R such thatVn e N: m <wu, <M
or equivalently

3B > 0 such that ¥n € N: |u,| < B

Example 2.1
o u, = n?is a bounded below, since Vn € N, u,, > 0.

o u, = = is a bounded, since %| < 1forall n € N*.

2.3 Sequence convergence

Definition 2.3

A sequence {u,} converges to the number | € R if

Ve > 0, Ing € N such that ¥n > ng = |u, — | < e

We call [ the limit of the sequence. We write:

lim u,, = loru, —1
n—oo

Example 2.2

n+1
4n+1"

We claim limy,—yooUn = }L. To see this, we want to demonstrate that

1. Let the sequence u,, =

Ve > 0, dng € N such that Vn > ng = |u, — | < ¢

That is

Ve >0, 3ng € Nsuch that Vn > ng = | £ — 1| <«

We must therefore prove the existence of ng € N, which verifies

n2n0:|4:‘1111—i|<6

14



2.3 Sequence convergence

We begin by examining the size of the difference, and simplifying it:

n+l 1‘ o 3 — .
in+1 4 16n + 4
3 —4e “n
16e
The Archimedean property guarantees the existence of ny. Taking nyp = E (31_6‘;5

obtain

2. Consider the sequence u,, =

That is

, 1
lzmn%ooun = Z

n+2
Ve > 0, Ing € N such that Vn > ng = |u, — | < ¢

Ve > 0, Ing € N such that Vn > nyg = |Z—j§—1‘ <e€

We must therefore prove the existence of ny € N, which verifies

ntl
n2n0:>n—+2 1}<€

We begin by examining the size of the difference, and simplifying it:

n—+1 1

n+2

<e€

—1‘<5 =

1
= ——2<n
€

) + 1, then we

ntl We claim lim,,_,.ou, = 1. To see this, we need to prove that

The Archimedean property guarantees the existence of ny. Taking ny = E (% —2) + 1, then

Remark

lim u, =1
n—oo

A sequence that converges is said to be convergent, and otherwise is said to be divergent.

A convergent sequence has a unique limit.

Proof Suppose u,, converges to [; and to l. So, lim,, o, = l; and lim, o u, = Iy where Iy # [5.

Firstly, given u,, — [y, lete = %

dny € Nsuch thatVn > ny, |u, — l1] < e.

Then, given u,, — lo,

Ve > 0, dny € Nsuch thatVn > ng, |u, —ls| < &

Consider ny = max{ny, ns}, Then, we have both

Ve >0,dng e NNVneN:n>ng: |u, — 1| <eand|u, — ] <e

Now, apply the triangle inequality to the terms u,, — [, and u,, — [5. Hence

]ll—un+un—l2| < \un—l1\+\un—l2|

< 2¢
L =1y

2




2.4 Monotone sequences

This is a contradiction. The assumption that /; # [ cannot be true. Therefore, the limit of a convergent
sequence is unique, and the proof is complete.

Remark

To show that the sequence u,, is divergent, it is sufficient to demonstrate that it tends to two different
values.

Example 2.3

Consider the sequence u,, = (—1)". This sequence is divergent because

1 if n=2k
Uy, =
-1 if n=2k+1

divergence is evident because there is no unique limit as n approaches infinity.

If {u,} is convergent, then {u,} is bounded.

Proof Suppose that u,, converges to [. Given ¢ = 1. Thus, there exists an ny € N such that
|un, — 1| < 1forall n > ng. Let

B = max{|uy|, [ual, ..., |tn,_1], 1] + 1}.
for all n > ng, we have

[tun] = |up — 1+ < |u, = U +|I| <1+
then for all n € N we have

lu,| < B.

Hence, we have shown that a convergent sequence {u,, } is bounded.

Remark

A bounded sequence is not necessarily convergent.

Example 2.4

The sequence u,, = (—1)" is bounded since Yn € N : —1 < w, < 1. However, despite being

bounded, the sequence is divergent.

2.4 Monotone sequences

Definition 2.4

o A sequence {u,} is said to be monotone increasing if Vn € N, u,, < 1.

o A sequence {uy,} is said to be monotone decreasing if Vn € N, u,, > ty 1.
o If {uy,} is either monotone increasing or monotone decreasing, we say {u, } is monotone

or monotonic.

Example 2.5
Let’s consider the sequence u,, = % for n > 1. This sequence is monotone decreasing.



2.5 The monotone convergence criterion

2.5 The monotone convergence criterion

Let {u,} be a monotone increasing sequence. Then, {u,} is convergent if and only if {u,} is
bounded. Moreover,

lim u, = = sup{u,; n € N}

n—00

Proof Firstly, we know that if {u,,} is convergent then by the preceding theorem, it is bounded. Now
assume that {u,, } is bounded. By the completeness axiom, the set A = {u,,; n € N} has a supremum,
define | = sup{u,; n € N}. We claim that u,, — [. We want to prove that.

lim u, = (.
n—o0

Let € > 0. Since [ is an upper bound for A, u,, < [ for all n. Since [ — ¢ is not an upper bound for
A, there is an index n for which u,, > [ — . Since the sequence is increasing, u,, > [ — ¢ for all
n > ng. If n > ng we have

l—e<u, <l<l+e¢

Thus, if n > ng then |u,, — I| < e. Therefore, u,, — .

Theorem 2.4

Let {u,} be a monotone decreasing sequence. Then, {u,} is convergent if and only if {u,} is
bounded. Moreover,
lim u, = inf{u,; n € N}

n—oo

This proof is similar to the previous theorem.

2.6 Limits and inequalities

In this section, we explore fundamental results concerning the limits of sequences. We begin
by examining the interaction between sequences and inequalities. Subsequently, we delve into the
relationship between limits and inequalities, introducing the squeeze theorem.

Theorem 2.5 (Squeeze theorem)

Let {u,}, {v,}, and {w,} be sequences such that Vn € N,

Up < Vp S W
Suppose that {u,} and {w,} converge and

lim u, =1 = lim w,.
n—o0 n—oo
Therefore, {v,} converges and

lim w, =1
n—o0

Proof Lete > 0. The sequences u,, and w,, are convergent and have the same limit [ then

17



2.6 Limits and inequalities

lim,, .~ u,, = [, there exists an n; € N such that for all n > nq,
lu, — 1] < e
Since lim,, ,., w,, = [, 3ns € N such that Vn > ns,
lw, — 1] <€
In particular, we have [ — ¢ < u,,. Similarly, we have that w,, < ¢+ [.
Putting everything together, we find
l—e<u, <v, <w, <l+e = |v, - | <e.

Choose ny = max{ny, ny}. Then, if n > ng, then

o, — 1| < e.
Therefore, {v,,} is convergent and
lim v, =1
n—oo
Example 2.6
Consider the sequence v,, defined as follows:
n — ) > 1
! ; n ek
It is clear that for all n > k > 1 we have
2 2 2

< <
n+n  ndP4+k " nd4+1

then . , . , . ,
n n n
< <
;nz”—i—n ;n3+k ;n:”—i—l
SO 2 2
PENPRE = e}
then
n3 n?
WBn = S
Now as X .
lim = lim — 1

= m =
n—o0 n3—|—n n—o00 n3—|—1
both sequences approach 1. By the squeeze theorem, we get

lim v, =1
n—,oo

Theorem 2.6 (Linearity and monotonicity of convergence)

Let {u,} and {v,} be convergent sequences of real numbers. Then

1. For each pair of real numbers o« and 3, the sequence au,, + v, is convergent and

lim [aun + ﬁvn] =« lim u, + # lim v,
n—oo n—oo n—oo



2.7 Algebraic operations of sequence convergence

2. If u, < v, forall n, then

lim u, < lim v,
n—oo n—oo

Proof
1. Define

lim u,, = l;and lim v, = [y
n—oo n—oo

Observe that
| [otn + Bun] — [ady + Blo]| < |elun — L] +|B|va — 2], YR € N (%)

Given ¢ > (0. Choose a natural number nq such that

and‘vn—lg‘ < _c Vn > ng

(2+2|8])’

R R

From (*) we obtain that
| [aun + ﬂvn] — [all + ﬁlg} ‘ < e, Vn > ng
2. Let u, — [l and v,, — ls, suppose w,, = v, — u, and [ = ly — [;. Since u,, < v, we have
Up — Uy > 0 then w,, > 0, by linearity of convergence w,, — [. We must show [ > 0. Given
€ > 0, find an ng € N such that Vn > ny we have
lw, =l <e = —e+l<w,<e+l

Also w,, > 0. In particular, for n > ng we have 0 < w,, < [+ ¢ because £ > 0 this would imply
that [ > 0.
Therefore,

L <1y

2.7 Algebraic operations of sequence convergence

Theorem 2.7

Suppose lim,, . u, = l; and lim,, .o, v,, = l5. Then,

1. {uy, - v, } is convergent and lim,,_, o, u,v, = lils.
2. IfVn € N, v, # 0andly # 0, then {u, /v, }, is convergent and

o Un, ll
lim — = =~
Proof
1. Since v, — lo and {u,} then, it is bounded. In other words, 3B > 0 such that Vn € N,
|vn| < B. Then,
|UnUn — l112| = |(Un — ll)vn + (Un — lg)lll

< un = ffval + [l ][on — Lo
S B|un — lll + |11||’Un — lg|



2.8 Adjacent sequences

Therefore,
0 S |un'Un - lll2‘ S B|un - ll‘ + ‘llH/UTL - ZQ‘

Since
B|Un — l1| + |l1||?}n — l2| — 0

By the squeeze theorem lim,, . |u, v, — l1l2] = 0.
2. We prove that % — % We first prove 3m > 0 such that Vn € N,
ly # 0, dng € N such that Vn > ny,

Un| > m. Since v, — Iy and

l
|Un — l2| < %

By the triangle inequality, Vn > ny,

[ [
il < I~ af el < 2 | = = 2L

2
Let m = min {|u1|, ey g1, ‘l2—2|} Then, Vn € N, |v,| > m.
Therefore,
1 1 n — 1 1
OS———:|U 2|§ "Un—lgy.
vn 2| Jullle] T omily]

According the squeeze theorem,

lm |[———| =0
n—oo | Uy, Iy
Therefore,
. 1 1
lim — = —
n—oo /Un l2

Furthermore, by the proof before, it follows that
. ( 1 ) l
lim (u, — | =—
n—oo Un, l2

: k _ gk
Jm (un)" =

Remark

Now, we present the definition of sequences converging to infinity, call oo the limit of u,,, and

write lim,,_,. u,, = 00

Definition 2.5 (Limits at infinity)

We say the sequence {u, } converges to infinity if and only if:

lim u, = +00 <= VA>0,Ing e N,VvneN: n>ny — u, > A

n—o0

lim u, = -0 < VA>0,In e N\, VneN: n>ny = u, < —A

n—oo

20



2.8 Adjacent sequences

2.8 Adjacent sequences

Definition 2.6

Let {u,} and {v,} be two sequences of real numbers. We say that {u,,} and {v, } are adjacent

if

o Uy < Upyy and vy < Uy, foralln € N

o and
lim (v, —u,) =0
n—oo
Example 2.7
Letu, =9 — -5 and v, = 9+ 5. Then
—An244 1)2 .. .
o Upp1 — Uy = % > 0, u, is increasing sequence.
—4(n+1)2+4n? . .
o Uppl — Up = % < 0, v, is decreasing sequence.
o we have v,, — u,, = %. Thus
. . 8
lim (v, —u,) = lim — =0
n—oo n—o00 ’n2

Then {u,} and {v, } are adjacent.

Proposition 2.1
Two adjacent sequences u,, and v, converge to the same limit [.

2.9 Subsequence

A subsequence of a sequence {u,, } is a sequence formed by taking certain terms from the original
sequence, in the same order as they appeared in the original sequence. More precisely, we have the

following definition.

Definition 2.7

Informally, a subsequence is a sequence with entries coming from another given sequence. In
other words, for a sequence {u,} and a strictly increasing sequence of natural numbers {n;}

we call the sequence {u, } whose kth term is u,y, a subsequence of {u,,}.

Example 2.8
Consider the sequence u,, = (—1)". Then we have the subsequences uy = 1 and ug, 1 = —1.
Letny <ng < --- < ng < ...beanincreasing sequence of natural numbers; that is,ny < Nyi1

forall k € N. Then forall k € N, k < ny,.

Theorem 2.8

If {u,} converges to l, then any subsequence of u,, will converge to l.
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2.10 Geometric sequence

Proof Suppose u,, — [. Let u,; be any subsequence of {u,, }. We shall prove that lim,, ,, . = [.
To do this, Let ¢ > 0. Since, lim,,_.o, u,, = [, then dny € N such that Vn > n,,

lup, — 1] < e.
Now suppose k is any natural number such that £ > n, then n, > k& > n > ny by Lemma 2.1. Hence,
for all € > 0 there exists an ng such that for all n; > ng, and implies that

|Unk — l| < E.

Theorem 2.9 (Bolzano-Weierstrass)
Every bounded sequence has a convergent subsequence.

Proof Let (a,)nen be a sequence of real numbers with |a,,| < L for all n € N.

Step 1: So —L < a, < L. Note that [-L, L] = [-L,0] U [0, L]. Divide the interval [—L, L]
into two halves. At least one half must contain infinitely many a,,. Pick one such half and call it /;.
Note that |I;| = 1|[—L, L]| = L. In fact, say I; = [ag, ao + L]. So a,, € I;. There are infinitely many

ay’s in I;. Select one, say a,, .

] ]
T T

—L 0 L

Divide the interval /; into two halves. At least one half must contain infinitely many a,,. Pick
one such half and call it I,. Note that |I| = %|Il| = % In fact, say I, = [a1,a; + é] So a,, € Is.
There are infinitely many a,,’s in /5. Select one, say a,,, with ny > n;.

In this way we generate

Qpy s Opyy gy - . Withng <ng <mng < ---

Note that || = 3&+. Also, Iy C I and a,, € Iy, an,,, € Iy for allm € N. Also

an, € S C[—L, L.

Step 2: The sequence a,,,, an,, Gn,, - . . 1s monotone increasing and bounded above by L. So it is
convergent. Call the limit a.

Step 3: Prove that a,, — a.

Let ¢ > 0. Since (a,,, ) converges to a, there exists N7 such that
lan, —al <5 whenever n; > Nj.
Since |I;;| = 3 — 0, there exists N, such that
[I| <5 whenever k > Nj.

Thus, the distance from a,,, to a is at most the length of I, which converges to zero as k — oo.
Choose N = max(Ny, N;). Thenng, > N = |ay, —a| < |ap, =&+ —a| <5+5=¢.
Therefore, (a,,) — a.

Remark

If a sequence is not bounded, it must have subsequences diverging to positive or negative infinities.
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2.10 Geometric sequence

2.10 Geometric sequence

Definition 2.8

Given real numbers a and r. the real numbers

a,ar,ar’ . ..

are said to form a geometric sequence, also known as a geometric progression. a is called the
initial term and r is called the common ratio.

The n-th term u,, of a geometric sequence can be expressed using the formula:

Uy = ar™
n is the term number.
Example 2.9
o The numbers —9, 36, —144, 576, ... form a geometric sequence with initial term —9 and com-

mon ratio —4.
o The sequence u,, = (—1)" is a geometric sequence.
Remark
o To prove that a sequence is geometric, it is sufficient to demonstrate that the ratio “Z—:l does not
depend on n.

Proposition 2.2

The sequence 1" is convergent if —1 < r < 1 and divergent for all other values of .

+oo ifr>1,
lim Tn: 1 l:f’]":l’

n—oo
0 if —1<r<l1.

Remark

o We now present some very useful fundamental limits

+oo ifr >0,
lim n" = {1 if r =0,
n—oo

0 if r <0.

o And
lim (1 + <)" = ¢°

n— 00 n

Proposition 2.3

If a and r are real numbers and r # 1. Then

CL’/‘n+1 —a

n
Zar’“:a+ar+ar2+-~~+ar":—1
1"‘_

k=0
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2.11 Recursively defined sequences

2.11 Recursively defined sequences

We now give other useful ways to define sequences.

Definition 2.9

Let I be an interval of R and f : [ — R be a real function defined on I. Let ag € R. We call a

sequence defined recursively any sequence {u,,} defined as

Ug = Qo
Upr1 = fuy), YneN

Example 2.10

Consider the recursively defined sequence
Uy = 1,

Upt1 =3+ Up, Vn e€N.

Proposition 2.4

If a sequence {u,} defined by the recurrence relation u, 1 = f(u,) converges to a limit l in the
domain of Dy, and if the function f is continuous, then we have f(l) = . The value l is called

a fixed point of the function

Proposition 2.5

Let {u,} be a sequence defined by the recurrence relation ug = ag and u,1 = f(u,). If f is

increasing, then {u, } is monotonic. More precisely:
o If uy > wy, the sequence {u,} is increasing. It converges if and only if it is bounded
above; otherwise, it tends to +0oo.
o If uy < wy,, the sequence {u,} is decreasing. It converges if and only if it is bounded

below; otherwise, it tends to —oo.

Example 2.11

Define recursively a sequence u,, by:

Uy = ]_,
Upt1 = u, +6, VnéeN.
The generating function of the sequence w,, is f(z) = /= + 6 It is defined over the interval [—6, 4-00].

Note that all terms of the sequence {u,,} are positive; therefore, this sequence is well-defined and we

have Vn € N : u,, € Dy. Additionally, we have
1
"(#) = ——= >0
fl@) 26 +x

indicating that f is increasing. Thus, {u, } is monotonic.

Since u; — ug = 1 — +/7 > 0 is an increasing sequence.
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Chapter 2 Exercises

Let’s now demonstrate that {u,, } is bounded above. To achieve this, we will show by induction that
YneN: u, <3
o Base case :
Forn=0wehaveuyg =1<3
o Inductive step:

Assume that u,, < 3 is true and let’s show that u,,; < 3

‘We have
U, <3 = u,+6<9

= Vu, +6<9

= Upp1 <3
by mathematical induction, we conclude that
VneN: u, <3.

Then we can write: Vn € N : w, € [0,3], {u,} is increasing and bounded, therefore, it
converges to a limit [ € [0, 3].

Since the function f is continuous on [0, 3], this limit satisfies f(I) = .

Solving v/6 +1 =1, we findl = —2 ¢ [0,3] or | = 3 € [0, 3]. Then,

lim u, =3

n—oo

= Chapter 2 Exercises -

Exercise 1
Consider the sequences:
1
(Du,=104+=)", (2 u,=vVn?+4n —n,
n

< 1 _ nsin(n)
O =2y WS

o Determine the limit of the sequence w,, as n approaches infinity.

o Using the definition of limit, verify that.

dn —1
lim o, = — =2, lim u, = vn2+1—+/n=+o0
n—-+oo 2n -+ 1 n—+oo
Exercise 2
Consider the sequence:
_ 1 1 1 1
Un =i Tatams T

o Prove that the sequence u,, is monotone increasing.

o Prove that the sequence u,, is convergent, and its limit satisfies:

<Il<1

D=



Chapter 2 Exercises

Consider the sequence u,, defined by u,, = v/n — E(y/n)
o Study the convergence of the subsequence u,,2, U,22y,.
o What can you conclude about the nature of the sequence u,,?

Define recursively a sequence u,, by:
3
Uy = 5
U1 = (up,—1)2+1
o ProvethatVn e N; 1 < u, < 2.

o Prove that u,, is monotone sequence.

o If u,, converges, compute its limit.

Define recursively a sequence u,, by:

Ug = 1,
Uy + 1
Vn € N.
Unt 2u, +3’ "

o Prove that Vn € N, u,, > 0.

o Prove that Vn € N*, (w11 — ) (tps1 — Up—1) > 0.

o Conclude that this sequence is monotone.

o Is this sequence convergent? If it is convergent, find its limit.

Prove that each of the following pair of sequence (u, ),en and (v, ),en are adjacent




Chapter 3 Real functions of one real variable

The functions of a real variable form the basis for many concepts in mathematical analysis and
its applications. They are essential tools for describing curves, modeling physical phenomena, and
performing mechanical calculations. The main objective of this chapter is to introduce the fundamental
properties of real functions and to develop the skills necessary to analyze their behavior.

In particular, we aim to:

o Define functions of a real variable and represent them graphically.

o Study boundedness, monotonicity, symmetry, and periodicity of functions.

o Perform algebraic operations with functions.

o Understand and apply the notions of limits and continuity.

o Explore elementary, trigonometric, inverse trigonometric, and hyperbolic functions.
o Introduce the concept of the derivative and its main properties.

o Find the nth derivative (with n > 1) of the function, whenever it exists.

3.1 Definition of function and its graph

Let D C R be a nonempty set. A function f of a real variable is a rule which assigns to each

x € D exactly one y € R:
f:D—R, z+—y=f(2).
o The set D is called the domain of the function f and is denoted by D.

o f(z) is called the image of x, or the value of the function at x.
o The set {y = f(x) | x € Dy } is called the image or range of f and is denoted by Im( f)

or f(Dy).
o A function is often called a mapping.

Definition 3.2

The graph of a function f is the set of ordered pairs of real numbers (x, f(x)), where x € Dy.

We write

G={(z,f(z)) €R* |z €Ds}.

Example 3.1
o The graph of the function f(z) = 22 is



3.2 Bounded functions

o The graph of the function

-1 ifz <0,
fl)=40 ifz=0,
1 if x > 0.
f ()
1
\ | 0Oe ZL';‘
-3 -2 -1 1 2 3

3.2 Bounded functions

Definition 3.3

Let f: D — R
o A function f is said to be upper bounded if

dM € R such thatVx € D: f(x) < M
o A function f is said to be lower bounded if
dm € R such thatVx € D: f(x) >m
o A function f is said to be bounded if it is both upper and lower bounded or equivalently

dB > 0 such thatVx € D: |f(x)] < B
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3.3 Monotonic functions

Example 3.2
Show that f(z) = fj—jrg is bounded
We see that for any = € R we have,
22 -9 18
22+9 2249
Holds
2>0 = 224+9>9 —= V2 eR; 0< 21 gl
>+9 79
Then
o< =B
—x?4+9
So,
—1< f(x) <1
Remark

As we saw in Chapter 2, it 1s possible to write

D <M
M:supf<:>{ vz €D, flx) <
Ve > 0, dxg € Dsuch that f(zg) > M — ¢

3.3 Monotonic functions

Definition 3.4

Consider f : D — R. A function f is said to be:
o increasing if for anyxy,xo € D such that ©1 < xo the inequality f(x1) < f(x2) holds.
o decreasing if for any x1, x5 € D such that x1 < x5 the inequality f(x1) > f(x2) holds.

o Functions that are increasing or decreasing are called strictly monotonic.

Example 3.3
Identify the monotonicity of the following functions:

f@) =% fla) = >

X

3.4 Even and odd functions

Definition 3.5

Let f : D — R is called
o evenif f(—x) = f(x) forany x € D.
o odd if f(—x) = —f(z) for any x € D.

Example 3.4
Decide if the following functions are even or odd.

fz) = 2% and f(z) = 3%
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3.5 Periodic functions

3.5 Periodic functions

Definition 3.6

Function f is said to be periodic with period p,p € R, p > 0, if,
o foranyx € Dalsox+p e D, and
o f(x+p)= f(x)forany x € D.

The best-known periodic functions are trigonometric functions. For example, sine and cosine

have the primitive period 27.

3.6 Operations with functions

The definition below is natural. We add, subtract, multiply, and divide function values of two
functions at points where both these functions are defined. Moreover, in the case of division, the
divisor must be nonzero.

Definition 3.7

Consider two real function f : D — Rand g : D — R. Their sum f + g, difference f — g,

product fg and quotient f /g are defined as follows:
o VzeD:(f+g)(x)=f(z)+ g(x).
oV eD:(f—g)(zx)= flz)— g(x)
o Vz € D: (fg)(z) = f(x)g(x).
o VreD: (g)(x) = % and g(z) # 0.
o Multiplication by a constant function A € R, (\f)(z) = A f(x).

Definition 3.8

Consider two real function f : Dy — R and g : D, — R. The composite function, denoted as
f o g is defined if and only if f(Dy) C D, and we have

z € D; s f(x) € f(Dg) & g(f(x)) = go f(z)
Vz € Dy : go f(z) = g(f(z))

Remark
In mathematics the symbol g o f is read ”¢g composed with f”.

3.7 Limits and continuity of functions

The concept of limit is one of the most important in mathematical analysis. In this section, we
will describe several types of limits of functions of one variable. Using limit we will then introduce

continuity, another fundamental concept.
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3.7 Limits and continuity of functions

3.7.1 Limits of functions

Definition 3.9

A set U C R is a neighborhood of a point x € R if

lt—gz+elcU
Let £ > 0. The open interval |x — ¢;x + €| is called a e-neighborhood of x and denoted V()

Definition 3.10

Function f : D — R has the limit | € R at the point x if and only if:

Ve > 0,30 >0, suchthat¥Nz € D : 0 < |[x — 29| < <= |f(z) -1 <e

We then say f(x) converges to l as x goes to xy. We write

=
or
flx) =1 as z— xg
Example 3.5

For the function f given by f(x) = 3z + 3, we have lim,_.; f(z) = 6. So, Vx € R:
If(x) — 6] = |32 +3—6| =3[z — 1| & |z — 1] <§
It is enough to take 6 = £ to have:
Ve > 0,30 >0, suchthatVx € D: 0< |z — 1] < < |f(x)—6|<e

The limit of a function, if it exists, is unique.

Proof Suppose that f has two distinct limits ; and I, as = goes to xo. So, lim, ., f(z) = [, and

limg_sz, f (x) = Iy where Iy # [5. Therefore, we have:
Ve > 0,36, >0, suchthatVz € D: 0 < |z —zo| <6 <= |f(z) — L] <e
and
Ve >0, 30 > 0, suchthatVz € D: 0 < |z — 29| <0 <= |f(x) — L] <¢
Consider § = max{dy, d2 }, Then, we have both
Ve > 0,36 >0, suchthatVx € D: 0 < |z — x| < <= |f(x) —li| <ecand|f(z) — ] <e

lete = %. So for 0 < |z — xo| < &, we have,

=1l = |h—f(x)+ f(z) — I
< |f(x) = L]+ |f(x) = lo
< 2
L =1
2

This is a contradiction. The assumption that [; # [, cannot be true. Therefore, the limit is unique.
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3.7 Limits and continuity of functions

3.7.1.1 Sequential limits

Let f : D — R. Then, the following are equivalent:
[ limg ., f(x) =1 and

2. for every sequence {x,} in D such that x,, — xo and x # xo, we have f(x,) — L.

Proof (1. — 2.):
Suppose f(xz) — lasz — x(. This, according to the definition of the limit, is equivalent to saying
that
Ve > 0,30 >0,suchthatVx € D: 0 < |z —xo| <d = |f(z) =] <¢

Let {z,,} be a sequence in D such that x,, — xo. Then,
Ver >0, Ing € N, such thatVn e N: n > ng = |z, — 20| < &
Choose €; = 9. Then, by combining the two previous implications, it is evident that we have
Ve >0, dng € N, suchthatVn e N: n > ny = |f(z,) =] <¢
Thus,
lim f(x,) =1

T—T0

(2. < 1.
Suppose 2. holds, and assume for the sake of contradiction that 1 is false. Then,

lim f(x) #1 <= e >0, V0 > O0suchthatdz € D : 0 < |z —x9| <0 and |f(z)—1I] > e.

T—T0

Let’s choose § = £, n € N*. Then,

n?
1
Vn € N, 3z, € D such that0 < |z, — x| < — and |f(z,) — | > ¢
n
Thus, we have constructed a sequence {x,, } such that z,, # z, x, €]zo — +,xo + +[, then

lim z,, =z
n—oo

Then, by 2,
|f(xn) - l| Z €

Which is a contradiction.

Example 3.6

We use the previous theorem to show that a function does not have a limit. For example, consider the
function f(z) = sin(%). This function does not have a limit at the point 2 = 0; indeed, there exists a

sequence {x, } defined by

Such that
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3.7 Limits and continuity of functions

But on the other hand, the sequence

Flan) = f( ! ) — sin (g —|—n7r) = (—1)"

5tnm

does not have a limit as n — oo.

3.7.1.2 Limits and inequalities

Theorem 3.3

Let D C R, and f : D — R, g : D — R are functions for which the limits of f(x) and g(z)

exist as x approaches x,, and

f(z) <g(x) VxeD

Then,
lim f(z) < lim g(z)

T—rx0 T—rx0

Proof Letl; = lim, ,, f(z)andly = lim,_,,, g(x). Let {z, } be a sequence in D such that z,, — x.
Then, Vn € N, f(x,) < g(z,). Therefore,

li = lim f(x,) < lim g(x,) = .

n—oo n—0o0

Theorem 3.4 (Squeeze theorem)

Let D CRandg: D — R, f: D — R, h: D — R are functions for which the limits of g(x),

f(z) and h(z) exist as x approaches xy, the inequality

g(x) < f(x) < h(x) VreD

holds, and
g e = A pe) =
then it follows that
lim f(z) =1
T—T0

Proof Lete > 0 be given. We must find 6 > 0 such that
|f(z) =1 <& whenever 0 < |z — x| <.
Since lim,_,,, g(z) = [, by the definition of limits there exists J; > 0 such that
lg(z) =1 <e forall 0 < |z — zo| < 01.
That is,
l—e<g(x)<l+e forall0 < |z — x| < 0. 3.1
Similarly, since lim,_,,, h(x) = [, there exists 0, > 0 such that
l—e<h(zr)<l+e forall0 < |z — zg| < 0. (3.2)

Moreover, since g(z) < f(z) < h(x) holds in some open interval containing x,, there exists
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3.7 Limits and continuity of functions

03 > 0 such that
g(x) < f(z) < h(z) forall 0 < |z — x| < d3. (3.3)

Now, let

0= min(él, 52, 53)

Then, combining (3.1), (3.3), and (3.2), we obtain
l—e<g(x) < flz)<h(z)<l+e forall0 < |z — xo| < 0.

Thus,
|f(z) —1] <e forall 0 < |z — 0| <.

Hence, by the definition of limits,
lim f(z)=1.

T—T0

Example 3.7

Using the Squeeze theorem, show that
llir(l) T sin ( . ) 0

Since for all real x, we have
—-1< sin(%) <1,

it follows that
—x < xsin(l) < z.

T

As z — 0, both bounds satisfy

lim—-2x =0 and limx =0.
x—0 r—0
Therefore, by the Squeeze Theorem, we conclude that
31613% Z sin ( ” ) 0.

Proposition 3.1 (Limits of absolute values)

Let D C R, and Suppose [ : D — R is a function such that the limit of f(x) exists as x goes to

xo. Then,
lim |£(2)| = | lim ()|
r—To T—T0

3.7.1.3 One-sided limits

Limits at a point x( introduced above are called two-sided because = approaches x( from both
sides. Sometimes f is not defined on both sides of x, or we are only interested in function values on
one side. That is why one-sided limits are defined. One-sided limits are limits that are approached
from only one direction, either from the left or from the right. They are denoted as follows:

o The left-hand limit
lim f(z)or lim f(z)

— <
T—Ty T—7x0
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3.7 Limits and continuity of functions

o The right-hand limit
lim f(x)or lim f(x)

az—ma' xih:o
respectivelys is read as "the limit of f(z) as x approaches x( from the left or from the right”.

Definition 3.11

Let D CRand f: D — R
o We will say that f has a finite right-hand limit at x if

Ve > 0,36 >0,Ve € Dsuchthat0 < x —xy <0 = |f(x) =] <e

o We will say that f has a finite left-hand limit at x if

Ve > 0,30 >0,Ve € Dsuchthat) < xg —x <§ = |f(x) =] <e

Proposition 3.2

Let D C Randlet f : D — R. Then,
lim f(z) =1 < lim f(z) = lim f(z) =1

T—=T0 T—=Ty Tz

Remark
To demonstrate that a function f does not have a limit at the point o, we can show that the right-hand
limit is different from the left-hand limit.
Example 3.8
Consider the function:

x+9 ifx >0,

fz) = ,

xr—9 ifz <.

Then,
lim f(x) =—-9 and lim f(z) =29,

z—0— z—0t

therefore, lim,_, f(z) does not exist.

3.7.1.4 Infinite limits and limits at infinity of a function

Definition 3.12

Let f : D — R
o We say that the function f has the limit +00 as x approaches x, if and only if

lim f(z) =400 <= VA>0,30>0,VzeD: 0< |z —x9| <I = f(z)> A

Tr—xT0

o We say that the function f has the limit —oo as x approaches x, if and only if
lim f(z) =—00 <= VA>0,30>0,Vz e D: 0< |z —x0| <d = f(z)<—-A

T—rxo
o We say that the function f has the limit +o0c as x approaches +oo, if and only if
lim f(x) =400 <= VA>0,dB>0,VzeeD:z>B = f(z)> A

T—r+00
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3.7 Limits and continuity of functions

o We say that the function [ has the limit 400 as x approaches +oo, if and only if
lim f(z)=—-00 <= VA>0,3B>0,VreD:a2>B = f(z)<—-A

o We ;cl_));;zoat the function f has the limit +o0co as x approaches +o0, if and only if
IEI_HOO]C(LE):—FOO < VA>0,31B>0,VzeD: 2 <—-B = f(z)> A
o We say that the function f has the limit 400 as x approaches —oo, if and only if
lim f(x)=—-00 <= VA>0,3B>0,VzeD: 2<—-B = f(z)<—-A

T——00

3.7.1.5 Properties of limits and algebraic operations

Given the limits of two functions, f and g, we can determine, subject to certain conditions, the
limits of their sum, difference, product, and quotient.

Proposition 3.3

Consider two real function f : D — R and g : D — R and assuming, limits lim f(z) =14

Tr—T0
and li_>m g(x) = ly at the point xq exist, then
T—T0
° g}ggo(f +9)(z) = :}ggo flz) + mlggog(fv) =h+l.
* Zplf 9@ = lim, f(o) ~ ip gl) =h — ko

o lim (fg)(z) = lim f(z) lim g(z) = L.l
lim (£)(g) = 202 ’® g
° xlg:lo(g)(x) Tl 9(@) Tl and iy 7 0.
o For A e R wll)na}o()\f)(x) — )\mli_glo f(z) = A
The statements are also true for one-sided limits.

Proposition 3.4

Let f : D — Rand g : D — R be two functions defined in the neighbourhood of a point x. If

f is a bounded function and li_>m f(z) =0, then
T—T0

lim [f(x).g(x)] = 0

T—T0

3.7.1.6 Indeterminate forms

Indeterminate forms are expressions that cannot be immediately determined or evaluated when

applying the limit operation. Common indeterminate forms include:

00 0
—; 400 — 00; —; 0.00; 17 ooo; 0
00 0

3.7.1.7 Landau’s O and o notation

Let f and g be two functions defined in a neighbourhood of a point 2y € R.
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3.7 Limits and continuity of functions

Definition 3.13

We say that f is negligible compared to g as © approaches xq, and we write f = o(g) if
Ve>0,30 >0,V eR: 0< |z — 20| <a = |f(x)| < e|g(x)]

Remark
o f=olg) == lim I =0.
o If g(x) =1,V € R, then f = 0(1) <= lim f(z) =0.

T—T0

Definition 3.14

We say that f is dominated by another function g as x approaches xo, and we write f = O(g) if
dK>0,30>0,VzeR: 0< |z — 29| <a = |f(x)] < K|g(z)|

Remark
o The symbols o and O are called Landau notations.
o If g(x) = 1,Vz € R, then f = O(1) <= f is bounded on V'(z) .

3.7.1.8 Equivalent functions

Equivalent functions are useful in simplifying expressions and evaluating limits, especially when

dealing with more complex functions.

Definition 3.15

Let f and g be two functions neighbourhood neighbourhood of a point xo € R. We say that f

is equivalent to g as x approaches x,, and we denote it as f ~ gif f —g=o(f).

Remark
of~g<:>f—g=0() —g=o0(g).
o o = Jim =1
Example39
o Sinx ~ .
0

° ln(m—kl)rgm

Proposition 3.5

Let f, g, f1 and g, be functions defined in a neighborhood x, such that f > f1 and 9~ if

lim gE ; exists, then lim 142)

T—xo T—x0 g1(z)

also exists, and the two limits are equal.

Example 3.10

Using equivalent functions to calculate the following limit: hH(l) (S;+32+1)
T— 2

We have

In((sinx)? + 1) ~ (sm z)? r(\)sz and sin
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3.7 Limits and continuity of functions

Then I (i )2 )
n((sm'x)x +1) N xT 9
sin § 0z 0
So,
L (GLEDRE )
z—0 Sin 5

3.7.2 Continuity

Using limit, we can establish another fundamental concept in mathematical analysis

3.7.2.1 Continuity of a function at a point

Definition 3.16

A function f is continuous at a point o € R if

lim f(x) = f(zo)
T—TQ
A function f is left-continuous or continuous from the left at a point x( € R if

lim f(z) = f(xo)

$—>IO

A function f is right-continuous or continuous from the right at a point xy € R if

lim,_f(z) = f(o)

m—)mo

In particular, if

lim f(z) = lim f(z) = /(o)

:c—)xo CE—)$0

then f is said to be continuous at r = x.

Example 3.11
o Let f be a real function defined by:

cos’(rx) ifz <1,

1+ 2@ e s,

xT

fz) =

We have
lim f(r) = lim cos®(rx) = (=1)* =1 = f(1);

r—1~ rz—1—

and

lim f(z) = lim (1+ln—x) =1=f(1);

z—1t z—1t xT

Thus, f is continuous at x = 1 because

lim f(z) = lim f(z)= f(1);

T—1— z—1t
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3.7 Limits and continuity of functions

o Let the function

This function is continuous at all z.
Remark
If the function f is not continuous at the point xy, we say that f is discontinuous at x( and z is a point
of discontinuity of f.
Example 3.12

Let the function

sl 0
fay={ 7
0 €T =

This function is not continuous at z = 0. So,

lim f(x) = 1 # £(0)

3.7.2.2 Continuity of a function in an interval

Definition 3.17

A function f(x) is said to be continuous on an interval [a,b] if the following three conditions

are satisfied:
o f(x) is defined on the interval [a, b].
o f(z) is continuous at every point in the interval ]a, b|.

o f is right continuous at a point a and left continuous at a point b;

lim_ f(z) = f(a)and lim f(z) = f(b)

$—>x0 CC—)ZEO

Example 3.13
The function f(z) = v/4 — 22 is defined when the expression under the square root is nonnegative:

4-2">20 = —2<z<2
o Forevery x € (—2,2), the function is continuous because the square root function is continuous

wherever it is defined:

lim V4 — 22 = V4 — a2.

Tr—a
o And
lim vV4—22=0=f(-2), lim vV4—22=0=f(2),
z——2+ z—2-
showing right continuity at x = —2 and left continuity at x = 2.

Therefore, f(x) is continuous on the interval [—2, 2].
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3.7 Limits and continuity of functions

Proposition 3.6

Polynomials, exponential and logarithmic functions, trigonometric and inverse trigonometric
functions, hyperbolic and inverse hyperbolic functions, and the power function are continuous

on their natural domains.

3.7.2.3 Continuous extension at a point

The concept of a “continuous extension at a point” refers to extending the domain of a function
so that it becomes continuous at a specific point where it might not have been defined or continuous
initially.

Definition 3.18

Let D be an interval and f(x) be a function continuous for all x € D except at x if li_)m f(x)
r—x0

exists and is equal to a real number . Then f can be extended by continuity to the function such
that

Fa) = f(x) xz€D—{xo}

l T = T

Remark

The function f is continuous on interval D.

Example 3.14

Let f(x) = 22 the domain of f is R*. f is discontinuous at 0 because f(0) is not defined. We have

T

liné f(z) = 1irr(1] % = 1, then the discontinuity is removable and redefine the function by
T— T—
. ST g £ ()
flz) =
1 =0

3.7.2.4 Uniform continuity

Definition 3.19

Let D be a nonempty subset of R. A function f : D — R is uniformly continuous on D if,
Ve>0,30>0,Vey, 20 € D: |11 — 22| <6 = |f(x1) — fza)] <

Example 3.15
The function f(z) = x? is uniformly continuous on the interval ]0, 1].
Given € > 0 and let x;, x5 €]0, 1] then we have

O<<land0< 22, <1 —= 0< a1+ 29 <2
Or

[f (1) = fla2)] = |2 — 23] = |21 — @oflz1 + 22
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3.7 Limits and continuity of functions

Then
|f(x1) = f(22)] < 2|21 — 29

So, it is enough to take § = 5>0.

3.7.2.5 Lipschitz function

Definition 3.20

Let D C R, a function f : D — R be said to be Lipschitz continuous if there exists a constant
K such that for all x1, x5 € D, the following inequality holds:

|f(z1) = f(22)] < K21 — 24|

Example 3.16

The function f(z) = z? is Lipschitz continuous on the interval [0, b] with b > 0, but it does not satisfy
a Lipschitz condition on the unbounded interval [0, c0).

Remark

A Lipschitz function on D is uniformly continuous on D.

Theorem 3.5 (The intermediate value theorem)

If a function f is continuous in a closed interval [a,b] and if y is some number between f(a)
and f(b) then there is a number c € [a, b] such that f(c) = y.

yA

f(c)=y

|
|
|
|
|
i c b

Proof Without loss of generality, suppose f(a) < y < f(b). Define

A:={x € la,b]: f(z) <y}
Since f(a) < y, we have a € A, so A is nonempty. By definition, A is bounded above by b. Therefore,
by the least upper bound axiom, A has a least upper bound, which we denote by ¢ = sup A.
We now show that f(c) = y.
First, note that ¢ € [a,b] since a < ¢ < b.
Let € > 0 be arbitrary. Since f is continuous at ¢, there exists 6 > 0 such that for all = € [a, b]
with |z — ¢| < J, we have

[f(x) = fle)l <e,
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3.8 Elementary functions

which is equivalent to
flx) —e < fle) < fx) +e. (D

Because ¢ = sup A, the number ¢ — § is not an upper bound of A. Hence there exists z; € A
with
c—o<ux <c

Since |x; — ¢| < ¢, applying the right-hand inequality in (1) gives
fle) < fla)+e<y+e,

because x; € A implies f(z1) < y. Since ¢ was arbitrary, we conclude

fle) <. (2)
Moreover, ¢ < b. Otherwise, if ¢ = b, then f(b) = f(c) < y, contradicting y < f(b).
Now pick 5 with ¢ < x5 < band |2y — ¢| < . Since 25 > ¢ = sup A, we have x5 ¢ A, which
means f(z2) > y. Applying the left-hand inequality in (1), we get

f(e) > flza) —e>y—e.
Since € was arbitrary, this implies
flc) >y, 3)
Combining (2) and (3), we obtain
fle)=y.

Thus, there exists ¢ € [a,b] with f(c) = y, as required.
Example 3.17
Show that equation cosz = x has a solution in the interval |0, 7[. Let f(x) = cosx — z, f be
continuous on [0, 7] and satisfy f(0) =1 > O and f(3) = —F < 0. According to the Mean Value
Theorem, there exists at least one solution such that f(c) = 0. Therefore, ¢ is a solution of equation

cos(z) =x

Proposition 3.7

If the functions f and g are continuous at a point x, then the functions f + g,, f — g and f.g

f
g

are continuous at . If, moreover, g(xo) # 0 the function

Proposition 3.8

Let function f be continuous at the point xq and let function g be continuous at point yo = f(x),

s continuous at .

then the composite function f o g is continuous at the point x.

3.8 Elementary functions

This section focuses on the study of elementary functions which appear naturally in the solution
of basic problems, especially physics issues. In this regard, we introduce the fundamental concepts of

these functions and explore some of their key properties.
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3.8 Elementary functions

3.8.1 Exponential Function

Leta € R, a > 0. The function f(z) = a”, z € R is called the exponential function with base

3.8.1.1 Properties

o Domain: (—oo, +00).
o The function is increasing for a > 1, decreasing for 0 < a < 1, and constant for a = 1.
o Let a € RT, then for any x, y € R, the following laws of exponents hold:

Tty x Yy -z 1 T—y a’ T\Y Ty
™V =a"-a¥, a "= a® v = (@)Y =a

a’

=
Remark
o The most important choice of base a is Euler’s number e ~ 2.718281828... Later, we will
see why this choice is so important and provide a definition of e. The function e” is called the
natural exponential function.
o Vx e R, e” > 0.
o The function e” is strictly increasing.

o Vr,ye R, e =¢Y < r=y,ande* < eY < x <.

3.8.1.2 Some Reference Limits

I. lim e* =0, lim e* = 400, lim &=t =1.
T——00 T—+00 250 =

2. lim £ =0, lima"e™*=0, Vne&N.
x—+oo © T—>00

3.8.2 Logarithmic Function

Consider the function f(z) = a*, where @ > 0, a # 1, and x € R. This function is strictly
monotonic, and its inverse f ! exists. It is called the logarithmic function with base a and is denoted

log, z.
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3.8 Elementary functions

log,z,a>1

log,z, 0 <a<1

3.8.2.1 Properties

o Domain: (0, +00).
o The function is increasing for @ > 1 and decreasing for 0 < a < 1.
o Leta>0,a+#1,z,y € RT. Then:

loga (I‘y) = loga T+ loga Y, loga <£> - loga T — loga Yy
Y
log,(z") =nlog,z, VneN

Remark
o The logarithm with base e is called the natural logarithm and is denoted by In.
o The natural logarithmic function y = Inx is the inverse of the exponential function y = e”.
That is,
Ve>0:x=¢e" <= lnzx=y

o If a = 10, the logarithm is called the common logarithm, denoted by log. It is used in chemistry.

Base-2 logarithms are common in computer science.

3.8.2.2 Some Reference Limits

I. Iim Inx = —o0, lim Inx = +o0, lim In(@+1) _ ¢
z—0t z—+00 0 T

2. lim 2z —0, lim 2”"lnz=0, VYneN.
z—+o0 ¥ z—0t

3.8.3 Power Function

Let r € R. The function f(x) = 2", x > 0 is the power function. It can be expressed using

exponential and logarithmic functions:

T’ = (elnx)r — erlnm, T > 07 reR

44



3.9 Trigonometric functions

3.9 Trigonometric functions

This section is devoted to trigonometric functions, which play a central role in mathematics and

its applications. They emerge naturally in the study of periodic phenomena, geometric problems, and

especially in physics and engineering contexts. We introduce the basic definitions of these functions,

discuss their fundamental properties.

3.9.1 Sine

o Notation: f :y = sinx.

o Domain: R.

o Itis odd, that is, sin(—z) = —sinz.

o It is periodic, its primitive period is 27, that is, sin(x + 2k7) = sinz, k € Z.
o Itincreases onintervals | — 7 +2km, 5 +2k7[, k € Z, and decreases on intervals | 42k, 37“ +

2km|, k € Z.
o —1 <sginz < 1.

1}y 5<in(z)

3.9.2 Cosine

o Notation: f :y = cosz.
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3.10 Inverse trigonometric functions

o Domain: R.

It is even, that is, cos(—z) = cos .

©

©

It is periodic, its primitive period is 27, that is, cos(z + 2km) = cosx, k € Z.
o It increases on intervals | — m + 2k7, 2k7[, and decreases on intervals |2k, m + 2k]|.
o —1 <cosx <1.

y = cos(x)

3.9.3 Tangent

o Notation: f :y = tanz defined by formula tan = 222 for cosx # 0.

o Domain: R — {g + lmr}, keZ.

o Itis odd, that is, tan(—x) = — tan x.

o It is periodic, its primitive period is , that is, tan(x 4+ 7) = tanz, k € Z.
o Itincreases onintervals | — 5 + km, § + kn[, k € Z.

6_y:tan(:1:)
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3.10 Inverse trigonometric functions

This section focuses on inverse trigonometric functions, which determine the angles correspond-

ing to given trigonometric values. These functions are fundamental in mathematics, as they help us
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3.11 Hyperbolic functions

understand the relationship between angles and ratios. We will define each inverse function, explore

their key properties, and study their graphs to visualize their behavior.

3.10.1 Inverse Sine

o Notation: f~':y =arcsinzor f:y =sin"'x.

©

Domain: | — 1, 1].

It is odd, that is, arcsin(—z) = — arcsin .

©

It is not periodic.

©

o It is increasing.

s 1y é
a2 Ly =sin " (rg) ......................... I
B ..................... Al ............................ ...........
1 | n 1 1
-1 -q.S 0.5 1
R — P I o
B ..................... I .............................. ...........

3.10.2 Inverse Cosine

Notation: f~!:y = arccosz or f : y = cos™ ! .

Domain: | — 1, 1].

o It is neither odd nor even.

©

©

It is not periodic.

©

o Itis decreasing.

3.10.3 Inverse Tangent

o Notation: f~!:y = arctanz or f : y = tan~! .

o Domain: R.
o Itis odd, that is, arctan(—z) = — arctan .
o It is not periodic.

o Itis increasing.

47



3.11 Hyperbolic functions

._..y..E..eGng..l.(m.) ............. .........

xTr
................................ fnﬁz y:tall__l(x)
________________________________ ol T
5 4 3 2 - 1 2 3 4 5
......................................................... ' 0 S S
............................................................. B

3.11 Hyperbolic functions

Three functions are included among the hyperbolic functions: hyperbolic sine, hyperbolic cosine,
and hyperbolic tangent. These are widely utilized in technical applications across diverse fields,
including physics, engineering, and mathematics. In the following discussion, we will explore their

fundamental properties and graphs.

3.11.1 Hyperbolic sine

The hyperbolic sine function is defined by the formula

et —e

2

sinhz =

o Domain: R.
It is odd, i.e., sinh(—z) = — sinh(z).
It is not periodic.

©

©

o Itis increasing.
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8_y:sinh($)
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3.11.2 Hyperbolic Cosine

The hyperbolic cosine function is defined by the formula
e’ +e”

hx =
cosnx 9

o Domain: R.
o Itiseven,i.e., cosh(—z) = cosh(x).

It is not periodic.

©

It increases on the interval [0, +o0o[ and decreases on the interval | — oo, 0].

©

3.11.3 Hyperbolic Tangent

The hyperbolic tangent function is defined by the formula
sinhz e —e™®
tanh x = =
coshr e*+e®

o Domain: R.
o Itisodd, i.e., tanh(—z) = — tanh(z).
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3.12 Derivative

o It is not periodic.

o Itis increasing.

3.12 Derivative

This section begins with the definition of the derivative.

Definition 3.21

Let f be a real-valued function. We say that f is differentiable at x in its domain Dy if the limit
o @) = ()
T—xQ Xr — 'TO

Exists. In this case, the value l is referred to as the derivative of f at xy. The derivative of | at

=lecR

xo, if it exists, is denoted by f'(x), read as f prime of x.
We can express the analogous definition as follows:
f is differentiable at x if and only if

L @ h) — f(@)

h—0 h

= f'(z) eR.

Example 3.18

The function f : x — /x is differentiable at 2o = 1. To demonstrate this, consider the limit

— f(1 -1 -1 1
hmM:hmﬁ_:hmﬁ VTt '
z—1 x—1 z—1 g — 1 z—=1 1 — 1 \/E—kl
Simplifying the expression, we get
lim\/f—l_\/f—i-l:hm r—1
o=l x—1 r+1 =1 (x—1)(Vz+1)

I 1 1
m———- = —.
s=l/r+1 2

Remark
A function defined on an open interval I from R to R is said to be differentiable on I if it is differentiable
at every point in /.
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3.12 Derivative

Definition 3.22 (Left and right-differentiable)

1. f is left-differentiable at a point x if the limit

Fn f(z) — f(x0)

— /!
s F—— fr(o)
Exists.
2. f is right-differentiable at a point x if the limit

z—ad T — Xy
Exists.
These definitions describe left differentiability and right differentiability at a point x, denoted

by f1(xo) and ff,(zo) respectively.

Proposition 3.9

A function f is differentiable at a point xq if and only if f is left-differentiable and right-
differentiable at this point, i.e.,

fr(wo) = fr(xo).

Proposition 3.10

If f is a differentiable function at x, then f is continuous at x.

Remark

Every differentiable function is continuous, but the converse is not necessarily true.
Example 3.19

The function = — |z| is continuous but not differentiable at x = 0.
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3.12 Derivative

3.12.1 Derivatives of elementary functions

1.

!
f(x) f'(z)
ax a
x" nz™ 1
1
\/E 2v/x
e* e*
1 _ 1
T 2
In |z| 1
xr
sin x CcoS T
COS & —sinx
tanx 12
COs“ T
cot —
sin® xr
sin? 2sinx cos x
cos’x | —2sinxcosx
. 1
arcsin x —
1
arccos x —
1
arctan x a2
sinh z cosh z
cosh z sinh z

Proposition 3.11

Suppose that functions [ and g have derivatives at the point xoy € R. Then the functions f + g,

(g) = Llaols &

AN SN

= f'(xo) + ¢'(x0) (sum rule),

f'(x0) + ¢ (o) (difference rule),

=f (350)9(370) + f(x0)g'(x0) (product rule),
10)9 (z0) for g(xy) # 0 (quotient rule),

cf) (xo) = cf'(xg) (constant multiple rule).

fa, 5 (if g(xo) # 0), and cf, where ¢ € R is a constant, have derivatives at x, and the following
Sformulas hold:

(f +9) (xo

Theorem 3.6 (Derivative of inverse function)

Assume that the function [ : I — R, where x = f(y), is continuous and strictly monotonic on

function f=1 has a derivative at the point x

(f ) (z0) =

= f(yo) given by the formula:

1
f'(yo)'

the interval I. Let yo be an interior point of 1, and assume that f'(yo) exists. Then, the inverse
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3.12 Derivative

Proof By the definition of the inverse function, we have

f(fYx)) ==, forallzc f(I).

Differentiating both sides with respect to x, and applying the chain rule, we get

d -1 — (-1 —1y/ . d -
Z[F @] = £ (@) - (Y @) = ] =1

Evaluating this at the point o = f(yo), we obtain
f'(yo) - (f7) (o) = 1.

Solving for (f~1)'(xg), we conclude

(F (o) =

f’(yo)'

Example 3.20
The inverse of the function f(z) = z? with reduced domain [0, c0) is
@) =V
We have
f'(x) =2z, sothat f'(f!(x))=2Vx.

Using the theorem of derivative of inverse function, we obtain
1 1

—1v/ —
(f7) (@) = F(f1(x)  2vz
By the power rule, J d 1 1
U@ = Ve = ) =5 = o

Thus, the result is verified.
Example 3.21
Consider the function f(z) = e”, defined for all real z. Its inverse is
fz) =In(z), z>0.
First, we compute
f'(w) =€
Substituting f~!(z) = In(x) into this derivative gives

(=) = f'(In(z)) = @ = 2.
Therefore, by the formula for the derivative of the inverse function,

—1y/ _ 1 :1
U= Py~

Direct differentiation confirms this result:

Proposition 3.12 (Derivative of composite function)

Consider the composite function F' = f o g. Assume that g has a derivative at the point x,, and

f has a derivative at the point uy = g(x). Then the composite function I has a derivative at
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3.12 Derivative

the point x, and the following formula, known as the chain rule, holds:

F'(xo) = (f o g)(w0) = f'(uo) - g = f'| ) - g'(20)-

uuo

Now, we present the derivative of some composite function. If f is a differentiable function and « is
any constant, then:

o f& = af'f*!, where f is
strictly positive
o (Vf) = 2f’ where f is strictly

positive.
o (ef) = flél.
o (Inf) =L
o (sin f) = f'cos f.
o (cos f) = smf
o (tan f) = COSQf

3.12.2 Higher order derivatives

In the previous section, we explained that if the function f has a derivative at every point we
obtain a new function f’ and this new function can have a derivative at a point x(, denoted as f”(x),
if it exists. This number is called the second derivative of f at point z,, and is denoted f”(xy).
Therefore,

f"(@o) = (f) (o).

If f” exists at every point we get a new function f”. This function can be differentiated at a point
xo (provided it is possible), and we obtain the third derivative of f at point z, denoted f"'(z,). The
process continues, and for n = 4, a dash is not used as the symbol of the derivative since such notation
would be difficult to read. We denote £/, f”, ", f, f®) etc. Round brackets cannot be omitted:
f™ is the fourth power of f, while f)(x) is the fourth derivative of f at point 2. Moreover, it is
useful to denote (0 = f.

Definition 3.23

Let n € N. The n-th derivative (or n-th order derivative) of the function f at the point xq is
denoted as f™ (x0) and is defined recursively by the equality

F™(@o) = (F"7) (o).

Higher-order derivatives (third, fourth, etc.) appear in many important applications such as Taylor
series expansions, wave equations, oscillations, and control theory. They allow us to describe not only
the rate of change of a function but also its concavity, curvature, and general dynamical behavior.
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3.12 Derivative

Example 3.22
Find

I. the fourth order derivative of f(z) = ¢! atx = 9.

2. the fifth order derivative of f(z) = sin(4z +9) atz = 5.
Solution:

I. For f(z) = e** we compute:
fl(x) =4e*, () = 16e*,  fO(z) = 64e*®, fD(x) = 256e*.
Hence,
FH(9) = 256€.
2. For f(z) = sin(4x + 9) we compute:
f'(z) = 4cos(4x 4+ 9), f"(z) = —16sin(4x +9), fO(z) = —64cos(4x +9),
fW(z) = 256sin(4z +9), fO(z) = 1024 cos(4z + 9).

Therefore,
FO(5) = 1024 cos(29).

3.12.3 Derivative Recurrence Relations

In many cases, derivatives of elementary functions follow simple recurrence patterns. For

example, the trigonometric functions sin x and cos x satisfy:

ar . ) s n s
%sm$zsm<$+n§>, %coszzcos(xﬂtni).
This means that each differentiation corresponds to a phase shift of 7. For instance:
d . a2 , G dt .
%sml':cosx, @smx:—smx, Esmx:—cosx, @smx:smx.
Example 3.23

Consider f(z) = e®. Its n-th derivative is
1 (@) = e,
which shows that exponential functions reproduce themselves under differentiation.
Similarly, for f(x) = sin(bx),
f™(z) = b"sin <b:c + n%) )
and for f(z) = cos(bz),
™ () = b" cos (bx + n%) :

These recurrence relationships simplify the computation of higher-order derivatives and are
widely used in solving differential equations and series expansions.
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3.12 Derivative

3.12.4 Applications of derivatives

Theorem 3.7 (Rolle’s Theorem)

Suppose the function f has the following properties:

o It is continuous on the closed bounded interval |a, b],
o It has a derivative on the open interval (a, ),
o fla) = f(b).

Then, there exists at least one ¢ € (a,b) such that f'(c) = 0.

Proof We distinguish two cases.

Case 1: If f is constant on [a, b], then any ¢ € (a, b) works, since the derivative of a constant
function is zero.

Case 2: Suppose f is not constant. Then there exists some xy € [a,b] with f(zq) # f(a).
Assume, for instance, that f(zo) > f(a).

Since f is continuous on the closed and bounded interval [a, b], by the Extreme Value Theorem

it attains a maximum at some point ¢ € [a, b]. Moreover,

f(e) = f(xo) > fla).
Thus, ¢ # a. But since f(a) = f(b), we also cannot have ¢ = b. Therefore ¢ € (a, b).

At this point ¢, the function f has a local maximum and is differentiable, so by Fermat’s Theorem,

f'(c) = 0.

Theorem 3.8 (Lagrange’s Mean Value Theorem)

Let a, b be two real numbers with a < b. Suppose function f has the following properties

o [ is continuous on [a, b].
o f is differentiable on (a,b).
Then, there exists ¢ € (a,b) such that

’ f(b) — f(a)
fley = L5
Proof Consider the function
f(b) = f(a)

o(r) = fa) - PO =T ()
Since f is continuous on [a, b] and differentiable on (a, b), and the linear function (x —a) is everywhere

continuous and differentiable, it follows that ¢ is continuous on [a, b] and differentiable on (a, b).

Evaluate g at the endpoints:

oa) = f(a) ~ PO T ) ),
and
o) = 106) ~ PO =T oy = )~ (18) ~ s1a)) = (@)
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3.12 Derivative

By Rolle’s theorem applied to g, there exists ¢ € (a,b) such that ¢’(c) = 0. But

g(a) = () - LD

so at x = c we get

0=d(e) = (o) - 1O

which implies

f(b) — f(a)
/ —_—
f (C) - b —a .
Now we will describe a method that helps us in many cases where we evaluate the limit of a
quotient %.

Theorem 3.9 (L’Hopital’s Rule)

Let f(x) and g(x) be differentiable on an interval I containing a, and assume that g'(z) # 0
on [ for x # a. Suppose that

i@ 0 8o
e g(@) 0 e (@) o0
Then, as long as the limits exist, we have
!/
lim —ﬂx) = lim —f (z)

2o g(z) e g(a)

The proof of L’Hopital’s Rule makes use of the above generalization of the Mean Value theorem.

Example 3.24
Use L"Hopital’s Rule to calculate the following limit:

T CosT
x—+arcsin

. 449
2. limy 00 55y

1. llmx*)(]

Solution:

0

o as x — 0. Therefore, we can apply L'Hopital’s

1. The given limit is of the indeterminate form
Rule.
Let

f(z) =xzcosz and g(x)=x+ arcsinz.

Differentiating f(x) and g(x), we obtain:

1
() =cosx —xsinz, ¢(z) =14+ ——.
N A
Using L’ Hopital’s Rule, the limit becomes:
i L) gy @)y cosz —asine 1

7—0 g(a;) z—0 g’(x) =0 1+ \/1;_7 92
2. Note that the limit is of the indeterminate form 2 as x — oo. Therefore, by L’Hopital’s Rule

we proceed as follows:

f(z) =42 +9, g(x) = 9% — 4.
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Differentiating,

Hence,
o 4x+9 . flx) . 4
lim = lim = lim —.
200 Q2 — 4 T—00 g’(x) z—o00 1871

. 1
Since — — 0 as x — oo, we conclude
T

4 +9
li =0.
fin G =0

= Chapter 3 Exercises -

o Calculate the following limits if they exist
Wi (555) @mmer @
Wit ) (o)l T
o Using the definition of the limit, show that

Consider the two functions f and g defined on R by:

1

rex r <0

Lo x#0
fla) = { 1res g(x) =10 T =0
0 x =0
?In(l1+2) >0

Study the continuity of f and g over their domains of definition.

Study the extension by continuity of the following functions

1—cosx
1 arctan# 2 1 3
(e E, @ eost (3 p o

Prove that
o Va € [-1,1] : arcsinx 4 arccosz = 7.

o Vx € [—1,1] : sin(arccosx) = /1 — 22.
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Study the differentiability of the functions f at a point

xo = —1, o = 1 and for the functions g at a point zy = 0,
arctan x |z| # 1 24zlnz >0

f(l') = ) 1 s g(.’L’) =
Tsing(x) + 5= |z| > 1 l+e® <0

Use the L"Hopital’s rule to find the following limit:

1
T COST — ST (SIIIIL');E

lim 3 , lim
z—0 xr z—0

o Find the formula for the derivative of arctanx starting from
tan(arctanx) = z

o Similarly, find the formula for the derivative of arccotzx.
o Verify that

—arccotr + — arctanz = 0
dz dz
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Chapter 4 Approximation of functions with
polynomials

In this chapter, we will learn how functions can be approximated by polynomials. Taylor’s
theorem provides a way to replace complicated functions with simpler ones that are easier to work
with. These polynomial approximations play a central role in analysis and applications. The main
focus of this chapter will be on understanding these approximations and how they can be expressed
using polynomials. After studying this chapter, you should be able to:

o Use Taylor’s polynomial to find approximate values of functions.

o Use Taylor’s polynomial to write series expansions of functions.

o Apply Taylor’s formula with both the Lagrange remainder and the Young remainder.
o Understand and use the Taylor—-Maclaurin—Young formula.

o Perform finite expansions of functions at zero and at any given point.

o Apply finite expansions to solve practical problems.

4.1 Taylor polynomial

For a function f that is continuous on the interval [a,b] and differentiable at xy €]a,b[, the

following limit holds:

T—T0 T — X
from which we can write:
f(l') - f([)?()) _ f/(mO) + €(.T)
r — X

with lim,_,,, £(z) = 0. Consequently, in the neighborhood of z,, the function f can be expressed as:

f(@) = f(zo) + ['(wo)(z — x0) + £(z)(x — o)
where, ¢ is a function such that lim, ,,, e(x) = 0. We say that f can be approximated by the
first-degree polynomial 7'

T(z) = f(xo) + f'(z0)(x — 20)

Introducing an error term R(x) = e(z)(x — z9) = o(x — xy), which approaches 0 as x tends to
xo. More generally, we have the function f can be efficiently approximated near a point xy through
the Taylor polynomial of degree n using additional derivatives f'(xz), f" (o), ..., f™(x). This
approximation is expressed as follows:

f(x) = To(2) + R(2)
Here, T,,(z) = > 1 _, %(w — )" represents a polynomial of degree n in (x — ), while R, ()
denotes the error associated with this approximation, commonly referred to as the remainder of order

n. The approximations of the function f by the Taylor polynomial of degree n is expressed as follows:



4.2 Taylor formula with Lagrange remainder

izt - EE 0 ) 4 R ()

n!

In this context, R, (z) signifies the remainder of order n. To find the Taylor polynomials 7;, of the
function generated by f(z) = Inx at xyp = 1 for n = 1,2,3, we need to evaluate the first three
derivatives of f and find their values at 1:

2
3

() = (1) =2

Therefore,
o Th(x) = f(xo) + f’(xo)(x —29)=0+1(zx—1)=a—-1,
o Ty(w) = Ti(x) + L5 (2 — 20)? = (2 — 1) — J(z — 1)%,
o Ty(z) = To(x) + Lz — 2o = (2 — 1) — Lz — 1) + L(z — 1)
The graphs of Taylor polynomials are

9 1Y v=Ti() Yy v =Ta() 1Y v =Ts()
y=Inx 1 1 ——— y=Inx ——— y=Inz

2 us

1 /\I
t t 1 us
1 2 3 ’
-1 1 2 3
-9 -2+ —9

Figure 4.1: Taylor polynomials generated by Inz at xg = 1

4.2 Taylor formula with Lagrange remainder

Let f : [a,b] — R be a function such that f € C*([a,b]), and f is differentiable on ]a, b|.
Suppose zg € [a, b], then:
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4.3 Taylor formula with Young’s remainder

S AT

(z—x0)" T

o ("+1)(¢) is called the Lagrange remainder.

where ¢ between x and xy. The term

4.3 Taylor formula with Young’s remainder

Let f : [a,b] — R be a function, and let 2 € [a, b] be such that f(™(z) exists. Then:

Rn(x)

(z—z0)"

where R, (z) = o((z — x¢)™) is such that lim,_,,, = 0. There exists a second expression for

this formula by setting (ffg))n = &(x). Therefore, R,(r) = (x — z¢)"e(z), and consequently, we
have:
- (z — 20)" (k) P . .
f(z) = Tf (x0) + (z — x9)"e(z), with lim e(z) =0
! T—rT0
k=0

4.4 Taylor-Maclaurin-Young formula

If 2y = 0, then we have:

2 n

"

@) = FO) + 5 O + 510 + ...+ = F7(0) +0a")

or alternatively:

z—0

flz) = f(0)+%f/(0)+2—7f”(0)+. : .—i—i—?f(")(O)%-:v"E(a:), where lim e(z) = 0.
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4.5 Finite expansions at zero

4.5 Finite expansions at zero

Let f be a real-valued function. We say that f has a finite expansion at zero if there exist real
numbers ag, a1, . . ., a, and a real-valued function ¢ such that

f(x) =ag+a1r + a2x2 + ...t a" + x(n)g(@’

where lim,_,o 2™ (x) = 0. Then f is represented by the polynomial approximation of degree n,
denoted by P, (z) for x near zero. This approximation, referred to as the main term of the finite
expansion at zero, is given by

Po(z) = ap + a17 + agx® + ... + a,2™.

and the remainder term is

Then
f(z) = Pu(z) + O(z")

4.5.1 Finite expansions of some elementary functions

2 43 s )
exp(z) = 1+ o+ 5+ 5p 4.+ +0(")
A(X —1)z? AA=1) ... A=—(n—1))2"

1 ' :

o =l-eta’ —at kot 4+ (1) + 0@

1

T =l + a4 4+ 4 00"

—z

132 1[,‘4 nx2n -

cos(z) =1 —Zr+ Jr+ ...+ (=1) (Qn)!+0<x )

O S S gt -
Sln(x):x_§+a 7|+ +( )(2n+1)'+0<x )
i x3 z? "

In(1 = — — - _ . 1n+1 n
(o) =o =S+ 5 =4+ (CD) 4 0
g g
In(1 — - —_r - — — _n n
n(l—x) e R 2" + O(z")
3 5 7 2n+1
arctanxzx—%%—%—%—l—...—;H_l_F (xQ”H)
hoe1+ D Sy 2 +O(2™)
coshz = — 4+ —=+... x
1 A g 2n4-1
smhxzx—kg—i-a—l—...%—m—l—O(x )
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4.5 Finite expansions at zero

4.5.2 Properties

o If a function f has a finite expansion at zero, that expansion is unique.
o Consider the finite expansions at zero of f and g:

f(z) =ap+ a1r + axr®* + ... + a,2" + O(a")
g(x) = by + bz + box® + ...+ by2™ + O(z")
- The finite expansion at zero of the sum f + g is:
(f +9)(x) = (ao + bo) + (a1 + b1)x + (az + ba)x® + ... + (an + by)2" + O(z")

- The finite expansion at zero of the product f - g is obtained by multiplying the functions

and retaining only the monomials of degree less than n in the resulting product:
(ag + a1z + agx® + ... + apx™)(by + b1z + box® + ... + bya™)

- The finite expansion at zero of the quotient % is obtained through euclidean division of
(ao + a1z + aox® + . .. + a,z™) by (bo + b1 + byx? + ... + b,z™), ordering the terms in
increasing powers.

- If g can be expanded at zero of degree n and if f can be expanded at g(0) of degree n such
that g(0) = 0, then the composite function (f o ¢g) can be expanded at zero of degree n by
substituting the finite expansion of ¢ into the finite expansion of f and retaining only the
monomials of degree less than or equal to n.

Example 4.1
I Find the finite expansion at zero of f(x) = cosh x (degree 4 )

Let f(z) = coshz = %=, we have

x x> 23 2t

e x axt o xr a 4
6—1+1!+2!+3!+4!+O(CL’)

and , , .
—w_q_r,r v |
e TR R T
then,
1 r 2 2 2t 1 A A
o= (1 g+ 5+ o)+ () Yol
z? 2t A
:1+§+E+O(5E ).
2. Find the finite expansion at zero of f(x) = cos z sin = (degree 5).
We have , )
_ r T 5
cosx =1-— STRRET +O(z”)
and , -
ng—z— 2 42 5
sinr =2 3!+5!+O(x)
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4.6 Finite expansions at a point

then,

3. Find the finite expansion at zero of f(z) = %

Note that the function f can be expanded at zero up degree 3 if the finite expansions at zero of

In(1 + x) and sin x are given (degree 4). Since

(degree 3).

2 2 2t
m(l+a)—z— o422 4
n(l+z)=2x 2+3 4+O(x)
and
23
sinx:.r—§+0(x4)
then,

r—T 48 T Oz

Jx) = T — @—? + O(z%)

X x2 x3
1—§+§—I+O($3)
72
1—5‘1—0(1‘3)

x zz 2

-y 3,
2+6 12+O(a7)

4. Find the finite expansion at zero of f(z) = e°*%, (degree 3).
If g(z) = cos x, note that g(0) = 1 # 0. We have
2 3

T _ r zr z 3
e —1+1!+2!+3!+O(x)

and
2

cosr =1— % + O(2?)
So if g(z) = cosz — 1 = —Z + O(z?), in this case g(0) = 0. Put X = —Z + O(a?), so

r=0= X=0

X
e = et =e(1+ T + or + o + O(2%))
Now, replace X with a specific value we get
2
x
fl@) = el = -+ 0("))

2
= e—e% + O(z?)

4.6 Finite expansions at a point

Finite expansions of a function f(z) at the point zy = 0 can be expressed as

fx)=ao+a X +aX?*+ ... +a, X" +0(X"), }ggnoo(Xn) —0.
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4.7 Applications of finite expansions

Letx = x¢ + h or h = © — x(, then we have
f(x) = flzo+h) = g(h)
if the function g admits a finite expansion at zero up degree n. Consequently,
g(h) = ap + arh + ash® + ...+ a,h™ + O(h™), }llir% O(h™) = 0.
—

Now, substituting h with x — x, the expression becomes

f(z) = ap + a1(z — 3) + ag(x — 70)* + ... + an(z — 3)" + O((z — 70)").

Example 4.2
Find the finite expansion at 9 of f(x) = e” of degree 3.

Taking x = 9 + h implies h = = — 9. The degree 3 expansion can be expressed as:

flxz) = f(9+h)

_ O+h
=e et
h h* R3
_ 9. n V. 3
—e <1+1!+2!+3!+O(h)).

Now, substituting  with z — 9, we get

=é. <1+ (xig) + (@ ;!9) + (@ ;!9) +O((x—9)3)) .

Remark

The finite expansion of function f(z) at infinity is given by

a a an, 1
f(x)=a0+—1+—§+...+—+o(—).
T x T

4.7 Applications of finite expansions

Finite expansions are valuable tools for understanding the behaviour of a function near a specified
point, and they prove to be particularly useful when dealing with limits, especially when faced with
indeterminate forms. When taking the limit as x approaches a particular point, such as x — 0, finite
expansions allow us to simplify expressions by replacing them with finite expansions.

Example 4.3

Find the limit of )
. sin(9x)
lim ———
z—0 sinh(—4x)
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Chapter 4 Exercises

‘We have

sin(9z) 0 . .
im ————— = —, indeterminate forms
@—0 sinh(—4z) 0
sin(z) =z + o(2?) = sin(92) = 9z + o(2?)
sinh(z) = z + o(x?) = sinh(—4z) = —4z + o(2?)

then ' )

lim ‘81n(9x) — tim 9z + o(z?) _ 9

20 sinh(—4x)  2-0 —4z + o(2?) 4
Example 4.4

Find the first three terms of the finite expansion for sin x and cos z. Hence find
.1 —cos(sinx
Jjrg 1= 0S50 7)
z—0 2
The finite expansion
o sinx =z — ”’fg’,’—? + o(x?)

o cosz=1—2 +o(z?)

We have
z3\2
x _— =
cos(sinz) =1 — % + o(z?)
2
—1- % + o(z?)
Thus
lim 1 —cos(sinz) _ . 1—(1—Z +o(2%))
x—0 1'2 x—0 {1;'2
z? 3
T tola?)
— Tim 2
1
-2

= Chapter 4 Exercises <~

Exercise 1
o Find the Maclaurin series expansion of the following functions:
e”, cosz, In(z + 1)

o Find the finite series expansion of the following functions at the vicinity of zero of order
2, then conclude the value of f/(0) and f”(0)

2z
= — =3
flz) =€+ 13
o Using the finite series expansion find the following limit:
i T~ % €082
im —————

z—0 T —SInx
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Chapter 4 Exercises

Exercise 2

Find the finite expansion of

r3sin(2z) — 2x e® —e®

po : — sinh(x)
Exercise 3
Let f(x) be the function defined by:
ecos(®) — 1 T s
=L vy e}——,o[u]o,—[
/(@) x tan(zx) v 2 2

o Find the third-order Taylor expansion of f at zero.

o Compute the limit:
‘ ecos(:c) -1
lim ——————
=0 xtan(x)

Exercise 4

o Find a finite expansion of order 2 near O for the functions:
In(1+ z)
h(x :ex_xQ, r) = ——+
() H@) =~

o Using the above expansions, compute the limit:

lim (h(:v) — flz) - 1)

x—0 I2
o Let the function g defined on R* by:

o(z) = xz\/HTxln (115”)

» Deduce a finite expansion near [0, +00) for the function g.
Note: Observe that

Exercise 5

Let X
e2coshz _ gin(cosz) — (1 + 2x)=

1—+v1-2x

o Give the finite expansion of f up to order 2 in a neighborhood of 0.

fz) =

Deduce that f is extendable by continuity at 0. Let g be this extension.

[

o Show that ¢ is differentiable at 0 and calculate ¢'(0).
o Give the equation of the tangent to the curve of g at x = 0 and determine their relative

position near 0.

68



Chapter 4 Exercises

Exercise 6

Let f(z) = (2" — cosh(xﬂ))ﬁ.
o Give the finite expansion of f up to order 2 in a neighborhood of 0.
o Show that f is extendable by continuity at 0. Let g be this extension.
o Give the equation of the tangent (7") to the curve (C') of g at x = 0 and find their relative

position in a neighborhood of 0.

Exercise 7

Let h be the function defined on R by h(x) = arcsin (i—ii)
o Calculate h'(x) for all z € R*. Deduce that

—2arctanz + % ifx >0
h(z) = 2
2arctanx+§ ifz <0

o Deduce the finite expansion of A(x) to order 3 as x — 0.

3 2.2
et T _ginh (M) —coshx

x

Let f(z) = h(z)+22— % . Calculate lim,_,o+ f(z).
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Chapter S Integrals

In this chapter, our objective is to empower students with foundational concepts in integral
calculus, providing a comprehensive array of integration techniques that will be useful throughout
the remainder of this semester’s program. Integration is a central tool in mathematics, allowing us
to recover functions from their derivatives and to solve problems involving areas, volumes, and other
applications. We begin with antiderivatives of elementary functions and then introduce techniques
of integration, including substitution, trigonometric methods, and integration by parts. By the end of
this chapter, students will be able to:

o Understand the meaning of an indefinite integral.
o Compute antiderivatives of elementary functions.
o Use the method of integration by parts.

o Evaluate trigonometric integrals.

o Apply different techniques of integration to solve problems.

5.1 Indefinite integrals

Let f be a function defined on a closed interval |a,b] on R, and let F' be a differentiable function

on[a,b]. F is called a primitive or antiderivative of f on [a, ] if for all x on [a,b], F'(x) = f(x).

Proposition 5.1

Let F\(x) and F5(x) be primitives of f on [a,b], meaning they are antiderivatives of f on |a, b).
Then, for all x in [a,b), there exists a constant C such that F\(x) = Fy(x) + C.

Definition 5.2

The set of all primitives of the function f : [a,b] — R is called the indefinite integral of f,
denoted by [ f(x)dz, so if F is a primitive of f on [a,b], we have

/f(x)de:F(x)ch, ceR.

In this definition, the [ is called the integral symbol, f(x) is called the integrand, x is called

the integration variable, and the "c” is called the constant of integration.

Example 5.1
o [e"=¢€"4c, ceR
o [=Inz+c ceR



5.1 Indefinite integrals

Theorem 5.1

Let f be a continuous function on [a,b]. For any primitive F' of f, we have:

/ f(@)do = [F@)}’ = F(b) - F(a)
Let f and g be two continuous functions on [a, b]. We have:
o [If(x) 4+ g(x)]dx = [ f(x)dx+ [ g(x)ds
b b b
o J@) - g(@)dz = [ f(2)do — [ gla) da
ofbaf( )dx:afbf )dz; for a € R,
o [, fla)de =~ [} f(x) da.
° f:f(:c) de = [7 f(x) dx + fc f(x)dx; for c € [a,b).
o [*f(x)dz=0.
Remark
Note that [*[f(z) - g(z)]dz # [ f(x)dz - [* g(x) dx
5.1.1 Antiderivatives of elementary functions
Function Primitive function | Interval
o # —1 ”f::ll R — {0}
e’ e’ R
CosS T sin x R
sin x —CcoST R
cosh z sinh x R
sinh x cosh z R
T Jrlmg arctan x R
11_12 arcsin x ] —1,1]
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5.2 Techniques of integration

5.1.2 Basic integration formulas

Integral Formula
f du u—+C
[ adu au+ C
[ tanu du —In|cosu| + C
Jescucotudu | —cscu+ C
[secutanudu | secu + C
[ esc?udu —cotu+ C
[sectudu | tanu+ C
[ cosudu sinu + C
[ sinudu —cosu+C
/5 Infu| + C
Jutdu | 254+ C forn# -1
uﬂaz cosh™" 4+ Cforu>a>0
- sinh™" % + C for a > 0
i | asec (3 +C
Fz [l (5)4C
i sin”! (%) +C
[coshudu | sinhu+C
[sinhudu | coshu+ C
f e du e*+C
[ cotudu In|sinu| +C

5.2 Techniques of integration

5.2.1 Integration by parts

Let v and v be two differentiable functions of class C' on [a, b]. We have

/ o (2)0(z) dz = u(z)(z) — / (@) (z) d

Remark

In some examples, it is necessary to apply this method several times to obtain the result.
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5.2 Techniques of integration

Example 5.2
I. L = [ze"dx
We use integration by parts, we can choose v = x and dv = e”. Then, we find du and v:

du =dzx, v=e¢€"

Now, we apply the integration by parts formula:

Ilzxem—/exd:n

I =xe"—e"+C, CeR

So,

Simplifying, we get:

2. Ir = fxzeggc dx

Choose u = 2% and dv = €** dz. Thus, du = 2z dr and v = [ € dz = %egz. Therefore,
uw=2% dv=e"dr, du=2xdr, v= éegf‘.
We apply the integration by parts formula:
= %ﬁegx - / Sxe‘% dzx.

We still cannot integrate [ %xegx dz directly, but the integral now has a lower power on x. We
can evaluate this new integral by using integration by parts again. To do this, choose © = x and
dv = 2¢" dx. Thus, du = dz and v = [ 2" dx = Ze". Now we have
2 9

2
u=ux, dv:§egzdx, du = dzx, v:8—1€

Substituting back into the previous equation yields

1 2 2
I = —2%e% — | =ae® — [ Ze%dx ).
9 81 81

After evaluating the last integral and simplifying it, we obtain

1 2 2
I, == 2 9z < 9z = 3z C.
2 gx e 813:6 + 7296 +

5.2.2 Integration by substitution

5.2.2.1 Integration by substituting v = ax + b

We introduce the technique through some simple examples where a linear substitution is suitable.

Example 5.3
1. L= [(x+9)*de
In the integral I;, the power of 4 makes it more complex, compounded by the term = + 9. To
address this, we employ a substitution.

4

Let v = x + 9. This change simplifies the integral to «*. However, we must appropriately
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5.2 Techniques of integration

account for the differential dzx.

Expressing differentials, we have
du
du=|—|d
u= () a

For this example, since © = x + 9, we immediately have ‘jl—;‘ = 1, yielding du = dz.
Substituting both u and du in [;, we get

/(x+9)4d:c:/u4du

The resulting integral is “30 + C. Reverting to x by recalling u = x + 9, we have
(x +9)°

C
5 +

L =
Integration by substitution is now complete.
2. Iy = [cos(x +4)dx
If we set u = x + 4, then
du = dz

Substituting both u and du in I3, we have
I, = /Cosudu =sinu+ C
So, we can revert to an expression involving the original variable = by recalling that u = = + 4,
giving
I, =sin(z+4)+C
5222 [ f(g9(x)) - ¢ () dx by substituting u = g(x)
Given that /' and g are differentiable functions, the chain rule for differentiation states:

L (Flo)) = (o) - 9'(2).

If F'(x) = f(x), meaning F is an antiderivative of f, then this simplifies to:

L (Plo(a)) = Flgla)) - o ()

In other words, if F' is an antiderivative of f, then:

/ f(9(2)) - ¢'(a) dz = F(g(x)) + C.

Now, let’s simplify this further. Let g(z) = u, so ¢'(z) = Z_Z' Multiplying both sides by dz, we
get:

g (z)dx = du.

We substitute g(z) with u and ¢'(z) dz with du:
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5.2 Techniques of integration

[ o) g@ o= [ g du =)+ C.
As a result, the Substitution Rule is given by

Ifu = g(x), then /f(g(ac)) g (z)dx = /f(u) du.

Example 5.4
I. I = [2*(a® +9)*dx
Let u = 22 + 9, so that du = 322 dx.

I —/$2($3+9)4d$

~ [ o3t s (5.1)

So, substituting u for u = 2% + 9, and with du = 322 dz in Equation (5.1) we have

1
]1:—/u4du
3

1w
=35 +C
3 +9)°
2. Iy = [22v1+ 2% dx

Let u = 1 + 2%. From this, we get du = 2x So,

12:/237\/1—|—x2dx

5.2.2.3 Integration by partial fractions

Consider a rational function f(z) = %, where g(x) and h(z) are polynomials and the degree
of h(x) is greater than the degree of ¢g(z). To integrate such a rational function using partial fractions,
we first need to decompose it into simpler fractions. Before setting up the decomposition, it’s essential
to factorize the denominator. Here we present the partial fractions method of Partial Fractions:

1. Let (x — r) be a linear factor of g(x). Suppose that (z — r)™ is the highest power of (x — )
that divides ¢g(z). Then, to this factor, assign the sum of the m partial fractions:
Ay Ay As Am

(x —1) (x—r)2+(x—r)3 (x —r)m
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5.2 Techniques of integration

Do this for each distinct linear factor of g(z).
2. Let 22 4 px + q be an irreducible quadratic factor of g(z) so that 22 + px + ¢ has no real roots.
Suppose that (2% + pz + ¢)" is the highest power of this factor that divides g(z). Then, to this

factor, assign the sum of the n partial fractions:

Bz + Oy Bsx + O,y Bsx + C4 B,x + C,
P24pr+q (2 +pr+q)?  (2+pr+qP (@ +pr+q)t
Do this for each distinct quadratic factor of g(z).
3. Set the original fraction % equal to the sum of all these partial fractions. Clear the resulting

equation of fractions and arrange the terms in decreasing powers of .
4. Equating the coefficients of corresponding powers of x, solve the resulting equations for the
undetermined coeflicients.
Remark
o The denominator is a product of linear factors, with none repeating. In this case, the partial

fraction decomposition takes the form:
r+1 A B

(x —4)(4x —9) - x—4+4x—9
o The denominator consists of linear factors, with some repeating. The partial fraction decompo-

sition looks like this:

e4l A B C D
(z—4)(x—-93 -4 -9 (x-92 (z—9)3

o The denominator contains irreducible quadratic factors, with none repeating. The partial fraction

decomposition becomes:
r+1 A n B N Cx+D
(x—4)2(224+9) 2—-4 (r—4)2 2249

o The denominator includes irreducible quadratic factors, with some repeating. The corresponding

partial fraction decomposition is:
r+1 A +B:L’—|—C+DZB+E
(x—4)(22+92 x—-4 2249  (22+9)?

5.2.2.4 Strategy for evaluating [ f”),, dx

o Forn=1wehave [ dz=In|z —a|+C
oForn>1wegetfwdx:W+C

! dx

5.2.2.5 Strategy for evaluating [ ———— dx

dz, first calculate A = b% — 4ac.

b 2
(v )+

To evaluate the integral [ ———
I IfA <O:

Rewrite the expression as

ar’ +br+c=a
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5.2 Techniques of integration

where 3% = =5

. Subsequently,

/

1

- dx
ax®+bxr +c

1

a

1
:c—l—%)z—l—ﬂQ

dx

/7

Proceed to solve this integral using the substitution © = = + % Therefore,

1
ax? +bxr +c

CIFA =0:

Rewrite the expression as

dr = — arctan

b
2a

Tt 2
B

b 2
)

)

af

ax2—|—bx—|—c:a<x—|——
a
Then
/ 1 1/ 1
azr? 4+ br + ¢ a (:z:—|—2i)
Letu:a:—l—%,thendu:dx. Thus,
1 1 1
—dr=—- | < d
/a$2+bx+c . a/u2 “
1
:—/U_Qdu
a
lu™!
=——+4+C
-1
-1
=—+C
au
—1
= ; +C
a(x—i—%)
-1
= ; +C
(a:c+§)
2
© 2ax+b
CIEA > O
Rewrite the expression as
az® +bx +c = a(z — 1) (7 — )
Then
/ 1 1/ 1 d
— dr = - X
ax? + bx + c a) (z—uz)(z— x9)
Then . . y B
——dr = — —d d
/ax2+bx+c a(/(z—xl) m+/(x—x2) x)
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5.2 Techniques of integration

(z1—22) (z1—22)
/am2+bx+c ’ a(/(ﬂf—wl) ! /(55—932) x)

So,

Example 5.5

_ r+14

. r+14
Our first step is to decompose [ESe)

r+14 A B

(x+5)(z+2) m—|—5+x—i—2'

We want to find constants A and B for all x # —5 and x # —2.
r+14 A B

(x+5)(x+2) x+5 i T +2
We solve for A and B by cross-multiplying and equating the numerators:

as:

r+14 A N B Alx+2)+ Bz +5)
(z+5)(z+2) z+5 z+2  (z+5)(z+2)
Then
r+14=A(x+2)+ B(xz +5)
= Axr+2A+ Bx+ 5B
=(A+ B)x+2A+5B
So, we get

A+B=1...(1)
2A+5B =14...(2)
From (1) we obtain B = 1 — A, Substituting this into (2) we get

14 =2A+5B
=2A+45(1 - A)
=2A+5-54
=5—-3A
Then
A=-3andB =14
So,
w9 dx‘/(x_+35+sz) de = =3Inja 45| +4lnfz+ 2+ C
2. I = f%m
Our first step is to decompose % as:
6x 47 A B

= +
(a:—|—2)2 T+ 2 (x—|—2)2
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5.2 Techniques of integration

Then, multiply both sides by (x + 2)2.
61 +7=A(x+2)+ B

=Ar+2A+ B
Equating coefficients of corresponding powers of = gives A = 6 and B = —5.
Therefore,
6 5
I, = — d
2 /(.7:+2 a1 @
1 1
=6 dr -5 [ ——=d
/$+2 ’ /(Hz)z v
5
=6lnjz+2/+ ——+C
T+ 2

We have A = —16, let2*> — 22+ 5 = (x — 1) + 4

Now, substitute ©w =  — 1, we have du = dx. Thus,
1
L= ———d
3 / w—12+4"

1
= d
/u2+4 ¢

1 U
= —arctan — + C
2arcan2—|—

1 r—1
= — arct C
2arcan( 5 )+

5.2.2.6 Trigonometric integrals

Strategy for evaluating [ sin”(x) cos”(x) dx
o If the power n of cosine is odd (n = 2k + 1), save one cosine factor and use

cos?(r) = 1 — sin?(x) to express the rest of the factors in terms of sine:

/ sin™(z) cos™(z) da = / sin™(z) cos® 1 (z) dz = / sin™(z)(cos?(z))* cos(z) da
= / sin™(z)(1 — sin?(z))"* cos(z) dx

Then solve by substitution and let u = sin(z).
o If the power m of sine is odd (m = 2k + 1), save one sine factor and use

sin?(z) = 1 — cos?(x) to express the rest of the factors in terms of cosine:

/sinm(:r) cos”"(x) dx = /sin2k+1(:c) cos"(x) dx = /(sinQ(x))kcos"(:c) sin(x) dx
= /(1 — cos?(x))* cos™ () sin(z) d

Then solve by substitution and let u = cos(z).
o If both powers m and n are even, use the half-angle identities:

sin? <x> _ 1 — cos(z) cos? <§> _ 1+ cos(z)

2 2 ’ 2 2
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5.2 Techniques of integration

Example 5.6
I. I = [cos®xdx
Here we can separate one cosine factor and convert the remaining factor to an expression
involving sine using cos? z = 1 — sin? z.

cos® = cos’ xcosx = (1 — sin*z) cos x

Let © = sin x, since then du = cos x dx. Thus,

L = /(1 — sin® z) cos x dw

:/(1—u2)du

3

U
=uyu——+C
U 3 +
. sin®
=sinz — 3 +C

2. Iy = [cos®zsin’ z dx

Since the power on sin x is odd, we have

cos® zsin® = cos® z sin* z sin z

Rewrite sin z = (sin’ x)?
8

cos® x sin® = cos®

x(sin? 2)? sin
Now, substitute sin® x = 1 — cos? z, we obtain

8 5

cos® zsin® = cos® x(1 — cos® x)? sin &
Then
I, = /COS8 x(1 — cos? x)? sin x dx
Let u = cosxz and du = — sin x dz.Thus

I = /cos8 2(1 — cos® x)? sin x dx
= /u8(1 —u?)?(—du)

= / (—uS + 200 — u12) du

g, 2 4 LT
=—= —Uu " — — C

9u —|—11u 13u +

1 2
:—§cosgzx—l—ﬁcosnz—Ecosl?’x+C’.

3. I3 = fsin4xd:v.
‘We have

sin* z = (sin? z)?
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5.2 Techniques of integration

Since sin® z occurs, we could evaluate integral I using the formula:

o 1 —cos2z
sin“r = ——
2
This gives:
I — / (1 — 005237)2 ”
2
1 2
:Z (1—20082:p+cos Zx) dx
Since cos? 2z occurs, we must use another formula
1
cos? 21 = w.
2
Then
1
Is = 1 / (1 — 2cos 2z + cos? 29@) dx
1 1
=1 1—20052x+§(1+c054x) dx
1 3 1
= 4_1/ (5 — 2cos2x + §COS4SL’) dz
3 1 1
= gx - Zsin2x+ 3—2sin4x+0

1. Strategy for evaluating tan™(z) sec”(z) dx
o If the power n of secant is even (n = 2k, k > 2), save one sec?(x) factor and use

sec?(x) = 1 + tan?(x) to express the rest of the factors in terms of tangent:
/tanm(x) sec(z) dx = /tanm(x) sec?*(z) dx = /tan"”‘(av)(secz)k1 sec’(x) dx

= /tanm(x)(l + tan?(z))** sec?(z) dx

Then solve by substitution and let u = tan(z).
o If the power m of tangent is odd (m = 2k + 1), save one sec(x) tan(x) factor and use
tan?(x) = sec?(z) — 1 to express the rest of the factors in terms of secant:

/tanm(x) sec(z) dx = /tan2k+1(x) sec" () dx = /(tan2(x))ksec”_1(x) sec(z) tan(z) dx

= /(secQ(:E) — 1)*sec" ! (z) sec(x) tan(z) dz

Then solve by substitution and let u = sec(x).
Example 5.7
I. I} = [ tan®(z) sec!(z) dz
Since the power on sec x is even, rewrite sec? z = sec? x sec? x and use sec’> z = tan®x + 1 to

rewrite the first sec? z in terms of tan z. Thus,

I = /tan6 x (tan2 T+ 1) sec? x dx
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5.2 Techniques of integration

Let v = tan x and du = sec?z. Then

I, = /tanGx (tanQ:E + 1) sec® x dx
—/u6 (u2+1) du

:/(u8+u6)du

1 1
= —u’+ —u’ +C (Substitute tanz = u)

9 7
= 1tan9:c—|— 1tan7x—|—C
9 7 '

2. I, = f tan® z sec® x dx
Since the power on tan x is odd, we can write

tan® z sec® = tan? x sec® z sec z tan x
Now we write tan z = (tan® )2, we obtain

tan® z sec®

r = (tan® r)%sec® zsec v tan
Then,

I, = /(tan2 r)*sec? x sec x tan x dx
Using tan?z = sec? z — 1, we get

I, = /(tan2 r)? sec? x sec x tan x dx

= /(sec2 x — 1)%sec’ zsecx tan x dx

Let uw = secx and du = secx tan x dx

I, = /(8802 x — 1)?sec? zsec x tan x dx

/sec r—1) 2sec® x du
/(u6 2t —|—u)d

1, 1

= —u C.
7" 5“ +3u+

1
7

2 1
ec7x—gsec x+§sec x+ C.
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Calculate the following integrals:

2 5 1 1 2 1
9 1)°d d d
A ( x—'_ ) fl?, /L 1-|-£B2 fL', /0 4+.’L’2 $7

V3

/21dx/dx /d:z:dx
T 22 —9’ Vad+a?

o Using variable substitution, compute the following integrals:

i 1
/Sin2 LUCOS.TdLE, /6s1nx cosxda:,/xz(m3 o 9)5 dﬂ?, / 11(9 + $) do.

9+x
o Using integration by parts, calculate the following integrals:

/a:e_”” dx, /(902 + 4z +9)e " dx, / arctan x dz,

/ez sinz dz, /e_z sin 2x dx, /x2 Inzdzr.

o Compute the integral:

422 -2
[ / x* + 3z dx
(z+1)(22+1)
o Using integration by substitution, compute the integral:

w/2
J = / sin(z) cos?(z) dx
0

o Compute the integral using trigonometric substitution:

1
L= | ———dx
/\/9—:102

Evaluate each of the following integrals:
:E2
o f (z—2)(z—9) dz.
] f w(z:;)3 d.’L‘.
o [ 2 gy
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Chapter 6 Solutions to selected exercises

6.1 Chapter 1 selected solutions

Exercise 1

Prove the following properties:
o Va,y R, |z +y| < |z +[y|.
o Vz,y €R, ||z — |yl| < lz —yl.
o Va,y R, |z + [yl < |z +y[+ |z —yl.
o Yz € R, |z| = max{x, —z}.

Solution
1. Vr,y e R: |z +y| <|z|+ |yl
We begin by considering:
VeeR, —lz|<z<l]z| ...(1)
VyeR, —lyl<y<lyl ...(2)

Adding inequalities (1) and (2):
—(|z[ + |y]) <z +y < |z| + |yl
By the definition of absolute value:
|z +y| < |z] + [yl
Thus, the inequality holds.
2. Ve y € Relz] = [yl] < o -yl

Using the triangle inequality:

#=lr+y—yl<lzv—yl+lyl -..(1)
Similarly:

yl=ly+z—z[<|y—a|+]z] ...(2)
Combining (1) and (2):

2| = [yl < |v—y|l and |y| —|z| <[z -y



6.1 Chapter 1 selected solutions

Therefore:
—lz =yl <o =yl < lo -yl
Hence, by the definition of absolute value:
|z = [yl < [z =yl

JoVzy eR:z|+ |y < |z +y| + [z -y
We start with:

2r=(r+y)+(r—y) u=(@+y —(z-y)
By the triangle inequality:
e <lz+yl+lz—yl ... (1)
2yl <lz+yl+le—yl ...(2)
Adding (1) and (2) gives:
[ + [yl < o +yl+ o -yl
4. Yz € R: |z| = max{z, —x}

- If x > 0: By the definition of absolute value, |x| = x, and —x < z. Therefore, v =
max(z, —x). - If v < 0: Then |x| = —z, and —x > x. Hence, —x = max(z, —x).

Thus, we conclude that:

|z| = max(z, —x)

Exercise 2

If the set A is bounded, find sup A, max A, inf A, and min A if they exist.

1
A={zreR:0<x <9}, A:{Q—E,nEN*},

A={zeR:2"> 64}, A:{i:4§$§9},

A:{n+2,n€N,n22}, A:{9+1,neN*}
n—1 n

Solution
. A={zeR|0<z<9}=]0,9]
- Supremum (sup A): The supremum of a set is its least upper bound. The set of upper
bounds is |9, +00|. The smallest upper bound is 9, so sup A = 0.

- Maximum (max A): The maximum is the largest element in the set. Since 5 ¢ A, A has

no maximum.

- Infimum (inf A): The infimum is the greatest lower bound. The set of lower bounds is

| — 00,0]. The greatest lower bound is 0, so inf A = 0.

- Minimum (min A): Since 0 ¢ A, the set has no minimum.
2. A={9-L|neN}
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Leta, =9 — % Then A is nonempty and bounded:
VneN, 8<a,<9.

By the completeness axiom, sup A and inf A exist.

- Supremum (sup A): 9 is an upper bound of A. We show it is the least upper bound using

the characterization property:
supA =9 <= Ve >0, In. € N suchthat9 — ¢ < a,,_.

Since 9 —e <9 — % implies n. > % by the Archimedean property such n. exists. Hence,
sup A =09.
- Maximum (max A): Since 9 ¢ A, A has no maximum.
- Infimum (inf A): For all n € N*, we have 9 — % > 8, soinf A = 8.
- Minimum (min A): Since 8 € A (whenn = 1), min A = 8.
3. A={r eR |23 > 64} =]4, +o0|

Supremum (sup A): A is unbounded above, so sup A does not exist.

Maximum (max A): Since sup A does not exist, max A does not exist either.
Infimum (inf A): The set of lower bounds is | — 00, 4, so inf A = 4.
Minimum (min A): Since 4 ¢ A, A has no minimum.
4. A={L|ze[L,2]}

The function f(x) = % is decreasing on [4,9]. So:

1 1
< < Z
S < S <
- Supremum (sup A): The smallest upper bound is }l, sosup A = }1.

- Maximum (max A): Since % € A max A = }l.

- Infimum (inf A): The greatest lower bound is %.

- Minimum (min A): Since % € A minA = %.
5. A={22|neN, n>2}

The first few values of A are: 4, g, e

Yn>2 1<a,<4

Supremum (sup A): The smallest upper bound is 4, so sup A = 4.
Maximum (max A): Since 4 € A, max A = 4.
Infimum (inf A): To show inf A = 1, use:

Ve >0, In. € Nsuch that a,,, < 1+ ¢.

Solving 1 +¢ > 1+ n;’_l gives ng. > g + 1, which exists by the Archimedean property.
Hence, inf A = 1.

Minimum (min A): Since 1 ¢ A, A has no minimum.

6. A={9+1|neN}

VneN, 9<a, <10
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Supremum (sup A): The smallest upper bound is 10, so sup A = 10.
Maximum (max A): Since 10 € A (whenn = 1), max A = 10.
Infimum (inf A): To show inf A =9, use:

Ve > 0, In. € N* such that a,,, < 9+ <.

Solving 9 +¢ > 9+ n% gives n. > %, which exists. Hence, inf A = 9.

Minimum (min A): Since 9 ¢ A, the set has no minimum.

Exercise 3

Find the sup, max, inf and min of the following sets and prove your answer.
o A= {HQLH, n € N}
o A={tl. necN }

n+1 "’

Solution
A= {Fgnen)

We have

. n2 2 1 1 8
VneN:n*>0=n —|—4Z4:0<n2+4§z:0<n2—+4§2

A is bounded.

* sup A: The set of upper bounds is [2;+00[. Thus, 2 is the smallest upper bound of A. Conse-
quently, sup A = 2.

* max A: Observe that sup A = 2 € A and therefore sup A = max A = 2.

* inf A: We want to prove that inf A = 0 i.e.

VanEA, anZO

infA=0 <
Ve >0dn. € N ; e < €

Let € > 0, suppose that a,,. < € then

o <e = nl +4>8 = nl >EE 5, >, /EE

2.1

By Archimedean principle, there exists n. satisfying the above inequality, n,. > /2=, taking

nne = E(4/3=%) + 1, we deduce inf A = 0.

* min A: inf A = 0 since 0 ¢ A, min A does not exist.

Exercise 4

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
o If AC B,thensup A <supBandinf B <inf A
o inf(AU B) = min(inf A, inf B)
o sup(A U B) = max(sup A, sup B)
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Solution
1. If A C B, then sup A < sup B and inf B < inf A.
o sup A < sup B:
Since B C R is nonempty and bounded, sup B exists by the completeness axiom. Thus:
Vee B = x<supB.
Given that A C B, we also have:
VreA = z<supB.

But sup A is the least upper bound of A, so it follows that sup A < sup B.
o inf B < inf A:
Similarly, since B is nonempty and bounded, inf B exists by the completeness axiom.
Hence:
Vre B = infB<uz.

Since A C B, we also have:
Vie A = infB<uz.
Since inf A is the greatest lower bound of A, we conclude that inf B < inf A.
2. inf(AU B) = min(inf A, inf B):
To prove this, we need to show both inequalities:
{ min(inf A, inf B) > inf(AU B),
min(inf A, inf B) <inf(AU B).
First, note that A C (AU B) and B C (AU B), which implies:
inf A>inf(AUB) and infB > inf(AU B).
Therefore:
min(inf A,inf B) > inf(AUB) ... (1).
On the other hand, for any v € (AU B), either x € A or x € B, which implies:
z>infA or x>infB.
Thus, * > min(inf A, inf B), and so min(inf A, inf B) is a lower bound for AU B. Since
inf(A U B) is the greatest lower bound, we have:
inf(AU B) > min(inf A,inf B) ... (2).
From (1) and (2), we conclude that:
inf(A U B) = min(inf A, inf B).
3. sup(A U B) = max(sup A, sup B):
The proof follows similarly as for the infimum. We need to show:
{ max(sup A, sup B) > sup(A U B),
max(sup A, sup B) < sup(AU B),
leading to the conclusion:

sup(A U B) = max(sup A, sup B).
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Exercise 5

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If AN B # @, then AN B is bounded:

max(inf A, inf B) < inf(AN B) < sup(A N B) < min(sup A, sup B)

Solution
Note that AN B C A and A bounded, then AN B bounded.

{ ANB C A :>{ sup(ANB) < sup(A)
ANB C B sup(ANB) < sup(B)
Then
sup(A N B) < min(sup(A),sup(B))
On the other hand,
{ ANB C A é{ inf(A) < inf(AN B)
ANB C B inf(B) < inf(ANB)
Then
max(inf(A),inf(B)) < inf(AN B)
So,

inf(AN B) <sup(AN B)

6.2 Chapter 2 selected solutions

Exercise 1
Consider the sequences:
) (2)u, = VN2 +4n —n,

nsin(n)

- 1
(3)%:;ma (4) u, = 2 11

o Determine the limit of the sequence w,, as n approaches infinity.

o Using the definition of limit, verify that.

dn —1
lim wu, = " 2, lim w,=vVn2+1—+/n=+00

n——+o0 2n +1 - n—+o0
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Solution
. Indeterminate form 1>
Observe that

n
So, )
i P 2O
Therefore,

o (145)
lim (1+—-) =e.
n—-+oo n
2. Indeterminate form +oo — oo
Multiplying and dividing by the conjugate \/n? + 4n + n, we have:

2 2
T I — = (n®*+4n) —n
vVn2+4dn+n

4n

vVn2+dn+n
4n

n< 1—1—% 1)

lim (\/M—n) _2.

n—-+o0o

Thus,

3. Observe that

It follows that:

Hence,

4. Using the Squeeze Theorem
Forn € N,

Let v,, = 0 and w,, = HQLH Then
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6.

By the Squeeze Lemma,
nsin(n)

n—o0o n2 + 1
Show that

4n — 1
lim wu, = i =2
n—+o0o 2n+1

We want to prove that for any € > 0, there exists ng such that for all n > ny:

dn — 1 —2| <e.
2n +1
Simplifying:
4n—1_2‘_ 4n—1—4n—2‘
2n+1 2n+1
3
= o 11 < €.
So,

3—¢
3<2ne+e=>n>

2

The Archimedean property guarantees the existence of such ng, so taking
3—c¢
ny = +1,

lim u,, = 2.
n—oo

we conclude

Divergence to +00
Show that

lim u, = vVn?2+1—+/n = +o0.

n—oo

We want to show that:

VA > 0,3M € N such thatVn > M,vVn? +1 —y/n > A.
Note that:

n>+1>2n=vVn2+1>+2n,

AYoN

1
Vn? + —\/52\/271—\/_:(\/5—1)\/%>§ﬁ.
Given A > 0, choose M such that %\/ﬁ > A. That is,

1
g\/ﬁ > A=n>(34)>%
Taking
M = [(34)°] +1,

we conclude:

n—00

lim (m - ﬁ) — too.

91



6.2 Chapter 2 selected solutions

Exercise 2

Consider the sequence:

<
S
I
+
—

1 1
n+1 n+2 + n+3 + 2n

o Prove that the sequence u,, is monotone increasing.

o Prove that the sequence u,, is convergent, and its limit satisfies:

1
;3 <I1<1
Solution
Forn € N, we have
1 N 1 N 1 N 1 N 1
un _un — N
1 n+2 n+3 n+4d n+1 " 2n+2
_( 1 N 1 N 1 +i)
n+1 n+2 n-+3 2n
1 1 1

1 2n+2 ntl
2n+1)+2n+1-22n+1)
(2n+1)2(n+1)

1
= nrzmen Y

Hence, the sequence is strictly increasing.

Note that forallk = 1,2,... ,n, we haven +n>n+k > n+ 1, then
1 1 1
— < <
2n — n+k " n+1

Therefore,
1+1++1<1+1++1<1+1++1
2n  2n 2n " n+1 n+2 2n " n+1 n+1 n+1

This implies

1
—<u, <1
g ==

Since the sequence u,, is monotone increasing and bounded, it is convergent by the monotone conver-

gence criterion for real sequences. Therefore,

%Sl:limungl

n—oo
Exercise 3

Consider the sequence u,, defined by u,, = v/n — E(y/n)
o Study the convergence of the subsequence u,,2, U2 2,.

o What can you conclude about the nature of the sequence u,,?
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Solution
Let

Up = \/__E(\/ﬁ)

1. Study the convergence of U2, Up21 9,

- For u,z:

we have u,2 = vVn? — E(vn?) =n—n = 0.
It is a constant sequence, hence it converges to 0.

- For up2iop:

we have

Up2gon = VN2 +2n — E(Vn2+2n) = vVn2+2n—n =

n

V24 2n+n’

we observe that
nP<n?+2n<n?+2n+1

n? <n®+2n < (n+1)?

n<vn?+2n<n+1

therefore,
lim w240, =1
n——+0o0o

2. The two sequences u? and 2,5, converge to different limits, hence the sequence ., is divergent.

Exercise 4

Define recursively a sequence u,, by:

DO W

Uy =

U, — 12+ 1

—

Un+1
o ProvethatVn e N; 1 < u, < 2.
o Prove that u,, is monotone sequence.

o If u, converges, compute its limit.

Solution

Define recursively a sequence u,, by:

N[OV

Ug =
U1 = (up, —1)2+1
[. Prove thatVn € N; 1 < wu, < 2 using induction.

- Base casen =0
3
1<u0:§<2

- Assume that the property Py, is true for all n > k > 1 and prove the validity of P(n + 1),
le,1< Upt1 < 2.
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From the assumption:
1l <u, <2

and therefore,
O<u,—1<1=(u,—172<1

Hence,
1< (up—1)2+1<2
From this, the property P(n + 1) is true, so P(n) is true for all n € N, i.e.,
l<u, <2
2. Prove that the sequence is monotonically increasing.
Uppr — Up = (up —1)2+1—uy,
= w2l +1-2u,+1—u,
= u? — 3u, +2
= (up, — 1)(u, —2)
From the previous question, 0 < u,, — 1 and u,, — 2 < 0

Hence,
Ups1 — U, < 0

Therefore, the sequence is strictly decreasing.
3. The sequence ., is strictly decreasing and bounded from the monotone convergence criterion
for real sequences, it converges to | such that | = (I — 1)®> + 1. Hence, 1> — 3] + 2 = 0. Thus,

[ = 1orl = 2. Since the initial term is ug = % and the sequence u,, is strictly decreasing, | = 1.

Exercise 5

Define recursively a sequence u,, by:

{ uyg = 1

Uy = L

o Prove that Vn € N, u,, > 0.

o Prove that Vn € N*| (u,11 — up)(Ups1 — Up_1) > 0.
o Conclude that this sequence is monotone.

o Is this sequence convergent? If it is convergent, find its limit.

Solution Let the sequence (u,,) be defined recursively by:

ug = 1, un+1:2u;n—++13, Vn e N
o Proving that u,, > 0 foralln € N
We use mathematical induction.
Base case:
u=1>0
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Induction hypothesis: Assume that u,, > 0 for some n € N.
Inductive step: Since u,, > 0, it follows that:
U, +1>0, 2u,+3>3>0

Thus:
U, + 1 1

>—=>0
2u,+3 3
Therefore, by induction, u,, > 0 for alln € N.

Up+1 =

Proving that (u,11 — Up) (U, — Up—1) >0

We consider the difference:

upt+1 Up_1 + 1

T 2u,+3 2u, i +3

Using the common trick for rational differences:

(un +1)(2up—1 +3) — (up—1 + 1)(2u, + 3)
(2u,, + 3)(2uy—1 + 3)

Up+1 — Up

Up+1 — Up =

Expanding and simplifying the numerator:
Un (21 + 3) + (2up_1 + 3) — up_1(2u, + 3) — (2u, + 3)
(2up, + 3)(2up—1 + 3)
2UpUp_1 + Uy + 2Up_1 + 3 — 2uptp_1 — 3Up_1 — 2U, — 3
(2up, + 3)(2up—1 + 3)
Up — Up_1
(2up, + 3)(2up—1 + 3)

Therefore:
(un - un—l)2 > 0
20y 4+ 3)(2up_1 +3)

(un+1 - Un)(un — U‘TL*I) = (

Showing that the sequence (u,,) is decreasing
From the previous result, we know that the sign of u,, .1 — u,, is the same as the sign of u, — t, 1.
Hence, if one of them is negative (or zero), all subsequent differences are also negative (or zero).

Let us compute:

ug +1 1+1 2 N 2 1 3<O
U1 = = = — U1 — Uy = — — = ——
YT 2up+3 2143 5 S 5

Since uy; — ug < 0, and the sign of the differences remains the same, we conclude:

Upt1 — Up <0 = (u,) is decreasing

Is the sequence convergent?

Yes. The sequence (u,,) is decreasing and bounded below (from part 1, u,, > 0)
Hence, by the monotone convergence theorem, the sequence converges.
Computing the limit

Let ¢ = lim,,_, ., u,. Passing to the limit in the recurrence relation:

RS
2 +3

Multiply both sides by 20 + 3:
(20+3)=0+1=2+30 =(+1=202+20—-1=0
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Solving the quadratic:

C2+/448  —2+V12  —242V3  -1+£3

l
4 4 4 2
Only the positive root is acceptable since u,, > 0. Thus:
,_—LtV3
2
6.3 Chapter 3 selected solutions
Exercise 1
o Calculate the following limits if they exist
: r—3\" : sinT—x : z
Wi (55) . @ ey
3t — 1 1 — sin(2
(4) Tim Y2 5) lim —" (6) Tim L= 52(22)
z—1 /x — 1 ToT L — T 2—0 z + sin(3x)
o Using the definition of the limit, show that
. 4 -9 4 ) 9 ) 9
(1) lim =5 (2) lim 2% =400,  (3) g%%ux = +00,
Solution N
1. limg o0 i—g) =1~
We have (%)x = *n(353)
Note that,
r—3 6
r+3  x2+3
Then, . ]
— In(1 — =%)(=—7%
ln(.T 3) :ln(l— 6 ) _ ( z_.|é3)(x+3)
17+‘3 17+‘3 13
We use (1
fim D)y
x—0 x
So . .
ln — (== _6
lim ( 3”_23)<m+3) = lim
T—00 e w—+u>$-+—3
Then
lim zln(=——) = =
Ameh(g) = e
Thus,

sinx—x

2. lim, o €
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We have
. : _ . sinz
lim e™%~% = lim "o~V
T—r 00 Tr—r00
Since,
sin x 1
0<[—[< =]
T
Then, by Sandwich theorem,
. sinx
lim =0
r—oo I
Hence
lim eSm%=% =
Tr—r00

Here we evaluate the left hand and right hand limits
- For the left hand limit, x < 0:

It gives lim,_,o- ‘%' = = = —1. Thus
lim L -1
x—0~ |l’|
- For the right hand limit, x > 0:
It gives lim,_,o+ ﬁ =2 =1. Thus
lim — =1
20t |z
Then
. x .
lim — does not exist.
z—0 |x|
4 limgyy Y2
Let © = 15, then
Jr — 1 2 -1 t—1)(t+1 2
limﬁ = lim —— = lim ( )(t+1) —

=1 /r—1 a=1t3—1 21 (t3—1(t2—|—t+1) 3

SLE By trigonometric identities, we have

r—T

5. limg o,

sin x . —sin(z —m)

lim
rT—T T — T T—T xT — T
So, put v — m =t then

. —sin(x —7 . —sint
lim ( ) = —lim =-1
T T — T t—0 t
Thus, ‘
. sinx
i = -1
rT—T X — T
. z—sin(2x)
6. lim, 9 x+sin(3z)

i £ sin(2x) B
230 7 +sin(3z) =0 3p(L 4 snB2)y 4
r(3 +=5)
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Exercise 3

Study the extension by continuity of the following functions

1 _
(1) xearctan z%, (2) cos %’ (3) COS T

z(3 —z)tanx

Solution
]. xearctan I%

We have )
lim arctan — = —
t—0 x2 2

Then
hm mearctan 5
t—0

The function f admits an extension by continuity at x = 0 as follows

arctan -
. xe 22 x#0
flz) =
0 rz=0

2. cosi
X

lim cos % which is a limit that does not exist, so he function f does not admit an extension by
z—0

continuity at x = (.
3 l—cosx
7 z(3—z)tanx

We have lim —2=cosz

L B o)tz = %, (indeterminate form).
Tr—r

2
So, cosx~1—% andtanxz ~x
0 2 0

Then
2
1 —cosz =
lim ——— > = lim—2
srce z(3 —z)tanx 230 z(3 — )z
1
— lim—2
) 1
= lim —
20 2(3 — 1)
1
-6
So, f admits the extension by continuity at x = 0 as follows
l—coszx
r — z(3—z) tanz x 7& 0
flay=14% T
6
Exercise 6
Use the L’Hopital’s rule to find the following limit:
. xcosx —sinx ) sinx 2
lim —————,  lim ( >
z—0 Xz z—0 T
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Solution _
. ITCcosx —sinx
/. llm —mMm88m———
x—0 1‘3

This limit is an indeterminate form of type %.
Let f(x) = xcosx —sinz, so f(0) =0, and f'(x) = —zsinx.
Let g(x) = 23, 50 g(0) = 0, and ¢'(z) = 322

Then: , ] )
. fle)y . fl(v) . —zsinx —sinzx 1
lim —~% = lim = lim = lim S
z—0 g(g:) z—0 g’(x) z—0 312 z—0 31 3
So,
. xcosx —sinx 1
lim —m—— = ——
x—0 {L‘S 3
. 1
. sinx \ =2
. lim
x—0 €T
We write: )
) sinz \ =2 . L qy(sine
lim ( ) = lim e=? ln( @ )
z—0 x x—0
Let us study:
1 sinx
lim — In
x—0 xz T
Using L’Hopital’s Rule on:
11'1 sin
o (55
r—0 :pQ
First derivative (numerator):
d | sin x TCOST —sinx
— In — -
dx T zsinx
Denominator derivative: J
2
—(z*) = 2z
7 (@)
So the limit becomes: )
. xcosx —sinx
lim —————
=0  272%sinx
Apply L’Hopital’s Rule again.
Numerator derivative:
—(xcosx —sinx) = —xsinx
it )

Denominator derivative:

d
d—(29v2 sinz) = 2(2rsinz + 2° cos x)
T

So the new limit is:

, —rsinx _ —sinx
lim - = lim —
=0 2(2zsinz + 22 cosx) 2=04sinx + 2z cosx
Now: )
) —sinx 1
im — =—-
=0 4sinx + 2z cosx 4
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6.4 Chapter 4 selected solutions

However, if we re-evaluate precisely, the correct limit is:

, —COoST 1
lim - =—=
2—0 2(3 cosx — xsin ) 6

1
. sinx \ =2 _
lim —e
x—0 x

6.4 Chapter 4 selected solutions

Therefore,

=

Exercise 1
o Find the Maclaurin series expansion of the following functions:
e’, cosx, In(z + 1)

o Find the finite series expansion of the following functions at the vicinity of zero of order
2, then conclude the value of f'(0) and f”(0)

f(m):ezw%—;—?)x

r—1
o Using the finite series expansion find the following limit:

. T —XTCOosSX
lim ——
=0 T —sinx

Solution

. Find the Maclaurin series expansion of the following functions:
3
x

T _—1q x x
° €7 = +ZE+E+§+E+"'
R S |
ocosm:1—§+z_a+...
2 3 4
=TT T
2. Find the finite series expansion of the following function:
e 41
f(m)_x—l—?)x

e =1+ 2z + 22% + O(2?)
=¥ +1=2+2zx+ 22>+ O(2*)
r—1-3r=-2rv-1
So,

2+ 2z + 222 + O(a?
) = 22 2L OW)
—2r—1

Expanding —— = —1(1 + 2z + 4a® + O(2%)), we get:
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6.4 Chapter 4 selected solutions

f(z) = =24 22 — 62° + O(2%)

Therefore,

3. Using the finite series expansion, find the following limit:

. T —ITCOSX
lim ——
=0 r —sinx

2

cosx =1— %—F(’)(#)

| 8,

3
ém—xcosx:x—x(l— )z%—k(’)(ﬁ)

23
sine =z — - + O(a2°)
3

ém—sinxz%—i—@(ﬁ)

3

@ 6
Lz 9
iﬂ%% 5 =3

Exercise 2

Find the finite expansion of

r3sin(2w) — 2x e® —e®

p : — sinh(z)
Solution
1. :cssm(mﬁ The Maclaurin expansion of sin(2x) is:
_ (2z)%  (22)° 43 42°
Oy =9y N2V &) g 2
sin(2r) = 2r = g T T

Multiply by 23
2% sin(21) = 27
Subtract 2x
23 sin(2r) — 22 = 22" — 22 + - - -
Divide by 13

3sin(2x) — 2
x° sin(27) LA N S

3
We get,

35in(2x) — 2
©°sin(2z) — 2z = 22+ 227 + O(2®)

x3
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6.4 Chapter 4 selected solutions

x x

P -
First we expand the function e* and e~* using a Taylor series.
x?2 28 x? 28
e :1+x+§+§+---, e zl—x—i-a—g—i—
Subtracting the two series:
223 3
ex_efx—2x+_+.:2x+_+
3! 3
Then dividing by x, we get:
e¥ — g% 2
=2+ =+
x
So,
et — g% 2 A
=24+ —+0(2")
x
3. sinh(z)
We have: . 5
et —e™® T x
sinh(z) 2 ST
Then,
2 a
h(z) = —_— 4+ — 7
sinh(z) = x + 5 + 120—1— (")
Exercise 5
Let

e2eoshe _ gy n(cosx) — (1 + 2x)=
1—+1-2x

Give the finite expansion of f up to order 2 in a neighborhood of 0.

fz) =

Deduce that f is extendable by continuity at 0. Let g be this extension.
Show that g is differentiable at 0 and calculate ¢(0).

L o=

Give the equation of the tangent to the curve of g at + = 0 and determine their relative
position near 0.

Solution
First we calculate the finite expansion of f up to order 2 near 0.
the denominator:

1 1
l—vVl-2z=z+ 5%‘2 + 51:3 +2%e(z), with lin%a(:r;) =0
T—r

For the numerator components:
e?coshx — 62 [1 —|—ZE2 + 1'36(1‘)}
23
zln(cosz) = 5 + z%¢(x)

14 32
(1+22)Y" =€ |1 -2z + ExQ - ?a:?’ + 2%e(x)
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6.4 Chapter 4 selected solutions

Combining we get:
11 5, 32

1
e?che _ gln(cosx) — (1 + 22)V% = 2%z — 3¢ + (geQ + 5) 2%+ 2e(x)

Thus,
2¢ — Helu + (2e? + 1) 2? + a?¢(x) 14 1
3 3 2 2 2 2 2, .2
T) = =2e" — —e‘xv+ 12"+ = | 2"+ 27c(x
/(@) 14tz + 22 + 22¢(2) 3 ( 2) (z)
Since lim,_o f(x) = 2€? exists, [ can be extended by continuity at 0. We define the extension g

as:
r@ a0

g(z) = ,
2¢2  ifr=0

To show g is differentiable at 0, we compute:
—g(0) 2e%— ey 4+ (12e2 + 1) 22 + 22e(x) — 262 14 1
9(z) ~ 9(0) 3 ( 2) @) =——e? 4 (12e2+§) x + xe(x)

x x 3
Taking the limit as x — 0 gives:

14
/ 0 _ _ 2
g'(0) 5 ¢
The equation of the tangent to the curve at x = (0 is

14
:22__2
Yy e 361’

Comparing g(x) with the tangent:
1
g(x) —y = <12€2 + 5) v* +2%(x) >0 for v near 0

Therefore, the curve of g lies above its tangent near x = Q.
I f(z) =2¢* — He2x 4 (12¢? + 1) 22 + 2%(a)
2. g(0) = 2¢?
_ 14,2
3. g/(O) = —36
4. Tangent: y = 2¢ — 13—462:(:, with curve above tangent near 0

Exercise 6

Let f(z) = (2¢" — cosh(x\/ﬁ))ﬁ.
1. Give the finite expansion of f up to order 2 in a neighborhood of 0.
2. Show that f is extendable by continuity at 0. Let g be this extension.
3. Give the equation of the tangent (7") to the curve (C') of g at x = 0 and find their relative

position in a neighborhood of 0.

Solution We have:

_1

flx) = (2631j — COSh(l’\/i)) SRR _ gln(2e”—cosh(zv/2))/sinhs
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6.4 Chapter 4 selected solutions

1. In a neighborhood of 0, we have:

(2v2)?

2

2 .3
In <26x — cosh($\/§)> =In (2 (1 +z+ % + %) —1—2*+ :1:36(:70))

cosh(zv2) = 1 + + 2%e(z) = 1+ 2% + 2’¢(2)

3
=In (1 + 2z + 5 + 9336(3:))

3

=1In(1+u) whereu:2x+%+a:3e($)—>Oasx—>0

w oud

=u—~ + 0 +ude(u) = 22 — 227 + 32° + 2€(x)

By the Euclidean division according to the increasing powers, we obtain:
In (2¢” — cosh(zv/2)) 2z — 22 + 32° + a%¢(x)

sinh x z+ L+ ade(x)

2
:2—2x+8%+:c2e(:c)

So the finite expansion of f up to order 2 in a neighborhood of 0 is given by:
2

22 8
f(z) = 22 AT (@) — 208 here y = — 21 + % + 2%c(x) - 0asxz — 0

u2
= ¢’ (1 +u+ 5 + uzs(u))

1422

:8<1—mw— +x%@0

with lim,_,ge(z) = 0.
2. Since f is not defined at 0 and

14
lim f(z) = lim |:€2 (1 %+ — x%(x))} =e? € R,
z—0 z—0

then f is extendable by continuity at 0. Let g be its extension.

2

3. In a neighborhood of 0, we have:
14
g(z) = f(z) =€ (1 P x2e(:c)) :

with lim,_,o €(z) = 0. So the equation of the tangent to the curve (C) of g at x = 0 is:
(T) :y = e*(1 — 2a).

2

In a neighborhood of 0, we have:
14e22?

g(z) —y ~ > 0.

So the curve (C) is above (T) in a neighborhood of 0.
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Exercise 7

Let h be the function defined on R by h(x) = arcsin (ﬁ—ii)
1. Calculate h'(x) for all z € R*. Deduce that
—2arctanz + 5§ ifz >0

h(x) =
Qarctanx—f—g ifz <O

2. Deduce the finite expansion of h(x) to order 3 as x — 0.

3 2_
et T _ginh (&) —coshx

x

Let f(z) = h(z)+22—E . Calculate lim,_,o+ f(x).
2
Solution
/. Putu(z) = ;gi For x € R*, we have:
o () = —2z(1 4 2?) — 2z(1 — 2?) _
(1 + 22)? (1 + 22)?

2 (1—a?)?  4a?
Lou@) =1 s = Gt

2x :
1—u(z)2 = ' z>0
l—ffg ifr <0
Since h(z) = arcsinu(x), then h'(x) = - /—f_(;()w)g'
For x > 0:
—4x _2
h, g (1+:E2)2 —
() Ly 14 2
Forxz < 0:
—4x 2
1+22)2
W) = =
1422 v
Hence:
72 .
v e >0
W(z) =497
ez <0
On the other hand:

o Forxz >0, h'(z) = (—2arctanx)’, so there exists ¢; € R such that:
h(x) = —2arctanx + ¢;
Evaluating at x = 1:
h(1l) = —2arctan1 + ¢; = —g + ¢ = arcsin(0) =0

Thus ¢, = 5, giving h(v) = —2arctanx + 7.

o Forx <0, h'(x) = (2arctanx)’, so there exists co € R such that:

h(z) = 2arctanx + co
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6.5 Chapter 5 selected solutions

Evaluating at v = —1:
h(—1) = 2arctan(—1) + ¢y = —g + ¢y = arcsin(0) =0
Thus c; = 75, giving h(r) = 2arctanz + 7.
2. Deduce the finite expansion of h(x) to order 3 as v — 0.
In a right neighborhood of 0:

h(z) = —2arctanz + T

2
= g —2v+ g’ +ale(w),  with lim e(x) =0
etanz _ginh (M) —cosh x
3. Let f(x) = RTET . Calculate lim,_,o+ f(z).

Let D(x) = h(x) +2x — 5. From part (1)(b), the finite expansion of D(x) to order 3 as x — 0F

is:
2
D(z) = =2 + 2®e(x), with lim e(x) =0

3 z—0t
. 3 —
Now expand the numerator N (z) = "% — ginh <—V1+§’;’321> — cosh z to order 3:

3
3
etanx _ ez—&—%—s—m e(x)

3 2 .3

:1+<ZE+%)—|—%+%—|—ZB3E<ZC>
2 .3

:1+x+%+%+x36(1’)

V1+322-1

=z —2° 4+ 2%¢(2)

x
V1 2—-1
sinh ($> =x— §x3 + 23e(x)
x 6
22
coshx =1+ ) + 23¢()
2 3 5 2
N = (1o S D) = (5-20) - (14 5) et
= Z—lx?’ + 2°¢()
-3
Therefore:
N(z) 32%+ 23(2)
= = — 2
f(x) D(l’) 21'3 +$3€($) + €<I'>
Thus:
li =2
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6.5 Chapter 5 selected solutions

Exercise 1

Calculate the following integrals:

2 5 1 1 2 1
9 1)°d d d
/0<:c+  d, /IIHQ ., /04”2 .

V3

/21dx/dx /dxdx
L 1+4x 22 -9’ Va+ a2

Solution

I 292 + 1) do = L[Qzt0o

L{19*— 1] - [3620]

1 o T
2. f%ﬁdazz[arctanx]%zz—gz o

2 2 1 9
3 ﬁd:v:%fl 1f4xdx:i[ln9—ln5]: Zln(g)

de dx _ a b _ 1 1
Ll #5=eoem = imdet [ ;5dr=[gamgdet [ gamde
1 r—3

— Hnfe -3~ Inje 3= b 2
5 d:pdil dx dil'h_lx
.f\/m =3[ oy de =| 5 sin (5)—1—0

Exercise 2
o Using variable substitution, compute the following integrals:

. 1
/Sim2 xcosxdr, /esm‘” cosx dx, /mQ(x?’ —9)° du, / % dx.
T

o Using integration by parts, calculate the following integrals:
/xe‘z dz, /(m2 +4x +9)e " dx, /arctan x dz,
/ e’ sinzdr, / e “sin2x dx, /

22 1nzdr.

Solution

1. fsinzxcosxd:c

Lett = sinz= dt = cos xzdx

The integral becomes:

ft2dt:§—|—c:—5h§1’—l—c

Hence

. .3
fsm%mosxda:z |t
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2. f S cos x dx
Let sinx = t=-cosxzdx = dt

The integral becomes:

[eTcoswdr = [e'dt =e' +c=e"" +¢

In(9+=x
3 %d.%

LetIn(9 + z) = t=g—dx = dt

The integral becomes:

In(9+x 2 In(9+z)?
J D Gy = [tdt =& + o= 2O 4 ¢

4. [redr =ze "+ [e"dr=e"(z—1)+c

Thus

/xe‘m dr=e"(x—1)+c

5. [(a® +4x +9)e " dx

Let
flx)=2*>+4x+9=f'(r) =20+ 4
g(x) =e"=g(x)=—c"
Thus

J(2®+ 4z +9)e " dr = —(2® + 4z + 9)e ™ + [(2x + 4)e “ dx
Integrating by parts again:

J 2z +4)e " dx

Let
f(@) =2z +4=f'(z) = 2
glx) = e "=g(r) = —e7"

Thus
[z +4)e*de=—2z+4e—x+2[edr =—(20+4)e" — 2"
Hence
/(x2 +4z+9)e " dr = —(2* +4r +9)e " + /(2x +4)e " dx
= —(2®+4x+9e " — (2r+4)e " -2 " +c
= (2 4+ 6z +15e " +¢
Hence
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/(ac2 +4x 4+ 5)e " dr = —(2* + 6z + 11)e " + ¢

6. [arctanz dx

Let f(x) = arctan v=f'(z) = —*

241
g'(x) =1=g(x) ==
Thus,
Jarctanz = zarctanz — [ =5 = zarctanz — 3In(z® + 1) 4 ¢

Hence

1
/arctanxda: = rarctanx — 3 In(z? +1) +c

7. [e"sinzdx
Let f(z) =€ = f'(z) = €”
and g(x) = sinz = ¢'(z) = cos .
We will apply integration by parts:

e*sinx dx.

Using the integration by parts formula, [ uwdv =uv — [ vdu, we set:

u=sinx and dv=-e"dx.
Thus, du = cos x dx and v = €”.
Applying the formula:

/ew sinzdr = e’ sinx — /e“’ cosxdx.

Now, we need to solve f e” cos x dx using integration by parts again. Let:

u=-cosr and dv=e"dx.
Thus, du = —sinx dx and v = €”.
Applying the formula:

/e”’cosxdx =e’cosx — /ez(— sinz)dr = e® cosx + /e““’sinxdx.

Now, substitute this back into the previous equation:
/exsinxdx =e’sinx — (excosa: + /exsinxdx) .

e’ sinzdr =e*sinz — e*cosx — /exsinxdx.

Simplifying:

Add [ €* sin x dx to both sides:
2/69” sinxdr = e*(sinz — cosx).
Finally, divide by 2:

1
/ex sinzdr = Eegc(sinx —cosz) + C
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Exercise 4

Evaluate each of the following integrals:

Solution
2
° f (:r—4i§(3:—9) dx
First, we perform partial fraction decomposition. We decompose the rational function as:
x? A B
= +

(x—4)(z—-9) -4 zx-9
Multiplying both sides by (v — 4)(x — 9):

v = A(z —9) + B(z — 4)

Expanding:
2 = Ar —9A + Bx — 4B = (A + B)x — (9A + 4B)
Then:
A+B=1
—9A—-4B =0
Solving the system:
B—1—A:>—9A—4(1—A)—O:>—9A—4+4A—O:>—5A—4:>A——%l

B=1-(-2)=2
) 5

We get:
x? 4 N 9
(x—4)(x—9) 5(x—4) 5x—9)
Then:
x? —4 9
dr = d
[e=ie=a4-/ (s >+5<x—9>> !
= —— —d
/ —|— 729 T
9
:——ln\x—4|+—1n|x—9|—|—0
As a result:
x? 4 9
dr = —=1 —4]+ =1 —
/(m—4)(m—9) x 5n|x |+5n|m 9|+ C
° fz$ 2)7 dzx.
We begin by decomposing the integrand:
x—4 A B C D

=2 = z—2 (w—22 (w—2p
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Multiply both sides by the denominator x(x — 2)3 to eliminate fractions:
v —4=A(x—2)*+ Br(x —2)* +Cz(x —2) + Dx

Now, determine constants A, B, C, D using strategic values of x:
o Letx =0, then —4 = A(=2)3, s0 A= 1
o Let x =2, then —2 = D(2), so D = —1.
Solving for B and C' using other values of v (e.g., v = 1,z = 3):
1 7

B:—— O:—
3’ 6

Now the integral becomes:

/ﬁdm:/(i‘axl—m%(zimf<x—12>3>d”“"

Now, integrate each term individually:

1
—dzr = = In|z|
2z 2

1 1
7 7
/6(9@—2)2 TP

1 1
/(x—2)3 ==y

Therefore, the integral is:

z—4 1 1 7 1
— —dr=-1 — =1 -2 — C
/x(x—z)S v=ghnlal = ghnle =2 - o s e
of#j?gdx
Note that:
x2+4x+9_ 4dr + 8
2+1 22 +1

The integral becomes:

4
/x+w+9 /1dx—|—/ Cdo
2+ 1 2 +

Now, integrate each term:
/ ldz =x

= 2In(2? + 1)

dxr = 8 arctan(z)

[

244 9
/de =z + 2In(2* + 1) + 8arctan(z) + C

Therefore, the integral is:

2+ 1
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Chapter 7 Problems

Problem 1

Exercise 1

o Recall the statement of the Mean Value Theorem.
o Recall the statement of Rolle’s Theorem.
o Define the first 3 terms in the finite expansion for the function f : R — R at 0.

Exercise 2

o Show that the equation cos z = x has a solution in the interval ]0, 7|.

o Find the first 3 terms in the finite expansion for sin x and cos z. Hence find
. 1 —cos(sinx
firg 1~ 0550 )

x—0 xQ
Exercise 3
Let (uy,)n,en+ the real sequences defined by
— (=1
Uy, =
o Prove that uy, and us, ., are adjacent.

o What can be said about the convergence of the sequence u,,?

Exercise 4
Consider the function f defined on R by
z arctan% x#0

0 =0

fz) =

o Study the continuity of the function f at xy = 0.
o Study the differentiability of the function f at zy = 0.



Problem 2

Exercise 1

I. Using the definition of limit, verify that
—1)"
lim [9 + <—>} .

n—oo n

2. Use L'Hopital’s Rule to calculate the following limit

) T CoST
lim ————
z—0 T + arcsinx

3. Find the Taylor Polynomial of degree 2 for the following function at 0.

In(1 + sinz)

Exercise 2
We consider the two sequences (u,,) and (v,), n € N, defined by:
ug =1, vg = 12,
Upig = 222 Vn e N Uppr = Yt ¥p e N

Prove by induction that:
1 n
vneN, u,—-v,=-11-|—
n Up, — V ( D )
Study the monotonicity of the two sequences (u,,) and (v,,).

©

(4]

o Deduce that the two sequences (u,,) and (v,,) are adjacent.
o Show that the sequence defined by ¢,, = 3u,, + 8v,, is constant.
» Deduce the limit of each sequence (u,,) and (v,,)

Exercise 3
Let f be a real function defined by:
cos?(rx) ifx <1,
f(.T - In(z) .
o Determine the domain of f.
o Study the continuity and differentiability of f on its domain of definition.
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Problem 3

1. Recall the statement of the I”Hopital’s Rule.
2. Recall the statement of the Squeeze Theorem.

1. Find the following limits:

. . RS
lim :v[(l—i—;) — ¢, 7}1_)1?(()10;

T—00

7’L2

nd+k

2. Prove that
Vo € [—1,1] : arcsinz + arccos x = g

Given sequences (u,,),>2 and (v,,),>2 defined as:

n—1 n
1 1
Uy = — —2vn, v, = — —2vn
o Prove that sequences u,, and v,, converge to the same limit /.

o Deduce lim 370, —.

n—oo

Consider the function f defined on / =] — 1, 1] by
L arcsin(z?) x #0

0 r=0

fx) =

o Study the continuity of the function f on I.
o Study the differentiability of the function f on I and calculate its derivative.
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Problem 4

Exercise 1
Let the real sequence (u,) be defined as follows:

UQ:L

. Prove thatVn € N, u,, > 0.
. Prove that Vn € N*| (w41 — 4y ) (Upg1 — Uup_q) > 0.

. Conclude that the sequence (u,,) is decreasing.

AW N =

. Determine whether the sequence (u,,) converges. If it converges, find its limit.

Exercise 2

Let f be the function defined by:
1+ x/x, ifz >0,
1+1In(1+2?%), ifz<O.

Find D¢, the domain of definition of f.

Prove that f is continuous on Dy.

Prove that f is differentiable on Dy, and find f'(x).

Can we apply the Mean Value Theorem on the interval [—1, 1]? If so, find all real

) =

S R S B

numbers ¢ such that:

fQQ) = f(=1) =2f(c).

Exercise 3

Let f be the function defined by:

* —1
fla) =587 v e R
A

. Find the Taylor expansion of f up to order 3 near z = 0.

. Compute lim, o f(z).

. Determine whether f can be extended continuously to R.

. Let f denote the extended function of f. Study the differentiability of f on R.
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Problem 5

Exercise 1
I. Prove that:
Ve e R: |z| = max(z, —x).
2. Let A and B be two non-empty and bounded subsets of R. If AN B is non-empty
and bounded, then:
max(inf(A),inf(B)) < inf(AN B) < sup(AN B) < min(sup(A), sup(B)).
3. Prove that E(x + p) = E(x) +p, p € Z.

Exercise 2
Let (ty)nens, (Un)nen+, and (wy,),en be real sequences defined as follows:
1
u, = (—1)"+ =, Vn e N, v, =ug,, Vn € N*,  w, = ugps1, ¥n € N.
n

o Study the monotonicity of the sequences (v, )nen+ and (wy, )nen-
o Find the supremum and infimum of the sets A and B, then deduce the value of

the supremum and infimum of the set C'.

1
A:{1+%,VneN*},B:{—1+ VneN},

on+1’

o~ {crsLmen).

Exercise 3

. Decompose the rational fraction into partial fractions:
1

(1 + x?)
2. Determine the integral over the interval |0, 1[:

! 1
1:/ ~
o o(l+x?)

2
]0:/ arctan(z) I
1

T2

3. Deduce the value of:
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Problem 6

Exercise 1

I. Recall the characterization property of the lower bound and upper bound of a set.
. If the set A is bounded, find sup A, max A, inf A, and min A if they exist.

1 1

. State the Squeeze Theorem

[\

(OS]

~

. Calculate the following limit
sinn

n—-+00 n2

Exercise 2

Define recursively a sequence u,, by

Uy = 1
Unp+1 = 1 + % \V/TL Z 1
o Prove thatVn > 1, u, < 2.

o Prove that u,, is a monotone sequence.

o If u,, converges, compute its limit.

Exercise 3

Let f be the function defined by:

e’—1

T 1 x S O;
fla) =g

z x> 0.

29
. Study the continuity of f on R.

. Study the differentiability of f on R.
. Is f aclass C'(R) function?

W N =

Exercise 4

Use integration by parts to find the value of the integral:

/ e sin(97) dx.
0



Problem 7

Exercise 1

Given the rational expression:

2+4 _ A B
(dr+9)(x+4)  4x+9 z+4

|. Determine the values of the constants A and B.

2. Evaluate the integral:

/ 9r +4 p
(4x +9)(z + 4) -

Exercise 2

Let the sequences (uy,)nen and (v,,)nen be defined by:

U 1= Un+Un

n - .

2 with 0 < vy < uy.
_ 2unpup

Unt+1 = Un+Un’

|. Prove that (u,, — v,)? > 0 for all n € N (use the relationship).

. Prove that (u,),en is a strictly decreasing sequence and (v,,),en is strictly in-

[\

creasing.
Deduce that (u,,)nen and (v, ),eny converge to the same limit.

Prove that lim,,_,o. %, = lim,,_,o, v, = L.

N B~ W

Prove that u,, 1 + v,,11 = u, + v, 1S constant.
6. Deduce that [ = ['.

Exercise 3

Let f be the function defined by:
e1+sin(:p) —e

T T

|. Assume that f has a third-order Taylor expansion g(z) = e!*™@) — ¢ around
zero. Compute g(z).

2. Compute lim,_,q f(x).

3. Let h be the continuous extension of f at zero. Prove that A is differentiable at

Z€10.
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Formulas: Trigonometric and Hyperbolic

Trigonometric identities

cos’x +sin*x = 1
cos(a +b) = cosacosb — sinasinb

sin(a 4+ b) = sinacosb + cosasinb

tana + tanb

t b)y= ————
an(a + ) 1 —tanatand

cos(a — b) = cosacosb + sinasin b

sin(a — b) = sinacosb — cosasinb

fan( ) tana — tanbd
an(fa —b) = ————
1 +tanatand

cosacosb = 1| cos(a+b) + cos(a —b)]
sinasinb = 1[cos(a — b) — cos(a + b)]
sinacosb = 1[sin(a + b) + sin(a — b)]
Cosp + cosq = 20057%0057%
Cosp — cosq = —2sin ’% sin 254
sinp + sin ¢ = 2 sin 2 cos 254

sinp —sing = 2cos%sinp%q

Hyperbolic identities

cosh® z —sinh® z = 1
cosh(a + b) = cosh a cosh b + sinh asinh b

sinh(a + b) = sinh a cosh b + cosh asinh b

tanh a + tanh b
1+ tanhatanhb

cosh(a — b) = cosh a cosh b —sinh asinh b

tanh(a + b) =

sinh(a — b) = sinh a cosh b — cosh asinh b

tanh a — tanh d
1 — tanh a tanh b

cosha cosh b = 3 [ cosh(a+b)-+cosh(a—b)]

tanh(a — b) =

sinhasinh b = 1 cosh(a+b)—cosh(a—b)]

sinh a cosh b = £ [ sinh(a+b)+sinh(a—b)]
cosh p 4+ cosh ¢ = 2 cosh 1‘? cosh 254
cosh p — cosh ¢ = 2sinh p% sinh 254
sinh p + sinh ¢ = 2sinh 224 cosh 234

sinh p — sinh ¢ = 2 cosh ’% sinh 254




English to Arabic Glossary

o Set —ic _,A”'-

o Empty set —aJld| ic yast

o Real numbers — &.2.2d slaeY)

o Rational numbers — 4. NIAY
o Irrational numbers — s Lol 51 Y)
o Natural numbers — dna)l slacY)
o Integer numbers — do>.all NI
o Intersection — daLi:J'l

o Union — sl£YI

o Inclusion — | 2\

o Principle of mathematical induction —

@-! AL Ol

o Axioms for the real numbers — ol
Laid! slueYl

o Interval — Jl&

o Open interval — »~ 2ie Jle

o Closed interval — 3z Jl2

o Absolute value — azllal] 2.3

o Bounded set — 35542 A &

o Supremum — b\c‘\'l NEN

o Infimum — L,E.;Y'i A

o Completeness axiom — 4J sall &2

o Archimedean principle — _»4a j T...\.n

o Greatest integer function — «:4! 2l»

-

o Sequence — aJlzs

o Bounded sequence — 55442 i)l

o Convergent sequence — % ylazs 4Jlzs

o Monotone sequence — 4.5 5 &l

o Limits and inequalities — <Ll
<l

o Squeeze theorem — .ad-| s e

o Algebraic operations— % x| Slleall

o Adjacent sequences — 5 yslaze Ul

o Subsequence — &5~ Al

o Geometric sequence — &2 aloe

o Recursively defined sequences — < Ulze
oAl B jme

o Function — !>

o Graph of a function — 4|} L}'L_,: e

o Bounded function — 33 gu Wl

o Monotonic function — 4 , Wls

o Even function — 4z, dls

o Odd function — %> 3 1>

o Periodic function — % 45 Wls

o Operations with functions — J:: olle
Jlyall

o Limit of a function — %> Lz

o Continuity — & ) 2|

o Left-hand limit — jL! - 2L

o Right-hand limit — ;5! - L)

o Elementary functions — 4|4z Y1 J1,d

o Trigonometric functions — a2l J1)

o Inverse trigonometric functions — J1s.)!
1SNl 2280

» Hyperbolic functions — %131 J1,4)

o Derivative — dazéw

» Taylor polynomial — ;b 5 &S

» Remainder — 3L

» Maclaurin series — O Kb Wk

o Finite expansion — 3,421 )

o Approximation of functions — _. &
Jls

o Indefinite integral — >4 & ‘_}.‘K'z'

o Definite integral — > J‘K?

o Techniques of integration — J.‘K:h b
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