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”If you know, let others light their candles in it.”
— Margaret Fuller

This course aims to help university students, particularly in their early years,
gain a profound understanding of mathematical analysis and learn how to con-
struct proofs. It focuses on fundamental concepts such as the properties of real
numbers, convergence theory, continuity, differentiation, and integration.
This course is designed based on the programs for first-year university students
in engineering, sciences, and technology. The course covers the following major
concepts:

Chapter 1 introduces the foundational properties of real numbers: Axioms
of the real numbers, supremum, infimum, and upper completeness.
Chapter 2 explores sequences, discussing the basic concepts of conver-
gence and related applications.
Chapter 3 examines real-valued functions of a single real variable, focusing
on limits, continuity, differentiation, L’Hôpital’s Rule, Rolle’s and the
Mean Value theorems.
Chapter 4 shows the methodology used to approximate functions using
polynomials.
Finally, Chapter 5 transitions to the theory and techniques of integration.

These concepts equip students with the essential tools needed to solve advanced
mathematical problems.
Feedback is welcomed and appreciated.
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”The art of teaching is the art of assisting discovery”
— Mark Van Doren

Greek alphabet

The Greek alphabet is frequently used in mathematics to represent a wide range
of mathematical variables, constants, and symbols. Here are some of the Greek
letters commonly used in mathematics and their typical mathematical represen-
tations:

Uppercase Lowercase Name
A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ϵ epsilon
Z ζ zeta
H η eta
Θ θ theta
K κ kappa
Λ λ lambda
M µ mu
N ν nu
Ξ ξ xi
O o omicron
Π π pi
P ρ rho
Σ σ sigma
T τ tau
Y υ upsilon
Φ ϕ phi
X χ chi
Ψ ψ psi
Ω ω omega
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”The whole of science is
nothing more than a

refinement of everyday
thinking”

Albert Einstein

(1879-1955)
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Preliminaries

Various sorts of numbers

Number sets are collections of numbers with specific properties and characteristics. Below, we
introduce some of the most common number sets:

Leibniz

(1646-1716)

The empty set (null set) ∅ denotes the set that contains no elements
and is sometimes represented as {}.
The set of Natural numbers is represented as N = {0, 1, 2, . . . }.
The set of Integers is represented as
Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
The set of Rational numbers is represented as
Q = {p

q
, p ∈ Z, q ∈ Z∗}.

Example 0.1
- 1

4
= 0.25 (terminating decimals).

- 1
3
= 0.3333 (repeating decimals).

Irrational Numbers: These are numbers that cannot be expressed as
a fraction, such as −

√
2, e, π,

√
7.

Real Numbers R: The set of real numbers includes all rational and
irrational numbers.
Complex Numbers C: Complex numbers consist of a real part and
an imaginary part. They are written in the form x+ iy, where x and
y are real numbers and i is the imaginary unit (i2 = −1).

We have

N ⊂ Z ⊂ Q ⊂ R ⊂ C

Peano, Giuseppe

(1858-1932)

The universal quantifiers

The notation ∀ denotes the universal quantifier.
∀ x ∈ R is read: for all real number x.
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The existential quantifier

The notation ∃ denotes the existential quantification.
∃ x ∈ R is read: there exists a real number x.

∃! x ∈ R is read: there exists a unique real number x.

Intersection

The intersection of two sets A and B, denoted by A ∩ B is the set
of elements x that are in both A and B. Mathematically, we represent as
follows:

A ∩B = {x ∈ E : x ∈ A and x ∈ B}

A B

A ∩B

Union

The union of two sets A and B, denoted by A ∪ B, is the set of
elements x that are in A or B (or in both). Mathematically, we express by:

A ∪B = {x ∈ E : x ∈ A or x ∈ B}

A B

A ∪B

2
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Inclusion

We say that a set A is included in a set B, or that A is a subset of B
if every element of A is also an element of B. This relationship is denoted
as A ⊆ B.

A ⊆ B ⇐⇒ ∀x (x ∈ A =⇒ x ∈ B) .

Principle of mathematical induction

Mathematical induction is a method of mathematical proof used to
establish that a given statement holds for all natural numbers. The tech-
nique consists of two main steps. Let P (n) be a given statement involving
the natural number n such that:
Base Case: Show that the statement is true for the first value in the set of
natural numbers, usually n = 1.
Inductive Step: Assume that the statement is true for some arbitrary
natural number k. Then prove that it must also be true for k + 1.
If both of these steps are completed, we conclude that P (n) is true for all
natural numbers n.

Signum function

Let x ∈ R. The sign function, denoted by sgn(x), is defined as:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

3



Chapter 1 Properties of the real numbers

This chapter presents the fundamental properties of the real number system, which form the basis
of mathematical analysis. Covers the axioms of real numbers, intervals, absolute values, bounded
sets, supremum and infimum, the completeness axiom, the Archimedean principle, and the greatest
integer function. These concepts equip students with the essential tools needed for precise reasoning
and proofs in mathematics. By the end of this chapter, you will be able to:

State and apply the axioms of the real numbers.
Calculate absolute values and determine the boundedness of sets.
Define, find and use the supremum and infimum of a set, using the completeness axiom.
Apply and prove properties involving the Archimedean principle and the greatest integer func-
tion.

1.1 Axioms for the real numbers

In this section, we introduce the axioms for the real numbers. Recall that in mathematics,
axioms are the first principles that are accepted as truths without justification and are used to build
mathematical theories. The set of real numbers is denoted by R.

1.1.1 The algebraic properties

There are two operations in R, addition (+) : R× R → R, and multiplication (.) : R× R → R
satisfying the following properties:

Commutative law for addition: x+ y = y + x ∀x, y ∈ R
Associative law for addition: (x+ y) + z = x+ (y + z) ∀x, y, z ∈ R
Existence of identity element (Zero): there exists an element 0 ∈ R such that

0 + x = x+ 0 = x, ∀x ∈ R

Existence of inverses (Additive Inverse) : ∀x ∈ R ∃(−x) ∈ R such that x+ (−x) = 0

Commutative law for multiplication: x.y = y.x ∀x, y ∈ R
Associative law for multiplication: (x.y).z = x.(y.z) ∀x, y, z ∈ R
Existence of identity element (One): there exists an element 1 ̸= 0 ∈ R such that 1x = x1 =

x ∀ ∈ R
Existence of inverses (Multiplicative inverse): for all x ∈ R there exists an element x−1 ∈ R
such that xx−1 = 1

Distributive law of multiplication over addition: x(y + z) = x.y + x.z ∀x, y, z ∈ R



1.2 Interval

1.1.2 The order properties

R are totally ordered sets. Now we present the axioms of order:
∀x, y ∈ R we have x ≤ y or x ≥ y

∀x, y ∈ R; x ≤ y and x ≥ y we have x = y

∀x, y, z ∈ R if x ≤ y and y ≤ z then x ≤ z

∀x, y, z ∈ R if 0 ≤ a and x ≤ y then ax ≤ ay

As a consequence of these relations, we have the following.
∀x, y ∈ R if x ≤ y then −x ≥ −y
∀x, y, z ∈ R if x ≤ y and a ≤ 0 then ax ≥ ay

∀x ∈ R: x2 ≥ 0

∀x ∈ R if x > 0 then 1
x
< 1

∀x, y ∈ R if 0 < x < y then 0 < 1
y
< 1

x

1.2 Interval

If a, b ∈ R and a < b,
The open interval:

]a; b[= {x ∈ R; a < x < b}

The closed interval:

[a; b] = {x ∈ R; a ≤ x ≤ b}

The half-open interval:

[a; b[= {x ∈ R; a ≤ x < b}

The half-closed interval:

]a; b] = {x ∈ R; a < x ≤ b}

Infinite intervals are:

]a;∞[= {x ∈ R; x > a}
]−∞; b[= {x ∈ R; x < b}
[a;∞[= {x ∈ R; x ≥ a}

]−∞; b] = {x ∈ R; x ≤ b}

1.3 The absolute value

We define the absolute value of a real number x, which is denoted by |x| as:

|x| =
{

x if x ≥ 0

−x if x < 0

5



1.4 Bounded sets

Clearly that |x| = 0 if and only if x = 0 and 0 ≤ |x| for all x ∈ R. Some important properties of the
absolute value function are presented below:

1. ∀x ∈ R, ∀ y ∈ R, we have |xy| = |x|.|y|
2. ∀x ∈ R, |x|2 = x2

3. ∀x ∈ R, −|x| ≤ x ≤ |x|
4. ∀x ∈ R, ∀ y ∈ R, we have |x+ y| ≤ |x|+ |y|

1.4 Bounded sets

In this section, let us begin with some definitions.

Definition 1.1
Let A ⊂ R be a non-empty set is said to be bounded above if there exists a real number M such
that x ≤M for all x ∈ A

∃M ∈ R, ∀x ∈ A : x ≤M

The number M is called an upper bound for the set A.
A set A ⊂ R is said to be bounded below if there exists a real number m such that x ≥ m for
all x ∈ A

∃m ∈ R, ∀x ∈ A : x ≥ m

The number m is called a lower bound for the set A.
A set A ⊂ R is bounded if it is both bounded above and bounded below.

∃m, M ∈ R,∀x ∈ A : m ≤ x ≤M

Example 1.1
For each case, determine if A is bounded above, bounded below, bounded, or unbounded.

A =]4, 9[

A =]−∞, 4]

A = N∗

Solution:

A =]4, 9[.

Every x ∈ A satisfies 4 < x < 9, so 4 is a lower bound and 9 is an upper bound. Hence A is
bounded.
A =]−∞, 4].

Every x ∈ A satisfies x ≤ 4, so 4 is an upper bound. The set has no real lower bound (it is
unbounded below), hence A is bounded above.
A = N∗ = {1, 2, 3, . . . }.
Every n ∈ N satisfies n ≥ 1, so 1 is a lower bound, then A is bounded below.

6



1.5 Supremum and infimum

Remark
If A is bounded above with the upper bound a, then any real number greater than a is also an upper
bound ofA. Similarly, ifA is bounded below with a lower bound b, then any real number smaller than
b is also a lower bound of A.

Definition 1.2
If m is a lower bound for A and m ∈ A then m is the minimum of A, denoted by minA.
Similarly, ifM is an upper bound forA andM ∈ A thenM is the maximum ofA, denoted
by maxA. Thus, when they exist, minA and maxA belong to A and, for all x ∈ A

minA ≤ x ≤ maxA

Remark
Maximum (max): The largest element in the set.
Minimum (min): The smallest element in the set.

Example 1.2
ConsiderA = [4, 9] we have 4 ∈ A then minA = 4 and we have 9 ∈ A then maxA = 9

ConsiderA = [4, 9[ we have 4 ∈ A and 9 /∈ A then A has a minimum minA = 4 but no
maximum.

1.5 Supremum and infimum

The notions of supremum and infimum are fundamental in real analysis, and they play a crucial
role in establishing the completeness of the real number system. Let’s review the definitions of
supremum and infimum, along with some of their fundamental properties. We begin with some
definitions.

Definition 1.3
Suppose that A ⊂ R is a set of real numbers that are non-empty and bounded.

IfM ∈ R is an upper bound ofA such thatM ≤M ′ for every upper boundM ′ ofA, then
M is called the supremum of A, denoted as M = supA. In other words, the supremum
of a set is its least upper bound.
If m ∈ R is a lower bound of A such that m ≥ m′ for every lower bound m′ of A, then
m is called the infimum of A, denoted as m = inf A. In other words, the infimum is its
greatest upper bound.

Remark
sup(A) = inf{M ; M is an upper bound ofA}.
inf(A) = sup{m; m is a lower bound ofA}.
If A has a maximum element, then the maximum is equal to the supremum:

maxA = supA if supA ∈ A

If A has a minimum element, then the minimum is equal to the infimum:

7



1.5 Supremum and infimum

minA = inf A if inf A ∈ A

Example 1.3
1. Let A = { 1

n
: n ∈ N∗}. Then supA = 1 belongs to A, so maxA = 1. On the other hand,

inf A = 0 doesn’t belong to A and A has no minimum.
2. Consider the set A = {−4, 7, 9}. supA = 9, note that 9 ∈ A, then maxA = 9. On the other

hand, inf A = −4 and inf A belongs to A, so minA = −4.

Proposition 1.1
If the supremum or infimum of a set A exists, it is unique. If both exist, then inf A ≤ supA.

Proof
Suppose that M and M ′ are supremum of A. Then M ≤ M ′ since M ′ is an upper bound of A
and M is a least upper bound; similarly, M ′ ≤M , so M =M ′.
Ifm andm′ are infimum of A, thenm ≥ m′ sincem′ is a lower bound of A and m is the greatest
lower bound; similarly, m′ ≥ m, so m = m′.
The infimum is the greatest lower bound and the supremum is the least upper bound. Therefore,
the infimum cannot be greater than the supremum. If inf A and supA exist, thenA is nonempty.
Choose x ∈ A. Then inf A ≤ x ≤ supA. It follows that:

inf A ≤ supA

Now, let’s present the characterization properties of the supremum and infimum:

Proposition 1.2 (Characterization Property)
Let A ⊂ R be a nonempty set that is bounded and M, m ∈ R. We have

M = supA ⇐⇒
{

∀x ∈ A, x ≤M

∀ε > 0, ∃xε ∈ A such that xε > M − ε

m = inf A ⇐⇒
{

∀x ∈ A, x ≥ m

∀ε > 0, ∃xε ∈ A such that xε < m+ ε

Proposition 1.3
If A,B are nonempty sets, then

sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B,
sup(A−B) = supA− inf B, inf(A−B) = inf A− supB

Proof The set A + B is bounded from above if and only if A and B are bounded from above, so
sup(A+B) exists if and only if both supA and supB exist. In that case, if x ∈ A and y ∈ B, then

x+ y ≤ supA+ supB

so supA+ supB is an upper bound of A+B and therefore

8



1.6 Completeness axiom

sup(A+B) ≤ supA+ supB

To get the inequality in the opposite direction, suppose that ε > 0. Then there exists x ∈ A and y ∈ B

such that

x > supA− ε
2

y > supA− ε
2

It follows that

x+ y > supA+ supB − ε

for every ε > 0, which implies that sup(A+B) ≥ supA+supB. Thus, sup(A+B) = supA+supB

The proof of the results for inf(A+B) and inf(A−B) are similar.

1.6 Completeness axiom

The completeness axiom is a fundamental concept in the theory of real numbers. It provides
a key property that distinguishes the real number system from other number systems, like rational
numbers. The completeness of the real numbers ensures the existence of the supremum and infimum.
The existence of supremum and infimum is one way to define the completeness of R.

Proposition 1.4 (Completeness axiom)
Every nonempty set of real numbers that is bounded from above has a least upper bound (a
supremum). Similarly, every nonempty set of real numbers that is bounded from below has a
greatest lower bound (an infimum).

Remark
The supremum property and the completeness axiom are equivalent.
The supremum property does not apply to Q.

Example 1.4
Consider the set A = {x ∈ Q; x2 < 2}
The set A is nonempty and bounded because every element of A satisfies x2 < 2 implying that

−
√
2 < x <

√
2

Therefore,
√
2 is an upper bound for A.

Aiming for a contradiction, suppose that supA ∈ Q exists and
√
2 /∈ Q then

supA ̸=
√
2 ⇐⇒ supA >

√
2 or supA <

√
2

If supA <
√
2

So, using the theorem on the density of Q in R, there exists r1 ∈ Q such that supA < r1 <
√
2

r1 ∈ A ⇐⇒ r1 ∈ Q : r21

Therefore from,

9



1.7 The Archimedean principle

∀x ∈ A⇒ x ≤ supA

we have r1 ∈ A and supA < r1

This contradicts the characterization property of supremum.
If supA >

√
2

So, using the theorem on the density of Q in R, there exists r2 ∈ Q such that
√
2 < r2 < supA

Therefore, by the definition of supremum is the smallest upper bound. r2 is an upper bound,
and r2 < supA

which is a contradiction with supA is the smallest upper bound. Then supA /∈ Q.
Since there is no rational least upper bound for A.

1.7 The Archimedean principle

The completeness axiom implies an important property of the real numbers, known as the
Archimedean principle. It states that if x and y are real numbers with x > 0, then there exists a natural
number n ∈ N such that

nx > y.

1.7.1 Application

Consider the set A = {4− 1
n
; n ∈ N∗}

Find the sup and inf if there exist.

Taking an = 4− 1
n

, we have the set A is nonempty, moreover

∀n ∈ N∗; 3 ≤ an < 4

Since A is bounded. By the completeness axiom, supA and inf A exist.
inf A: Infimum is the greatest lower bound.

∀n ∈ N∗; 4− 1
n
≥ 3

The set of lower bounds is ]−∞, 3]; then inf A = 3.
supA: It seems that 1 is the upper bound of A. Using the characterization property of the
supremum to prove that 1 is the least upper bound for A.

supA = 4 ⇐⇒ ∀ε > 0 ∃nε ∈ N; 4− ε < anε

Suppose that: 4− ε < anε then 4− ε < 4− 1
nε

, thus nε >
1
ε

By Archimedean principle, there exists nε satisfying the above inequality. So supA = 4.

10



1.8 The greatest integer function

1.8 The greatest integer function

Definition 1.4
For real numbers x, the greatest integer function denoted as [x] or E(x) gives the greatest
integer not greater than x.

Example 1.5
E(9, 4) = 9, E(π) = 3, E(−9, 4) = −10.

The greatest integer function has several interesting properties:
If x is a real number, then

E(x) ≤ x < E(x) + 1

Let x be a real number and let n be an integer. Then

E(x+ n) = E(x) + n

If x, y ∈ R and x ≥ y, then E(x) ≥ E(y).
E(x) = x, if x is an integer.

𯿾 Chapter 1 Exercises 𯿿

Exercise 1

Prove the following properties:
∀x, y ∈ R, |x+ y| ≤ |x|+ |y|.
∀x, y ∈ R,

∣∣|x| − |y|
∣∣ ≤ |x− y|.

∀x, y ∈ R, |x|+ |y| ≤ |x+ y|+ |x− y|.
∀x ∈ R, |x| = max{x,−x}.

Exercise 2

If the set A is bounded, find supA, maxA, inf A, and minA if they exist.

A = {x ∈ R : 0 < x < 9} , A =

{
9− 1

n
, n ∈ N∗

}
,

A =
{
x ∈ R : x3 > 64

}
, A =

{
1

x
: 4 ≤ x ≤ 9

}
,

A =

{
n+ 2

n− 1
, n ∈ N, n ≥ 2

}
, A =

{
9 +

1

n
, n ∈ N∗

}

11



Chapter 1 Exercises

Exercise 3

Find the sup, max, inf and min of the following sets and prove your answer.
A =

{
8

n2+4
; n ∈ N

}
A =

{
2n+1
n+1

; n ∈ N
}

Exercise 4

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If A ⊂ B, then supA ≤ supB and inf B ≤ inf A

inf(A ∪B) = min(inf A, inf B)

sup(A ∪B) = max(supA, supB)

Exercise 5

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If A ∩B ̸= ∅, then A ∩B is bounded:

max(inf A, inf B) ≤ inf(A ∩B) ≤ sup(A ∩B) ≤ min(supA, supB)

Exercise 6

Prove the following properties:
∀x, y ∈ R : x ≤ y ⇒ E(x) ≤ E(y)

∀x ∈ R, n ∈ N∗ : E(E(nx)
n

) = E(x)

12



Chapter 2 Sequences

The concept of sequences has its roots in the earliest stages of mathematics, where ordered
patterns of numbers were studied long before the development of formal analysis. Ancient Greek
mathematicians, such as Pythagoras and Euclid, examined numerical patterns and progressions,
including arithmetic and geometric sequences, as part of their investigations into number theory and
geometry. Later, mathematicians in the Islamic world expanded on these ideas, exploring series and
summations in algebraic contexts.

The modern notion of sequences as a foundation for limits and convergence began to take
shape in the 17th century with the work of mathematicians such as Newton and Leibniz, who used
infinite sequences and series in the development of calculus. In the 19th century, definitions of limits
and convergence, introduced by mathematicians like Cauchy and Weierstrass, provided the formal
framework that underpins real analysis today. The main objectives of this chapter are to:

Present the formal definition of a sequence of real numbers.
Study bounded sequences and their properties.
Define convergence of sequences and examine its behavior.
Explore monotone sequences and the monotone convergence theorem.
Establish the relationship between limits and inequalities.
Analyze adjacent sequences, subsequences, and their convergence properties.
Examine special classes of sequences, including geometric and recursively defined sequences.

2.1 Sequence of real numbers

Suppose that for each positive integer n, we are given a real number un. Then the list of numbers

u1, u2, . . . , un, . . .

is called a sequence. This ordered list is usually written as

(u1, u2, . . .) or (un) or {un}.

Formally, a sequence is defined as follows:

Definition 2.1 (Sequence of real)
A sequence of real numbers is a real-valued function whose domain is the set of natural numbers.
We denote a sequence with standard functional notation such as f : N → R. it is customary to
use subscripts, replace f(n) with un, and denote a sequence {un} or u1, u2 . . . .
A natural number n is called an index for the sequence, and the number corresponding to the
index n is called the nth term of the sequence.



2.2 Bounded sequence

2.2 Bounded sequence

Definition 2.2
A sequence {un} of real numbers is bounded above if

∃M ∈ R such that ∀n ∈ N: un ≤M

A sequence {un} of real numbers is bounded below if

∃m ∈ R such that ∀n ∈ N: un ≥ m

A sequence {un} of real numbers is bounded if

∃M, m ∈ R such that ∀n ∈ N : m ≤ un ≤M

or equivalently

∃B ≥ 0 such that ∀n ∈ N: |un| ≤ B

Example 2.1
un = n2 is a bounded below, since ∀n ∈ N, un ≥ 0.
un = 1

n
is a bounded, since

∣∣ 1
n

∣∣ ≤ 1 for all n ∈ N∗.

2.3 Sequence convergence

Definition 2.3
A sequence {un} converges to the number l ∈ R if

∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0 ⇒ |un − l| < ε

We call l the limit of the sequence. We write:

lim
n→∞

un = l orun → l

Example 2.2
1. Let the sequence un = n+1

4n+1
.

We claim limn→∞un = 1
4
. To see this, we want to demonstrate that

∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0 ⇒ |un − l| < ε

That is

∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0 ⇒
∣∣ n+1
4n+1

− 1
4

∣∣ < ε

We must therefore prove the existence of n0 ∈ N, which verifies

n ≥ n0 ⇒
∣∣ n+1
4n+1

− 1
4

∣∣ < ε

14



2.3 Sequence convergence

We begin by examining the size of the difference, and simplifying it:∣∣∣∣ n+ 1

4n+ 1
− 1

4

∣∣∣∣ < ε ⇒ 3

16n+ 4
< ε

⇒ 3− 4ε

16ε
< n

The Archimedean property guarantees the existence of n0. Taking n0 = E(3−4ε
16ε

) + 1, then we
obtain

limn→∞un =
1

4

2. Consider the sequence un = n+1
n+2

. We claim limn→∞un = 1. To see this, we need to prove that

∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0 ⇒ |un − l| < ε

That is

∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0 ⇒
∣∣n+1
n+2

− 1
∣∣ < ε

We must therefore prove the existence of n0 ∈ N, which verifies

n ≥ n0 ⇒
∣∣n+1
n+2

− 1
∣∣ < ε

We begin by examining the size of the difference, and simplifying it:∣∣∣∣n+ 1

n+ 2
− 1

∣∣∣∣ < ε ⇒ 1

n+ 2
< ε

⇒ 1

ε
− 2 < n

The Archimedean property guarantees the existence of n0. Taking n0 = E(1
ε
− 2) + 1, then

lim
n→∞

un = 1

Remark
A sequence that converges is said to be convergent, and otherwise is said to be divergent.

Theorem 2.1
A convergent sequence has a unique limit.

Proof Suppose un converges to l1 and to l2. So, limn→∞un = l1 and limn→∞un = l2 where l1 ̸= l2.
Firstly, given un → l1, let ε = l1−l2

4

∃n1 ∈ N such that ∀n ≥ n1, |un − l1| < ε.

Then, given un → l2,

∀ε > 0, ∃n2 ∈ N such that ∀n ≥ n2, |un − l2| < ε

Consider n0 = max{n1, n2}, Then, we have both

∀ε > 0, ∃n0 ∈ N,∀n ∈ N : n ≥ n0 : |un − l1| < ε and |un − l2| < ε

Now, apply the triangle inequality to the terms un − l1 and un − l2. Hence

|l1 − un + un − l2| ≤ |un − l1|+ |un − l2|
< 2ε

=
l1 − l2

2

15



2.4 Monotone sequences

This is a contradiction. The assumption that l1 ̸= l2 cannot be true. Therefore, the limit of a convergent
sequence is unique, and the proof is complete.
Remark
To show that the sequence un is divergent, it is sufficient to demonstrate that it tends to two different
values.
Example 2.3
Consider the sequence un = (−1)n. This sequence is divergent because

un =

{
1 if n = 2k

−1 if n = 2k + 1

divergence is evident because there is no unique limit as n approaches infinity.

Theorem 2.2
If {un} is convergent, then {un} is bounded.

Proof Suppose that un converges to l. Given ε = 1. Thus, there exists an n0 ∈ N such that
|un − l| < 1 for all n ≥ n0. Let

B = max{|u1|, |u2|, . . . , |un0−1|, |l|+ 1}.

for all n ≥ n0, we have

|un| = |un − l + l| ≤ |un − l|+ |l| < 1 + |l|

then for all n ∈ N we have
|un| ≤ B.

Hence, we have shown that a convergent sequence {un} is bounded.
Remark
A bounded sequence is not necessarily convergent.
Example 2.4
The sequence un = (−1)n is bounded since ∀n ∈ N : −1 ≤ un ≤ 1. However, despite being
bounded, the sequence is divergent.

2.4 Monotone sequences

Definition 2.4
A sequence {un} is said to be monotone increasing if ∀n ∈ N, un ≤ un+1.
A sequence {un} is said to be monotone decreasing if ∀n ∈ N, un ≥ un+1.
If {un} is either monotone increasing or monotone decreasing, we say {un} is monotone
or monotonic.

Example 2.5
Let’s consider the sequence un = 1

n
for n ≥ 1. This sequence is monotone decreasing.

16



2.5 The monotone convergence criterion

2.5 The monotone convergence criterion

Theorem 2.3
Let {un} be a monotone increasing sequence. Then, {un} is convergent if and only if {un} is
bounded. Moreover,

lim
n→∞

un = l = sup{un; n ∈ N}

Proof Firstly, we know that if {un} is convergent then by the preceding theorem, it is bounded. Now
assume that {un} is bounded. By the completeness axiom, the setA = {un; n ∈ N} has a supremum,
define l = sup{un; n ∈ N}. We claim that un → l. We want to prove that.

lim
n→∞

un = l.

Let ε > 0. Since l is an upper bound for A, un ≤ l for all n. Since l − ε is not an upper bound for
A, there is an index n0 for which un0 > l − ε. Since the sequence is increasing, un > l − ε for all
n ≥ n0. If n ≥ n0 we have

l − ε < un ≤ l < l + ε

Thus, if n ≥ n0 then |un − l| < ε. Therefore, un → l.

Theorem 2.4
Let {un} be a monotone decreasing sequence. Then, {un} is convergent if and only if {un} is
bounded. Moreover,

lim
n→∞

un = inf{un; n ∈ N}

This proof is similar to the previous theorem.

2.6 Limits and inequalities

In this section, we explore fundamental results concerning the limits of sequences. We begin
by examining the interaction between sequences and inequalities. Subsequently, we delve into the
relationship between limits and inequalities, introducing the squeeze theorem.

Theorem 2.5 (Squeeze theorem)
Let {un}, {vn}, and {wn} be sequences such that ∀n ∈ N,

un ≤ vn ≤ wn.

Suppose that {un} and {wn} converge and

lim
n→∞

un = l = lim
n→∞

wn.

Therefore, {vn} converges and
lim
n→∞

un = l

Proof Let ε > 0. The sequences un and wn are convergent and have the same limit l then

17



2.6 Limits and inequalities

limn→∞ un = l, there exists an n1 ∈ N such that for all n ≥ n1,

|un − l| < ε

Since limn→∞wn = l, ∃n2 ∈ N such that ∀n ≥ n2,

|wn − l| < ε

In particular, we have l − ε < un. Similarly, we have that wn < ε+ l.
Putting everything together, we find

l − ε < un ≤ vn ≤ wn < l + ε =⇒ |vn − l| < ε.

Choose n0 = max{n1, n2}. Then, if n ≥ n0, then

|vn − l| < ε.

Therefore, {vn} is convergent and
lim
n→∞

vn = l

Example 2.6
Consider the sequence vn defined as follows:

vn =
n∑

k=1

n2

n3 + k
, n ≥ 1

It is clear that for all n ≥ k ≥ 1 we have
n2

n3 + n
≤ n2

n3 + k
≤ n2

n3 + 1
then

n∑
k=1

n2

n3 + n
≤

n∑
k=1

n2

n3 + k
≤

n∑
k=1

n2

n3 + 1

so
n

n2

n3 + n
≤ vn ≤ n

n2

n3 + 1

then
n3

n3 + n
≤ vn ≤ n3

n3 + 1

Now as
lim
n→∞

n3

n3 + n
= lim

n→∞

n3

n3 + 1
= 1

both sequences approach 1. By the squeeze theorem, we get

lim
n→∞

vn = 1

Theorem 2.6 (Linearity and monotonicity of convergence)
Let {un} and {vn} be convergent sequences of real numbers. Then

1. For each pair of real numbers α and β, the sequence αun + βvn is convergent and

lim
n→∞

[
αun + βvn

]
= α lim

n→∞
un + β lim

n→∞
vn

18



2.7 Algebraic operations of sequence convergence

2. If un ≤ vn for all n, then
lim
n→∞

un ≤ lim
n→∞

vn

Proof
1. Define

lim
n→∞

un = l1 and lim
n→∞

vn = l2

Observe that∣∣[αun + βvn
]
−
[
αl1 + βl2

]∣∣ ≤ |α||un − l1|+ |β||vn − l2|, ∀n ∈ N (∗)

Given ε > 0. Choose a natural number n0 such that∣∣un − l1
∣∣ < ε

(2 + 2|α|)
and

∣∣vn − l2
∣∣ < ε

(2 + 2|β|)
, ∀n ≥ n0

From (*) we obtain that ∣∣[αun + βvn
]
−
[
αl1 + βl2

]∣∣ < ε, ∀n ≥ n0

2. Let un → l1 and vn → l2, suppose wn = vn − un and l = l2 − l1. Since un ≤ vn we have
vn − un ≥ 0 then wn ≥ 0, by linearity of convergence wn → l. We must show l ≥ 0. Given
ε > 0, find an n0 ∈ N such that ∀n ≥ n0 we have

|wn − l| < ε =⇒ −ε+ l < wn < ε+ l

Also wn ≥ 0. In particular, for n ≥ n0 we have 0 ≤ wn < l+ ε because ε > 0 this would imply
that l ≥ 0.
Therefore,

l1 ≤ l2

2.7 Algebraic operations of sequence convergence

Theorem 2.7
Suppose limn→∞ un = l1 and limn→∞ vn = l2. Then,

1. {un · vn} is convergent and limn→∞ unvn = l1l2.
2. If ∀n ∈ N, vn ̸= 0 and l2 ̸= 0, then {un/vn}n is convergent and

lim
n→∞

un
vn

=
l1
l2
.

Proof
1. Since vn → l2 and {un} then, it is bounded. In other words, ∃B ≥ 0 such that ∀n ∈ N,

|vn| ≤ B. Then,

|unvn − l1l2| = |(un − l1)vn + (vn − l2)l1|
≤ |un − l1||vn|+ |l1||vn − l2|
≤ B|un − l1|+ |l1||vn − l2|.
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2.8 Adjacent sequences

Therefore,
0 ≤ |unvn − l1l2| ≤ B|un − l1|+ |l1||vn − l2|

Since
B|un − l1|+ |l1||vn − l2| → 0

By the squeeze theorem limn→∞ |unvn − l1l2| = 0.
2. We prove that 1

vn
→ 1

l2
. We first prove ∃m > 0 such that ∀n ∈ N, |vn| ≥ m. Since vn → l2 and

l2 ̸= 0, ∃n0 ∈ N such that ∀n ≥ n0,

|vn − l2| <
|l2|
2
.

By the triangle inequality, ∀n ≥ n0,

|l2| ≤ |vn − l2|+ |vn| ≤
|l2|
2

+ |vn| =⇒ |vn| ≥
|l2|
2
.

Let m = min
{
|u1|, . . . , |un0−1|, |l2|2

}
. Then, ∀n ∈ N, |vn| ≥ m.

Therefore,

0 ≤
∣∣∣∣ 1vn − 1

l2

∣∣∣∣ = |vn − l2|
|vn||l2|

≤ 1

m|l2|
|vn − l2|.

According the squeeze theorem,

lim
n→∞

∣∣∣∣ 1vn − 1

l2

∣∣∣∣ = 0

Therefore,
lim
n→∞

1

vn
=

1

l2

Furthermore, by the proof before, it follows that

lim
n→∞

(
un ·

1

vn

)
=
l1
l2

Remark
lim
n→∞

(un)
k = lk.

Now, we present the definition of sequences converging to infinity, call ∞ the limit of un, and
write limn→∞ un = ∞

Definition 2.5 (Limits at infinity)
We say the sequence {un} converges to infinity if and only if:

lim
n→∞

un = +∞ ⇐⇒ ∀A > 0,∃n0 ∈ N, ∀n ∈ N : n ≥ n0 =⇒ un > A

lim
n→∞

un = −∞ ⇐⇒ ∀A > 0,∃n0 ∈ N, ∀n ∈ N : n ≥ n0 =⇒ un < −A

20



2.8 Adjacent sequences

2.8 Adjacent sequences

Definition 2.6
Let {un} and {vn} be two sequences of real numbers. We say that {un} and {vn} are adjacent
if

un ≤ un+1 and vn+1 ≤ vn, for all n ∈ N
and

lim
n→∞

(vn − un) = 0

Example 2.7
Let un = 9− 4

n2 and vn = 9 + 4
n2 . Then

un+1 − un = −4n2+4(n+1)2

n2(n+1)
> 0, un is increasing sequence.

vn+1 − vn = −4(n+1)2+4n2

n2(n+1)
< 0, vn is decreasing sequence.

we have vn − un = 8
n2 . Thus

lim
n→∞

(vn − un) = lim
n→∞

8

n2
= 0

Then {un} and {vn} are adjacent.

Proposition 2.1
Two adjacent sequences un and vn converge to the same limit l.

2.9 Subsequence

A subsequence of a sequence {un} is a sequence formed by taking certain terms from the original
sequence, in the same order as they appeared in the original sequence. More precisely, we have the
following definition.

Definition 2.7
Informally, a subsequence is a sequence with entries coming from another given sequence. In
other words, for a sequence {un} and a strictly increasing sequence of natural numbers {nk}
we call the sequence {un} whose kth term is unk a subsequence of {un}.

Example 2.8
Consider the sequence un = (−1)n. Then we have the subsequences u2 = 1 and u2n+1 = −1.

Lemma 2.1
Let n1 < n2 < · · · < nk < . . . be an increasing sequence of natural numbers; that is,nk < nk+1

for all k ∈ N. Then for all k ∈ N, k ≤ nnk.

Theorem 2.8
If {un} converges to l, then any subsequence of un will converge to l.
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2.10 Geometric sequence

Proof Suppose un → l. Let unk be any subsequence of {un}. We shall prove that limn→∞ unk = l.
To do this, Let ε > 0. Since, limn→∞ un = l, then ∃n0 ∈ N such that ∀n ≥ n0,

|un − l| < ε.

Now suppose k is any natural number such that k ≥ n, then nk ≥ k ≥ n ≥ n0 by Lemma 2.1. Hence,
for all ε > 0 there exists an n0 such that for all nk > n0, and implies that

|unk − l| < ε.

Theorem 2.9 (Bolzano-Weierstrass)
Every bounded sequence has a convergent subsequence.

Proof Let (an)n∈N be a sequence of real numbers with |an| ≤ L for all n ∈ N.
Step 1: So −L ≤ an ≤ L. Note that [−L,L] = [−L, 0] ∪ [0, L]. Divide the interval [−L,L]

into two halves. At least one half must contain infinitely many an. Pick one such half and call it I1.
Note that |I1| = 1

2
|[−L,L]| = L. In fact, say I1 = [a0, a0 +L]. So an ∈ I1. There are infinitely many

an’s in I1. Select one, say an1 .

−L 0 L

Divide the interval I1 into two halves. At least one half must contain infinitely many an. Pick
one such half and call it I2. Note that |I2| = 1

2
|I1| = L

2
. In fact, say I2 = [a1, a1 +

L
2
]. So an ∈ I2.

There are infinitely many an’s in I2. Select one, say an2 with n2 > n1.
In this way we generate

an1 , an2 , an3 , . . . with n1 < n2 < n3 < · · ·

Note that |Ik| = L
2k−1 . Also, Ik+1 ⊂ Ik and ank

∈ Ik, ank+1
∈ Ik+1 for all n ∈ N. Also

ank
∈ S ⊆ [−L,L].
Step 2: The sequence an1 , an2 , an3 , . . . is monotone increasing and bounded above by L. So it is

convergent. Call the limit a.
Step 3: Prove that ank

→ a.
Let ε > 0. Since (ank

) converges to a, there exists N1 such that

|ank
− a| < ε

2
whenever nk ≥ N1.

Since |Ik| = L
2k−1 → 0, there exists N2 such that

|Ik| < ε
2

whenever k ≥ N2.

Thus, the distance from ank
to a is at most the length of Ik, which converges to zero as k → ∞.

Choose N = max(N1, N2). Then nk ≥ N =⇒ |ank
− a| ≤ |ank

− ξ|+ |ξ − a| < ε
2
+ ε

2
= ε.

Therefore, (ank
) → a.

Remark
If a sequence is not bounded, it must have subsequences diverging to positive or negative infinities.
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2.10 Geometric sequence

2.10 Geometric sequence

Definition 2.8
Given real numbers a and r. the real numbers

a, ar, ar2 . . .

are said to form a geometric sequence, also known as a geometric progression. a is called the
initial term and r is called the common ratio.
The n-th term un of a geometric sequence can be expressed using the formula:

un = arn−1

n is the term number.

Example 2.9
The numbers −9, 36,−144, 576, . . . form a geometric sequence with initial term −9 and com-
mon ratio −4.
The sequence un = (−1)n is a geometric sequence.

Remark
To prove that a sequence is geometric, it is sufficient to demonstrate that the ratio un+1

un
does not

depend on n.

Proposition 2.2
The sequence rn is convergent if −1 < r < 1 and divergent for all other values of r.

lim
n→∞

rn =


+∞ if r > 1,

1 if r = 1,

0 if − 1 < r < 1.

Remark
We now present some very useful fundamental limits

lim
n→∞

nr =


+∞ if r > 0,

1 if r = 0,

0 if r < 0.

And
lim
n→∞

(1 +
a

n
)n = ea

Proposition 2.3
If a and r are real numbers and r ̸= 1. Then

n∑
k=0

ark = a+ ar + ar2 + · · ·+ arn =
arn+1 − a

r − 1
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2.11 Recursively defined sequences

2.11 Recursively defined sequences

We now give other useful ways to define sequences.

Definition 2.9
Let I be an interval of R and f : I → R be a real function defined on I . Let a0 ∈ R. We call a
sequence defined recursively any sequence {un} defined as{

u0 = a0

un+1 = f(un), ∀n ∈ N

Example 2.10
Consider the recursively defined sequenceu0 = 1,

un+1 = 3 + un, ∀n ∈ N.

Proposition 2.4
If a sequence {un} defined by the recurrence relation un+1 = f(un) converges to a limit l in the
domain of Df , and if the function f is continuous, then we have f(l) = l. The value l is called
a fixed point of the function

Proposition 2.5
Let {un} be a sequence defined by the recurrence relation u0 = a0 and un+1 = f(un). If f is
increasing, then {un} is monotonic. More precisely:

If u1 ≥ u0, the sequence {un} is increasing. It converges if and only if it is bounded
above; otherwise, it tends to +∞.
If u1 ≤ u0,, the sequence {un} is decreasing. It converges if and only if it is bounded
below; otherwise, it tends to −∞.

Example 2.11
Define recursively a sequence un by:{

u0 = 1,

un+1 =
√
un + 6, ∀n ∈ N.

The generating function of the sequence un is f(x) =
√
x+ 6 It is defined over the interval [−6,+∞[.

Note that all terms of the sequence {un} are positive; therefore, this sequence is well-defined and we
have ∀n ∈ N : un ∈ Df . Additionally, we have

f ′(x) =
1

2
√
6 + x

> 0

indicating that f is increasing. Thus, {un} is monotonic.
Since u1 − u0 = 1−

√
7 > 0 is an increasing sequence.
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Chapter 2 Exercises

Let’s now demonstrate that {un} is bounded above. To achieve this, we will show by induction that

∀n ∈ N : un ≤ 3

Base case :
For n = 0 we have u0 = 1 < 3

Inductive step:
Assume that un ≤ 3 is true and let’s show that un+1 ≤ 3

We have
un ≤ 3 ⇒ un + 6 ≤ 9

⇒
√
un + 6 ≤

√
9

⇒ un+1 ≤ 3

by mathematical induction, we conclude that

∀n ∈ N : un ≤ 3.

Then we can write: ∀n ∈ N : un ∈ [0, 3], {un} is increasing and bounded, therefore, it
converges to a limit l ∈ [0, 3].
Since the function f is continuous on [0, 3], this limit satisfies f(l) = l.
Solving

√
6 + l = l, we find l = −2 /∈ [0, 3] or l = 3 ∈ [0, 3]. Then,

lim
n→∞

un = 3

𯿾 Chapter 2 Exercises 𯿿

Exercise 1

Consider the sequences:

(1)un = (1 +
1

n
)n, (2)un =

√
n2 + 4n− n,

(3)un =
n∑

k=1

1

k(k + 1)
, (4)un =

n sin(n)

n2 + 1

Determine the limit of the sequence un as n approaches infinity.
Using the definition of limit, verify that.

lim
n→+∞

un =
4n− 1

2n+ 1
= 2, lim

n→+∞
un =

√
n2 + 1−

√
n = +∞

Exercise 2

Consider the sequence:
un = 1

n+1
+ 1

n+2
+ 1

n+3
· · ·+ 1

2n

Prove that the sequence un is monotone increasing.
Prove that the sequence un is convergent, and its limit satisfies:

1
2
≤ l ≤ 1
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Chapter 2 Exercises

Exercise 3

Consider the sequence un defined by un =
√
n− E(

√
n)

Study the convergence of the subsequence un2 , un2+2n.
What can you conclude about the nature of the sequence un?

Exercise 4

Define recursively a sequence un by: u0 =
3

2
un+1 = (un − 1)2 + 1

Prove that ∀n ∈ N; 1 < un < 2.
Prove that un is monotone sequence.
If un converges, compute its limit.

Exercise 5

Define recursively a sequence un by: u0 = 1,

un+1 =
un + 1

2un + 3
, ∀n ∈ N.

Prove that ∀n ∈ N, un > 0.
Prove that ∀n ∈ N∗, (un+1 − un)(un+1 − un−1) ≥ 0.
Conclude that this sequence is monotone.
Is this sequence convergent? If it is convergent, find its limit.

Exercise 6

Prove that each of the following pair of sequence (un)n∈N and (vn)n∈N are adjacent

(1)un =
n∑

n=1

1

k2 + 1
, vn = un +

1

n
+

1

2n2

(2)un =
n∑

n=1

1

k!
, vn = un +

1

nn!
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Chapter 3 Real functions of one real variable

The functions of a real variable form the basis for many concepts in mathematical analysis and
its applications. They are essential tools for describing curves, modeling physical phenomena, and
performing mechanical calculations. The main objective of this chapter is to introduce the fundamental
properties of real functions and to develop the skills necessary to analyze their behavior.

In particular, we aim to:
Define functions of a real variable and represent them graphically.
Study boundedness, monotonicity, symmetry, and periodicity of functions.
Perform algebraic operations with functions.
Understand and apply the notions of limits and continuity.
Explore elementary, trigonometric, inverse trigonometric, and hyperbolic functions.
Introduce the concept of the derivative and its main properties.
Find the nth derivative (with n ≥ 1) of the function, whenever it exists.

3.1 Definition of function and its graph

Definition 3.1
Let D ⊆ R be a nonempty set. A function f of a real variable is a rule which assigns to each
x ∈ D exactly one y ∈ R:

f : D −→ R, x 7−→ y = f(x).

The set D is called the domain of the function f and is denoted by Df .
f(x) is called the image of x, or the value of the function at x.
The set { y = f(x) | x ∈ Df } is called the image or range of f and is denoted by Im(f)

or f(Df ).
A function is often called a mapping.

Definition 3.2
The graph of a function f is the set of ordered pairs of real numbers (x, f(x)), where x ∈ Df .
We write

G = { (x, f(x)) ∈ R2 | x ∈ Df }.

Example 3.1
The graph of the function f(x) = x2 is



3.2 Bounded functions

−3 −2 −1 1 2 3

2

4

6

8

x

y

The graph of the function

f(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

−3 −2 −1 1 2 3

-1

1

-1

0

1

x

f(x)

3.2 Bounded functions

Definition 3.3
Let f : D → R

A function f is said to be upper bounded if

∃M ∈ R such that ∀x ∈ D: f(x) ≤M

A function f is said to be lower bounded if

∃m ∈ R such that ∀x ∈ D: f(x) ≥ m

A function f is said to be bounded if it is both upper and lower bounded or equivalently

∃B ≥ 0 such that ∀x ∈ D: |f(x)| ≤ B
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3.3 Monotonic functions

Example 3.2
Show that f(x) = x2−9

x2+9
is bounded

We see that for any x ∈ R we have,
x2 − 9

x2 + 9
= 1− 18

x2 + 9
Holds

x2 ≥ 0 =⇒ x2 + 9 ≥ 9 =⇒ ∀x ∈ R; 0 ≤ 1

x2 + 9
≤ 1

9

Then
−2 ≤ −18

x2 + 9
≤ 0

So,
−1 ≤ f(x) ≤ 1

Remark
As we saw in Chapter 2, it is possible to write

M = sup f ⇐⇒
{

∀x ∈ D, f(x) ≤M

∀ε > 0, ∃x0 ∈ D such that f(x0) > M − ε

3.3 Monotonic functions

Definition 3.4
Consider f : D → R. A function f is said to be:

increasing if for anyx1, x2 ∈ D such that x1 < x2 the inequality f(x1) < f(x2) holds.
decreasing if for any x1, x2 ∈ D such that x1 < x2 the inequality f(x1) > f(x2) holds.
Functions that are increasing or decreasing are called strictly monotonic.

Example 3.3
Identify the monotonicity of the following functions:

f(x) = x2; f(x) =
1

x

3.4 Even and odd functions

Definition 3.5
Let f : D → R is called

even if f(−x) = f(x) for any x ∈ D.
odd if f(−x) = −f(x) for any x ∈ D.

Example 3.4
Decide if the following functions are even or odd.

f(x) = x
x2+4

and f(x) = 9−x2

9+x2
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3.5 Periodic functions

3.5 Periodic functions

Definition 3.6
Function f is said to be periodic with period p, p ∈ R, p > 0, if,

for any x ∈ D also x+ p ∈ D, and
f(x+ p) = f(x) for any x ∈ D.

The best-known periodic functions are trigonometric functions. For example, sine and cosine
have the primitive period 2π.

3.6 Operations with functions

The definition below is natural. We add, subtract, multiply, and divide function values of two
functions at points where both these functions are defined. Moreover, in the case of division, the
divisor must be nonzero.

Definition 3.7
Consider two real function f : D → R and g : D → R. Their sum f + g, difference f − g,
product fg and quotient f/g are defined as follows:

∀x ∈ D : (f + g)(x) = f(x) + g(x).
∀x ∈ D : (f − g)(x) = f(x)− g(x).
∀x ∈ D : (fg)(x) = f(x)g(x).
∀x ∈ D : (f

g
)(x) = f(x)

g(x)
and g(x) ̸= 0.

Multiplication by a constant function λ ∈ R, (λf)(x) = λf(x).

Definition 3.8
Consider two real function f : Df → R and g : Dg → R. The composite function, denoted as
f ◦ g is defined if and only if f(Df ) ⊂ Dg and we have

x ∈ Df
f7−→ f(x) ∈ f(Df )

g7−→ g(f(x)) = g ◦ f(x)

∀x ∈ Df : g ◦ f(x) = g(f(x))

Remark
In mathematics the symbol g ◦ f is read ”g composed with f”.

3.7 Limits and continuity of functions

The concept of limit is one of the most important in mathematical analysis. In this section, we
will describe several types of limits of functions of one variable. Using limit we will then introduce
continuity, another fundamental concept.
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3.7 Limits and continuity of functions

3.7.1 Limits of functions

Definition 3.9
A set U ⊂ R is a neighborhood of a point x ∈ R if

]x− ε; x+ ε[⊂ U

Let ε > 0 . The open interval ]x− ε; x+ ε[ is called a ε-neighborhood of x and denoted Vε(x)

Definition 3.10
Function f : D → R has the limit l ∈ R at the point x0 if and only if:

∀ε > 0, ∃δ > 0, such that ∀x ∈ D : 0 < |x− x0| < δ ⇐⇒ |f(x)− l| < ε

We then say f(x) converges to l as x goes to x0. We write

lim
x→x0

f(x) = l

or
f(x) → l as x→ x0

Example 3.5
For the function f given by f(x) = 3x+ 3, we have limx→1 f(x) = 6. So, ∀x ∈ R:

|f(x)− 6| = |3x+ 3− 6| = 3|x− 1| ⇐⇒ |x− 1| < ε

3
It is enough to take δ = ε

3
to have:

∀ε > 0, ∃δ > 0, such that ∀x ∈ D : 0 < |x− 1| < δ ⇐⇒ |f(x)− 6| < ε

Theorem 3.1
The limit of a function, if it exists, is unique.

Proof Suppose that f has two distinct limits l1 and l2 as x goes to x0. So, limx→x0f(x) = l1 and
limx→x0f(x) = l2 where l1 ̸= l2. Therefore, we have:

∀ε > 0, ∃δ1 > 0, such that ∀x ∈ D : 0 < |x− x0| < δ ⇐⇒ |f(x)− l1| < ε

and
∀ε > 0, ∃δ2 > 0, such that ∀x ∈ D : 0 < |x− x0| < δ ⇐⇒ |f(x)− l2| < ε

Consider δ = max{δ1, δ2}, Then, we have both

∀ε > 0, ∃δ > 0, such that ∀x ∈ D : 0 < |x− x0| < δ ⇐⇒ |f(x)− l1| < ε and |f(x)− l2| < ε

let ε = l1−l2
4

. So for 0 < |x− x0| < δ, we have,

|l1 − l2| = |l1 − f(x) + f(x)− l2|
≤ |f(x)− l1|+ |f(x)− l2|
≤ 2ε

=
l1 − l2

2
This is a contradiction. The assumption that l1 ̸= l2 cannot be true. Therefore, the limit is unique.
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3.7 Limits and continuity of functions

3.7.1.1 Sequential limits

Theorem 3.2
Let f : D → R. Then, the following are equivalent:

1. limx→x0 f(x) = l and
2. for every sequence {xn} in D such that xn → x0 and x ̸= x0, we have f(xn) → l.

Proof(1. =⇒ 2.):
Suppose f(x) → l as x → x0. This, according to the definition of the limit, is equivalent to saying
that

∀ε > 0, ∃δ > 0, such that ∀x ∈ D : 0 < |x− x0| < δ =⇒ |f(x)− l| < ε

Let {xn} be a sequence in D such that xn → x0. Then,

∀ε1 > 0, ∃n0 ∈ N, such that ∀n ∈ N : n ≥ n0 =⇒ |xn − x0| < ε1

Choose ε1 = δ. Then, by combining the two previous implications, it is evident that we have

∀ε > 0, ∃n0 ∈ N, such that ∀n ∈ N : n ≥ n0 =⇒ |f(xn)− l| < ε

Thus,
lim
x→x0

f(xn) = l

(2. ⇐= 1.):
Suppose 2. holds, and assume for the sake of contradiction that 1 is false. Then,

lim
x→x0

f(x) ̸= l ⇐⇒ ∃ε0 > 0, ∀δ > 0 such that∃x ∈ D : 0 < |x− x0| < δ and |f(x)− l| ≥ ε.

Let’s choose δ = 1
n
, n ∈ N∗. Then,

∀n ∈ N, ∃xn ∈ D such that 0 < |xn − x0| <
1

n
and |f(xn)− l| ≥ ε

Thus, we have constructed a sequence {xn} such that xn ̸= x, xn ∈]x0 − 1
n
, x0 +

1
n
[, then

lim
n→∞

xn = x

Then, by 2,
|f(xn)− l| ≥ ε

Which is a contradiction.
Example 3.6
We use the previous theorem to show that a function does not have a limit. For example, consider the
function f(x) = sin( 1

x
). This function does not have a limit at the point x0 = 0; indeed, there exists a

sequence {xn} defined by
xn =

1
π
2
+ nπ

Such that
lim
n→∞

xn = 0 = x0
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3.7 Limits and continuity of functions

But on the other hand, the sequence

f(xn) = f

(
1

π
2
+ nπ

)
= sin

(π
2
+ nπ

)
= (−1)n

does not have a limit as n→ ∞.

3.7.1.2 Limits and inequalities

Theorem 3.3
Let D ⊂ R, and f : D → R, g : D → R are functions for which the limits of f(x) and g(x)
exist as x approaches x0, and

f(x) ≤ g(x) ∀x ∈ D

Then,
lim
x→x0

f(x) ≤ lim
x→x0

g(x)

Proof Let l1 = limx→x0 f(x) and l2 = limx→x0 g(x). Let {xn} be a sequence inD such that xn → x0.
Then, ∀n ∈ N, f(xn) ≤ g(xn). Therefore,

l1 = lim
n→∞

f(xn) ≤ lim
n→∞

g(xn) = l2.

Theorem 3.4 (Squeeze theorem)
Let D ⊂ R, and g : D → R, f : D → R, h : D → R are functions for which the limits of g(x),
f(x) and h(x) exist as x approaches x0, the inequality

g(x) ≤ f(x) ≤ h(x) ∀x ∈ D

holds, and
lim
x→x0

g(x) = lim
x→x0

h(x) = l

then it follows that
lim
x→x0

f(x) = l

Proof Let ε > 0 be given. We must find δ > 0 such that

|f(x)− l| < ε whenever 0 < |x− x0| < δ.

Since limx→x0 g(x) = l, by the definition of limits there exists δ1 > 0 such that

|g(x)− l| < ε for all 0 < |x− x0| < δ1.

That is,
l − ε < g(x) < l + ε for all 0 < |x− x0| < δ1. (3.1)

Similarly, since limx→x0 h(x) = l, there exists δ2 > 0 such that

l − ε < h(x) < l + ε for all 0 < |x− x0| < δ2. (3.2)

Moreover, since g(x) ≤ f(x) ≤ h(x) holds in some open interval containing x0, there exists
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3.7 Limits and continuity of functions

δ3 > 0 such that
g(x) ≤ f(x) ≤ h(x) for all 0 < |x− x0| < δ3. (3.3)

Now, let
δ = min(δ1, δ2, δ3).

Then, combining (3.1), (3.3), and (3.2), we obtain

l − ε < g(x) ≤ f(x) ≤ h(x) < l + ε for all 0 < |x− x0| < δ.

Thus,
|f(x)− l| < ε for all 0 < |x− x0| < δ.

Hence, by the definition of limits,
lim
x→x0

f(x) = l.

Example 3.7
Using the Squeeze theorem, show that

lim
x→0

x sin
(
1
x

)
= 0

Since for all real x, we have
−1 ≤ sin

(
1
x

)
≤ 1,

it follows that
−x ≤ x sin

(
1
x

)
≤ x.

As x→ 0, both bounds satisfy

lim
x→0

−x = 0 and lim
x→0

x = 0.

Therefore, by the Squeeze Theorem, we conclude that

lim
x→0

x sin
(
1
x

)
= 0.

Proposition 3.1 (Limits of absolute values)
Let D ⊂ R, and Suppose f : D → R is a function such that the limit of f(x) exists as x goes to
x0. Then,

lim
x→x0

|f(x)| = | lim
x→x0

f(x)|

3.7.1.3 One-sided limits

Limits at a point x0 introduced above are called two-sided because x approaches x0 from both
sides. Sometimes f is not defined on both sides of x0 or we are only interested in function values on
one side. That is why one-sided limits are defined. One-sided limits are limits that are approached
from only one direction, either from the left or from the right. They are denoted as follows:

The left-hand limit
lim

x→x−
0

f(x) or lim
x

<−→x0

f(x)
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3.7 Limits and continuity of functions

The right-hand limit
lim
x→x+

0

f(x) or lim
x

>−→x0

f(x)

respectivelys is read as ”the limit of f(x) as x approaches x0 from the left or from the right”.

Definition 3.11
Let D ⊂ R and f : D → R

We will say that f has a finite right-hand limit at x0 if

∀ε > 0, ∃δ > 0, ∀x ∈ D such that 0 < x− x0 < δ =⇒ |f(x)− l| < ε

We will say that f has a finite left-hand limit at x0 if

∀ε > 0, ∃δ > 0, ∀x ∈ D such that 0 < x0 − x < δ =⇒ |f(x)− l| < ε

Proposition 3.2
Let D ⊂ R and let f : D → R. Then,

lim
x→x0

f(x) = l ⇐⇒ lim
x→x−

0

f(x) = lim
x→x+

0

f(x) = l.

Remark
To demonstrate that a function f does not have a limit at the point x0, we can show that the right-hand
limit is different from the left-hand limit.
Example 3.8
Consider the function:

f(x) =

x+ 9 if x > 0,

x− 9 if x < 0.

Then,
lim
x→0−

f(x) = −9 and lim
x→0+

f(x) = 9,

therefore, limx→0 f(x) does not exist.

3.7.1.4 Infinite limits and limits at infinity of a function

Definition 3.12
Let f : D → R.

We say that the function f has the limit +∞ as x approaches x0, if and only if

lim
x→x0

f(x) = +∞ ⇐⇒ ∀A > 0, ∃δ > 0, ∀x ∈ D : 0 < |x− x0| < δ =⇒ f(x) > A

We say that the function f has the limit −∞ as x approaches x0, if and only if

lim
x→x0

f(x) = −∞ ⇐⇒ ∀A > 0, ∃δ > 0, ∀x ∈ D : 0 < |x−x0| < δ =⇒ f(x) < −A

We say that the function f has the limit +∞ as x approaches +∞, if and only if

lim
x→+∞

f(x) = +∞ ⇐⇒ ∀A > 0, ∃B > 0, ∀x ∈ D : x > B =⇒ f(x) > A
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3.7 Limits and continuity of functions

We say that the function f has the limit +∞ as x approaches +∞, if and only if

lim
x→+∞

f(x) = −∞ ⇐⇒ ∀A > 0, ∃B > 0, ∀x ∈ D : x > B =⇒ f(x) < −A

We say that the function f has the limit +∞ as x approaches +∞, if and only if

lim
x→−∞

f(x) = +∞ ⇐⇒ ∀A > 0, ∃B > 0, ∀x ∈ D : x < −B =⇒ f(x) > A

We say that the function f has the limit +∞ as x approaches −∞, if and only if

lim
x→−∞

f(x) = −∞ ⇐⇒ ∀A > 0, ∃B > 0, ∀x ∈ D : x < −B =⇒ f(x) < −A

3.7.1.5 Properties of limits and algebraic operations

Given the limits of two functions, f and g, we can determine, subject to certain conditions, the
limits of their sum, difference, product, and quotient.

Proposition 3.3
Consider two real function f : D → R and g : D → R and assuming, limits lim

x→x0
f(x) = l1

and lim
x→x0

g(x) = l2 at the point x0 exist, then
lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + lim
x→x0

g(x) = l1 + l2.
lim
x→x0

(f − g)(x) = lim
x→x0

f(x)− lim
x→x0

g(x) = l1 − l2.
lim
x→x0

(fg)(x) = lim
x→x0

f(x) lim
x→x0

g(x) = l1.l2.

lim
x→x0

(f
g
)(x) =

lim
x→x0

f(x)

lim
x→x0

g(x)
= l1

l2
and l2 ̸= 0.

For λ ∈ R, lim
x→x0

(λf)(x) = λ lim
x→x0

f(x) = λl1.
The statements are also true for one-sided limits.

Proposition 3.4
Let f : D → R and g : D → R be two functions defined in the neighbourhood of a point x0. If
f is a bounded function and lim

x→x0
f(x) = 0, then

lim
x→x0

[f(x).g(x)] = 0

3.7.1.6 Indeterminate forms

Indeterminate forms are expressions that cannot be immediately determined or evaluated when
applying the limit operation. Common indeterminate forms include:

∞
∞

; +∞−∞;
0

0
; 0.∞; 1∞; ∞0; 0∞

3.7.1.7 Landau’s O and o notation

Let f and g be two functions defined in a neighbourhood of a point x0 ∈ R.
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3.7 Limits and continuity of functions

Definition 3.13
We say that f is negligible compared to g as x approaches x0, and we write f = o(g) if

∀ε > 0, ∃δ > 0, ∀x ∈ R : 0 < |x− x0| < α =⇒ |f(x)| ≤ ε|g(x)|

Remark
f = o(g) ⇐⇒ lim

x→x0

f(x)
g(x)

= 0.
If g(x) = 1, ∀x ∈ R, then f = o(1) ⇐⇒ lim

x→x0
f(x) = 0.

Definition 3.14
We say that f is dominated by another function g as x approaches x0, and we write f = O(g) if

∃K > 0, ∃δ > 0, ∀x ∈ R : 0 < |x− x0| < α =⇒ |f(x)| ≤ K|g(x)|

Remark
The symbols o and O are called Landau notations.
If g(x) = 1, ∀x ∈ R, then f = O(1) ⇐⇒ f is bounded on V (x0) .

3.7.1.8 Equivalent functions

Equivalent functions are useful in simplifying expressions and evaluating limits, especially when
dealing with more complex functions.

Definition 3.15
Let f and g be two functions neighbourhood neighbourhood of a point x0 ∈ R. We say that f
is equivalent to g as x approaches x0, and we denote it as f ∼

x0

g if f − g = o(f).

Remark
f ∼

x0

g ⇐⇒ f − g = o(f) ⇐⇒ f − g = o(g).

f ∼
x0

g ⇐⇒ lim
x→x0

f(x)
g(x)

= 1.
Example 3.9

sin x∼
0
x.

ln(x+ 1)∼
0
x

Proposition 3.5
Let f, g, f1 and g1 be functions defined in a neighborhood x0 such that f ∼

x0

f1 and g∼
x0

g1 if

lim
x→x0

f(x)
g(x)

exists, then lim
x→x0

f1(x)
g1(x)

also exists, and the two limits are equal.

Example 3.10
Using equivalent functions to calculate the following limit: lim

x→0

ln((sinx)2+1)
sin x

2

We have
ln((sin x)2 + 1)∼

0
(sin x)2∼

0
x2 and sin

x

2
∼
0

x

2
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3.7 Limits and continuity of functions

Then
ln((sin x)2 + 1)

sin x
2

∼
0

x2

x
2

∼
0
2x

So,

lim
x→0

ln((sin x)2 + 1)

sin x
2

= 0

3.7.2 Continuity

Using limit, we can establish another fundamental concept in mathematical analysis

3.7.2.1 Continuity of a function at a point

Definition 3.16
A function f is continuous at a point x0 ∈ R if

lim
x→x0

f(x) = f(x0)

A function f is left-continuous or continuous from the left at a point x0 ∈ R if

lim
x→x−

0

f(x) = f(x0)

A function f is right-continuous or continuous from the right at a point x0 ∈ R if

lim
x→x+

0

f(x) = f(x0)

In particular, if
lim

x→x−
0

f(x) = lim
x→x+

0

f(x) = f(x0)

then f is said to be continuous at x = x0.

Example 3.11
Let f be a real function defined by:

f(x) =

cos2(πx) if x ≤ 1,

1 + ln(x)
x

if x > 1.

We have
lim
x→1−

f(x) = lim
x→1−

cos2(πx) = (−1)2 = 1 = f(1);

and

lim
x→1+

f(x) = lim
x→1+

(
1 +

ln x

x

)
= 1 = f(1);

Thus, f is continuous at x = 1 because

lim
x→1−

f(x) = lim
x→1+

f(x) = f(1);
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3.7 Limits and continuity of functions

Let the function

f(x) =

x x ≥ 0

−x −x < 0

This function is continuous at all x0.
Remark
If the function f is not continuous at the point x0, we say that f is discontinuous at x0 and x0 is a point
of discontinuity of f .
Example 3.12
Let the function

f(x) =

 sinx
x

x ̸= 0

0 x = 0

This function is not continuous at x = 0. So,

lim
x→0

f(x) = 1 ̸= f(0)

3.7.2.2 Continuity of a function in an interval

Definition 3.17
A function f(x) is said to be continuous on an interval [a, b] if the following three conditions
are satisfied:

f(x) is defined on the interval [a, b].
f(x) is continuous at every point in the interval ]a, b[.
f is right continuous at a point a and left continuous at a point b;

lim
x→x+

0

f(x) = f(a) and lim
x→x−

0

f(x) = f(b)

Example 3.13
The function f(x) =

√
4− x2 is defined when the expression under the square root is nonnegative:

4− x2 ≥ 0 =⇒ −2 ≤ x ≤ 2.

For every x ∈ (−2, 2), the function is continuous because the square root function is continuous
wherever it is defined:

lim
x→a

√
4− x2 =

√
4− a2.

And
lim

x→−2+

√
4− x2 = 0 = f(−2), lim

x→2−

√
4− x2 = 0 = f(2),

showing right continuity at x = −2 and left continuity at x = 2.
Therefore, f(x) is continuous on the interval [−2, 2].
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3.7 Limits and continuity of functions

Proposition 3.6
Polynomials, exponential and logarithmic functions, trigonometric and inverse trigonometric
functions, hyperbolic and inverse hyperbolic functions, and the power function are continuous
on their natural domains.

3.7.2.3 Continuous extension at a point

The concept of a ”continuous extension at a point” refers to extending the domain of a function
so that it becomes continuous at a specific point where it might not have been defined or continuous
initially.

Definition 3.18
Let D be an interval and f(x) be a function continuous for all x ∈ D except at x0 if lim

x→x0
f(x)

exists and is equal to a real number l. Then f can be extended by continuity to the function such
that

f̃(x) =

f(x) x ∈ D − {x0}

l x = x0

Remark
The function f̃ is continuous on interval D.
Example 3.14
Let f(x) = sinx

x
, the domain of f is R∗. f is discontinuous at 0 because f(0) is not defined. We have

lim
x→0

f(x) = lim
x→0

sinx
x

= 1, then the discontinuity is removable and redefine the function by

f̃(x) =

 sinx
x

x ̸= 0

1 x = 0

3.7.2.4 Uniform continuity

Definition 3.19
Let D be a nonempty subset of R. A function f : D → R is uniformly continuous on D if,

∀ε > 0, ∃δ > 0, ∀x1, x2 ∈ D : |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε

Example 3.15
The function f(x) = x2 is uniformly continuous on the interval ]0, 1].
Given ε > 0 and let x1, x2 ∈]0, 1] then we have

0 < x1 ≤ 1 and 0 < x2 ≤ 1 =⇒ 0 < x1 + x2 < 2

Or
|f(x1)− f(x2)| = |x21 − x22| = |x1 − x2||x1 + x2|
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3.7 Limits and continuity of functions

Then
|f(x1)− f(x2)| ≤ 2|x1 − x2|

So, it is enough to take δ = ε
2
> 0.

3.7.2.5 Lipschitz function

Definition 3.20
Let D ⊂ R, a function f : D → R be said to be Lipschitz continuous if there exists a constant
K such that for all x1, x2 ∈ D, the following inequality holds:

|f(x1)− f(x2)| ≤ K|x1 − x2|

Example 3.16
The function f(x) = x2 is Lipschitz continuous on the interval [0, b] with b > 0, but it does not satisfy
a Lipschitz condition on the unbounded interval [0,∞).
Remark
A Lipschitz function on D is uniformly continuous on D.

Theorem 3.5 (The intermediate value theorem)
If a function f is continuous in a closed interval [a, b] and if y is some number between f(a)
and f(b) then there is a number c ∈ [a, b] such that f(c) = y.

Proof Without loss of generality, suppose f(a) < y < f(b). Define

A := {x ∈ [a, b] : f(x) ≤ y}.

Since f(a) < y, we have a ∈ A, soA is nonempty. By definition,A is bounded above by b. Therefore,
by the least upper bound axiom, A has a least upper bound, which we denote by c = supA.

We now show that f(c) = y.
First, note that c ∈ [a, b] since a ≤ c ≤ b.
Let ε > 0 be arbitrary. Since f is continuous at c, there exists δ > 0 such that for all x ∈ [a, b]

with |x− c| < δ, we have
|f(x)− f(c)| < ε,
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3.8 Elementary functions

which is equivalent to
f(x)− ε < f(c) < f(x) + ε. (1)

Because c = supA, the number c − δ is not an upper bound of A. Hence there exists x1 ∈ A

with
c− δ < x1 ≤ c.

Since |x1 − c| < δ, applying the right-hand inequality in (1) gives

f(c) < f(x1) + ε ≤ y + ε,

because x1 ∈ A implies f(x1) ≤ y. Since ε was arbitrary, we conclude

f(c) ≤ y. (2)

Moreover, c < b. Otherwise, if c = b, then f(b) = f(c) ≤ y, contradicting y < f(b).
Now pick x2 with c < x2 < b and |x2 − c| < δ. Since x2 > c = supA, we have x2 /∈ A, which

means f(x2) > y. Applying the left-hand inequality in (1), we get

f(c) > f(x2)− ε > y − ε.

Since ε was arbitrary, this implies
f(c) ≥ y. (3)

Combining (2) and (3), we obtain
f(c) = y.

Thus, there exists c ∈ [a, b] with f(c) = y, as required.
Example 3.17
Show that equation cos x = x has a solution in the interval ]0, π

2
[. Let f(x) = cos x − x, f be

continuous on [0, π
2
] and satisfy f(0) = 1 > 0 and f(π

2
) = −π

2
< 0. According to the Mean Value

Theorem, there exists at least one solution such that f(c) = 0. Therefore, c is a solution of equation
cos(x) = x

Proposition 3.7
If the functions f and g are continuous at a point x0, then the functions f + g,, f − g and f.g
are continuous at x0. If, moreover, g(x0) ̸= 0 the function f

g
is continuous at x0.

Proposition 3.8
Let function f be continuous at the point x0 and let function g be continuous at point y0 = f(x0),
then the composite function f ◦ g is continuous at the point x0.

3.8 Elementary functions

This section focuses on the study of elementary functions which appear naturally in the solution
of basic problems, especially physics issues. In this regard, we introduce the fundamental concepts of
these functions and explore some of their key properties.

42



3.8 Elementary functions

3.8.1 Exponential Function

Let a ∈ R, a > 0. The function f(x) = ax, x ∈ R is called the exponential function with base
a.

−3 −2 −1 1 2 3

2

4

6

8

y = ax, a > 1

y = ax, 0 < a < 1

x

y

3.8.1.1 Properties

Domain: (−∞,+∞).
The function is increasing for a > 1, decreasing for 0 < a < 1, and constant for a = 1.
Let a ∈ R+, then for any x, y ∈ R, the following laws of exponents hold:

ax+y = ax · ay, a−x =
1

ax
, ax−y =

ax

ay
, (ax)y = axy

Remark
The most important choice of base a is Euler’s number e ≈ 2.718281828 . . . Later, we will
see why this choice is so important and provide a definition of e. The function ex is called the
natural exponential function.
∀x ∈ R, ex > 0.
The function ex is strictly increasing.
∀x, y ∈ R, ex = ey ⇐⇒ x = y, and ex < ey ⇐⇒ x < y.

3.8.1.2 Some Reference Limits

1. lim
x→−∞

ex = 0, lim
x→+∞

ex = +∞, lim
x→0

ex−1
x

= 1.

2. lim
x→+∞

xn

ex
= 0, lim

x→∞
xne−x = 0, ∀n ∈ N.

3.8.2 Logarithmic Function

Consider the function f(x) = ax, where a > 0, a ̸= 1, and x ∈ R. This function is strictly
monotonic, and its inverse f−1 exists. It is called the logarithmic function with base a and is denoted
loga x.
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loga x, a > 1

loga x, 0 < a < 1

x

y

3.8.2.1 Properties

Domain: (0,+∞).
The function is increasing for a > 1 and decreasing for 0 < a < 1.
Let a > 0, a ̸= 1, x, y ∈ R+. Then:

loga(xy) = loga x+ loga y, loga

(
x

y

)
= loga x− loga y

loga(x
n) = n loga x, ∀n ∈ N

Remark
The logarithm with base e is called the natural logarithm and is denoted by ln.
The natural logarithmic function y = ln x is the inverse of the exponential function y = ex.
That is,

∀x > 0 : x = ey ⇐⇒ ln x = y

If a = 10, the logarithm is called the common logarithm, denoted by log. It is used in chemistry.
Base-2 logarithms are common in computer science.

3.8.2.2 Some Reference Limits

1. lim
x→0+

ln x = −∞, lim
x→+∞

ln x = +∞, lim
x→0

ln(x+1)
x

= 1.

2. lim
x→+∞

lnx
xn = 0, lim

x→0+
xn ln x = 0, ∀n ∈ N.

3.8.3 Power Function

Let r ∈ R. The function f(x) = xr, x > 0 is the power function. It can be expressed using
exponential and logarithmic functions:

xr = (elnx)r = er lnx, x > 0, r ∈ R
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3.9 Trigonometric functions
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3.9 Trigonometric functions

This section is devoted to trigonometric functions, which play a central role in mathematics and
its applications. They emerge naturally in the study of periodic phenomena, geometric problems, and
especially in physics and engineering contexts. We introduce the basic definitions of these functions,
discuss their fundamental properties.

3.9.1 Sine

Notation: f : y = sinx.
Domain: R.
It is odd, that is, sin(−x) = − sin x.
It is periodic, its primitive period is 2π, that is, sin(x+ 2kπ) = sin x, k ∈ Z.
It increases on intervals ]− π

2
+2kπ, π

2
+2kπ[, k ∈ Z, and decreases on intervals ]π

2
+2kπ, 3π

2
+

2kπ[, k ∈ Z.
−1 ≤ sin x ≤ 1.

3.9.2 Cosine

Notation: f : y = cosx.
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3.10 Inverse trigonometric functions

Domain: R.
It is even, that is, cos(−x) = cos x.
It is periodic, its primitive period is 2π, that is, cos(x+ 2kπ) = cos x, k ∈ Z.
It increases on intervals ]− π + 2kπ, 2kπ[, and decreases on intervals ]2kπ, π + 2kπ[.
−1 ≤ cos x ≤ 1.

3.9.3 Tangent

Notation: f : y = tanx defined by formula tan = sinx
cosx

for cos x ̸= 0.
Domain: R−

{
π
2
+ kπ

}
, k ∈ Z.

It is odd, that is, tan(−x) = − tan x.
It is periodic, its primitive period is π, that is, tan(x+ π) = tanx, k ∈ Z.
It increases on intervals ]− π

2
+ kπ, π

2
+ kπ[, k ∈ Z.

3.10 Inverse trigonometric functions

This section focuses on inverse trigonometric functions, which determine the angles correspond-
ing to given trigonometric values. These functions are fundamental in mathematics, as they help us
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3.11 Hyperbolic functions

understand the relationship between angles and ratios. We will define each inverse function, explore
their key properties, and study their graphs to visualize their behavior.

3.10.1 Inverse Sine

Notation: f−1 : y = arcsin x or f : y = sin−1 x.
Domain: ]− 1, 1[.
It is odd, that is, arcsin(−x) = − arcsin x.
It is not periodic.
It is increasing.

3.10.2 Inverse Cosine

Notation: f−1 : y = arccos x or f : y = cos−1 x.
Domain: ]− 1, 1[.
It is neither odd nor even.
It is not periodic.
It is decreasing.

3.10.3 Inverse Tangent

Notation: f−1 : y = arctan x or f : y = tan−1 x.
Domain: R.
It is odd, that is, arctan(−x) = − arctan x.
It is not periodic.
It is increasing.
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3.11 Hyperbolic functions

3.11 Hyperbolic functions

Three functions are included among the hyperbolic functions: hyperbolic sine, hyperbolic cosine,
and hyperbolic tangent. These are widely utilized in technical applications across diverse fields,
including physics, engineering, and mathematics. In the following discussion, we will explore their
fundamental properties and graphs.

3.11.1 Hyperbolic sine

The hyperbolic sine function is defined by the formula

sinh x =
ex − e−x

2
Domain: R.
It is odd, i.e., sinh(−x) = − sinh(x).
It is not periodic.
It is increasing.
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3.11 Hyperbolic functions

3.11.2 Hyperbolic Cosine

The hyperbolic cosine function is defined by the formula

cosh x =
ex + e−x

2
Domain: R.
It is even, i.e., cosh(−x) = cosh(x).
It is not periodic.
It increases on the interval [0,+∞[ and decreases on the interval ]−∞, 0].

3.11.3 Hyperbolic Tangent

The hyperbolic tangent function is defined by the formula

tanh x =
sinh x

cosh x
=
ex − e−x

ex + e−x

Domain: R.
It is odd, i.e., tanh(−x) = − tanh(x).
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3.12 Derivative

It is not periodic.
It is increasing.

3.12 Derivative

This section begins with the definition of the derivative.

Definition 3.21
Let f be a real-valued function. We say that f is differentiable at x0 in its domainDf if the limit

lim
x→x0

f(x)− f(x0)

x− x0
= l ∈ R

Exists. In this case, the value l is referred to as the derivative of f at x0. The derivative of f at
x0, if it exists, is denoted by f ′(x0), read as f prime of x0.
We can express the analogous definition as follows:
f is differentiable at x if and only if

lim
h→0

f(x+ h)− f(x)

h
= f ′(x) ∈ R.

Example 3.18
The function f : x 7→

√
x is differentiable at x0 = 1. To demonstrate this, consider the limit

lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

√
x− 1

x− 1
= lim

x→1

√
x− 1

x− 1
·
√
x+ 1√
x+ 1

.

Simplifying the expression, we get

lim
x→1

√
x− 1

x− 1
·
√
x+ 1√
x+ 1

= lim
x→1

x− 1

(x− 1)(
√
x+ 1)

= lim
x→1

1√
x+ 1

=
1

2
.

Remark
A function defined on an open interval I fromR toR is said to be differentiable on I if it is differentiable
at every point in I .
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3.12 Derivative

Definition 3.22 (Left and right-differentiable)
1. f is left-differentiable at a point x0 if the limit

lim
x→x−

0

f(x)− f(x0)

x− x0
= f ′

L(x0)

Exists.
2. f is right-differentiable at a point x0 if the limit

lim
x→x+

0

f(x)− f(x0)

x− x0
= f ′

R(x0)

Exists.
These definitions describe left differentiability and right differentiability at a point x0, denoted
by f ′

L(x0) and f ′
R(x0) respectively.

Proposition 3.9
A function f is differentiable at a point x0 if and only if f is left-differentiable and right-
differentiable at this point, i.e.,

f ′
L(x0) = f ′

R(x0).

Proposition 3.10
If f is a differentiable function at x0, then f is continuous at x0.

Remark
Every differentiable function is continuous, but the converse is not necessarily true.
Example 3.19
The function x 7→ |x| is continuous but not differentiable at x = 0.
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3.12 Derivative

3.12.1 Derivatives of elementary functions

f(x) f ′(x)

ax a

xn nxn−1

√
x 1

2
√
x

ex ex

1
x

− 1
x2

ln |x| 1
x

sin x cos x

cos x − sinx

tan x 1
cos2 x

cot x − 1
sin2 x

sin2 x 2 sinx cos x

cos2 x −2 sinx cos x

arcsin x 1√
1−x2

arccos x − 1√
1−x2

arctan x 1
1+x2

sinh x cosh x

cosh x sinh x

Proposition 3.11
Suppose that functions f and g have derivatives at the point x0 ∈ R. Then the functions f + g,
fg, f

g
(if g(x0) ̸= 0), and cf , where c ∈ R is a constant, have derivatives at x0, and the following

formulas hold:
1. (f + g)′(x0) = f ′(x0) + g′(x0) (sum rule),
2. (f − g)′(x0) = f ′(x0) + g′(x0) (difference rule),
3. (fg)′(x0) = f ′(x0)g(x0) + f(x0)g

′(x0) (product rule),
4.
(

f
g

)′
(x0) =

f ′(x0)g(x0)−f(x0)g′(x0)
(g(x0))2

for g(x0) ̸= 0 (quotient rule),
5. (cf)′(x0) = cf ′(x0) (constant multiple rule).

Theorem 3.6 (Derivative of inverse function)
Assume that the function f : I → R, where x = f(y), is continuous and strictly monotonic on
the interval I . Let y0 be an interior point of I , and assume that f ′(y0) exists. Then, the inverse
function f−1 has a derivative at the point x0 = f(y0) given by the formula:

(f−1)′(x0) =
1

f ′(y0)
.
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3.12 Derivative

Proof By the definition of the inverse function, we have

f(f−1(x)) = x, for all x ∈ f(I).

Differentiating both sides with respect to x, and applying the chain rule, we get
d

dx

[
f(f−1(x))

]
= f ′(f−1(x)

)
· (f−1)′(x) =

d

dx
[x] = 1.

Evaluating this at the point x0 = f(y0), we obtain

f ′(y0) · (f−1)′(x0) = 1.

Solving for (f−1)′(x0), we conclude

(f−1)′(x0) =
1

f ′(y0)
.

Example 3.20
The inverse of the function f(x) = x2 with reduced domain [0,∞) is

f−1(x) =
√
x.

We have
f ′(x) = 2x, so that f ′(f−1(x)) = 2

√
x.

Using the theorem of derivative of inverse function, we obtain

(f−1)′(x) =
1

f ′(f−1(x))
=

1

2
√
x
.

By the power rule,

(f−1)′(x) =
d

dx

√
x =

d

dx

(
x1/2

)
=

1

2
x−1/2 =

1

2
√
x
.

Thus, the result is verified.
Example 3.21
Consider the function f(x) = ex, defined for all real x. Its inverse is

f−1(x) = ln(x), x > 0.

First, we compute
f ′(x) = ex.

Substituting f−1(x) = ln(x) into this derivative gives

f ′(f−1(x)) = f ′(ln(x)) = eln(x) = x.

Therefore, by the formula for the derivative of the inverse function,

(f−1)′(x) =
1

f ′(f−1(x))
=

1

x
.

Direct differentiation confirms this result:
d

dx
ln(x) =

1

x
.

Proposition 3.12 (Derivative of composite function)
Consider the composite function F = f ◦ g. Assume that g has a derivative at the point x0, and
f has a derivative at the point u0 = g(x0). Then the composite function F has a derivative at
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3.12 Derivative

the point x0, and the following formula, known as the chain rule, holds:

F ′(x0) = (f ◦ g)′(x0) = f ′(u0) · g′(x0) = f ′∣∣
u=u0

(g(x0)) · g′(x0).

Now, we present the derivative of some composite function. If f is a differentiable function and α is
any constant, then:

fα = αf ′fα−1, where f is
strictly positive.
(
√
f)′ = f ′

2
√
f

, where f is strictly
positive.
(ef )′ = f ′ef .
(ln f)′ = f ′

f
.

(sin f)′ = f ′ cos f .
(cos f)′ = −f ′ sin f .
(tan f)′ = f ′

cos2 f
.

3.12.2 Higher order derivatives

In the previous section, we explained that if the function f has a derivative at every point we
obtain a new function f ′ and this new function can have a derivative at a point x0, denoted as f ′′(x0),
if it exists. This number is called the second derivative of f at point x0, and is denoted f ′′(x0).
Therefore,

f ′′(x0) = (f ′)
′
(x0).

If f ′′ exists at every point we get a new function f ′′. This function can be differentiated at a point
x0 (provided it is possible), and we obtain the third derivative of f at point x0, denoted f ′′′(x0). The
process continues, and for n = 4, a dash is not used as the symbol of the derivative since such notation
would be difficult to read. We denote f ′, f ′′, f ′′′, f (4), f (5), etc. Round brackets cannot be omitted:
f (4) is the fourth power of f , while f (4)(x0) is the fourth derivative of f at point x0. Moreover, it is
useful to denote f (0) = f .

Definition 3.23
Let n ∈ N. The n-th derivative (or n-th order derivative) of the function f at the point x0 is
denoted as f (n)(x0) and is defined recursively by the equality

f (n)(x0) =
(
f (n−1)

)′
(x0).

Higher-order derivatives (third, fourth, etc.) appear in many important applications such as Taylor
series expansions, wave equations, oscillations, and control theory. They allow us to describe not only
the rate of change of a function but also its concavity, curvature, and general dynamical behavior.
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3.12 Derivative

Example 3.22
Find

1. the fourth order derivative of f(x) = e4x at x = 9.
2. the fifth order derivative of f(x) = sin(4x+ 9) at x = 5.

Solution:

1. For f(x) = e4x we compute:

f ′(x) = 4e4x, f ′′(x) = 16e4x, f (3)(x) = 64e4x, f (4)(x) = 256e4x.

Hence,
f (4)(9) = 256e36.

2. For f(x) = sin(4x+ 9) we compute:

f ′(x) = 4 cos(4x+ 9), f ′′(x) = −16 sin(4x+ 9), f (3)(x) = −64 cos(4x+ 9),

f (4)(x) = 256 sin(4x+ 9), f (5)(x) = 1024 cos(4x+ 9).

Therefore,
f (5)(5) = 1024 cos(29).

3.12.3 Derivative Recurrence Relations

In many cases, derivatives of elementary functions follow simple recurrence patterns. For
example, the trigonometric functions sin x and cosx satisfy:

dn

dxn
sin x = sin

(
x+ n

π

2

)
,

dn

dxn
cos x = cos

(
x+ n

π

2

)
.

This means that each differentiation corresponds to a phase shift of π
2
. For instance:

d

dx
sin x = cos x,

d2

dx2
sin x = − sinx,

d3

dx3
sin x = − cosx,

d4

dx4
sin x = sin x.

Example 3.23
Consider f(x) = eax. Its n-th derivative is

f (n)(x) = aneax,

which shows that exponential functions reproduce themselves under differentiation.
Similarly, for f(x) = sin(bx),

f (n)(x) = bn sin
(
bx+ n

π

2

)
,

and for f(x) = cos(bx),
f (n)(x) = bn cos

(
bx+ n

π

2

)
.

These recurrence relationships simplify the computation of higher-order derivatives and are
widely used in solving differential equations and series expansions.
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3.12.4 Applications of derivatives

Theorem 3.7 (Rolle’s Theorem)
Suppose the function f has the following properties:

It is continuous on the closed bounded interval [a, b],
It has a derivative on the open interval (a, b),
f(a) = f(b).

Then, there exists at least one c ∈ (a, b) such that f ′(c) = 0.

Proof We distinguish two cases.
Case 1: If f is constant on [a, b], then any c ∈ (a, b) works, since the derivative of a constant

function is zero.
Case 2: Suppose f is not constant. Then there exists some x0 ∈ [a, b] with f(x0) ̸= f(a).

Assume, for instance, that f(x0) > f(a).
Since f is continuous on the closed and bounded interval [a, b], by the Extreme Value Theorem

it attains a maximum at some point c ∈ [a, b]. Moreover,

f(c) ≥ f(x0) > f(a).

Thus, c ̸= a. But since f(a) = f(b), we also cannot have c = b. Therefore c ∈ (a, b).
At this point c, the function f has a local maximum and is differentiable, so by Fermat’s Theorem,

f ′(c) = 0.

Theorem 3.8 (Lagrange’s Mean Value Theorem)
Let a, b be two real numbers with a < b. Suppose function f has the following properties

f is continuous on [a, b].
f is differentiable on (a, b).

Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof Consider the function

g(x) = f(x)− f(b)− f(a)

b− a
(x− a).

Since f is continuous on [a, b] and differentiable on (a, b), and the linear function (x−a) is everywhere
continuous and differentiable, it follows that g is continuous on [a, b] and differentiable on (a, b).

Evaluate g at the endpoints:

g(a) = f(a)− f(b)− f(a)

b− a
(a− a) = f(a),

and
g(b) = f(b)− f(b)− f(a)

b− a
(b− a) = f(b)− (f(b)− f(a)) = f(a).

Hence g(a) = g(b).
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By Rolle’s theorem applied to g, there exists c ∈ (a, b) such that g′(c) = 0. But

g′(x) = f ′(x)− f(b)− f(a)

b− a
,

so at x = c we get

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
,

which implies

f ′(c) =
f(b)− f(a)

b− a
.

Now we will describe a method that helps us in many cases where we evaluate the limit of a
quotient f(x)

g(x)
.

Theorem 3.9 (L’Hôpital’s Rule)
Let f(x) and g(x) be differentiable on an interval I containing a, and assume that g′(x) ̸= 0

on I for x ̸= a. Suppose that

lim
x→a

f(x)

g(x)
=

0

0
or lim

x→a

f(x)

g(x)
=

∞
∞
.

Then, as long as the limits exist, we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

The proof of L’Hôpital’s Rule makes use of the above generalization of the Mean Value theorem.

Example 3.24
Use L’Hôpital’s Rule to calculate the following limit:

1. limx→0
x cosx

x+arcsinx

2. limx→∞
4x+9
9x2−4

Solution:
1. The given limit is of the indeterminate form 0

0
as x → 0. Therefore, we can apply L’Hôpital’s

Rule.
Let

f(x) = x cos x and g(x) = x+ arcsin x.

Differentiating f(x) and g(x), we obtain:

f ′(x) = cos x− x sin x, g′(x) = 1 +
1√

1− x2
.

Using L’Hôpital’s Rule, the limit becomes:

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

cos x− x sinx

1 + 1√
1−x2

=
1

2
.

2. Note that the limit is of the indeterminate form ∞
∞ as x → ∞. Therefore, by L’Hôpital’s Rule

we proceed as follows:

f(x) = 4x+ 9, g(x) = 9x2 − 4.
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Differentiating,
f ′(x) = 4, g′(x) = 18x.

Hence,
lim
x→∞

4x+ 9

9x2 − 4
= lim

x→∞

f ′(x)

g′(x)
= lim

x→∞

4

18x
.

Since
1

x
→ 0 as x→ ∞, we conclude

lim
x→∞

4x+ 9

9x2 − 4
= 0.

𯿾 Chapter 3 Exercises 𯿿

Exercise 1

Calculate the following limits if they exist

(1) lim
x→∞

(
x− 3

x+ 3

)x

, (2) lim
x→∞

esinx−x, (3) lim
x→0

x

|x|
,

(4) lim
x→1

3
√
x− 1√
x− 1

(5) lim
x→π

sin x

x− π
(6) lim

x→0

x− sin(2x)

x+ sin(3x)

Using the definition of the limit, show that

(1) lim
x→∞

4x− 9

9x+ 4
=

4

9
, (2) lim

x→−∞
x2 = +∞, (3) lim

x→−4
x>−4

9

4 + x
= +∞,

Exercise 2

Consider the two functions f and g defined on R by:

f(x) =


x

1+e
1
x

x ̸= 0

0 x = 0
g(x) =


xe

1
x x < 0

0 x = 0

x2 ln(1 + 1
x
) x > 0

Study the continuity of f and g over their domains of definition.

Exercise 3

Study the extension by continuity of the following functions

(1) xearctan
1
x2 , (2) cos 1

x
, (3)

1− cos x

x(3− x) tan x

Exercise 4

Prove that
∀x ∈ [−1, 1] : arcsinx+ arccos x = π

2
.

∀x ∈ [−1, 1] : sin(arccos x) =
√
1− x2.
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Exercise 5

Study the differentiability of the functions f at a point
x0 = −1, x0 = 1 and for the functions g at a point x0 = 0,

f(x) =

arctan x |x| ̸= 1

π
4
sing(x) + x−1

2
|x| > 1

, g(x) =

2 + x ln x x > 0

1 + e−x x ≤ 0

Exercise 6

Use the L’Hopital’s rule to find the following limit:

lim
x→0

x cosx− sinx

x3
, lim

x→0

(
sin x

x

) 1
x2

Exercise 7

Find the formula for the derivative of arctanx starting from

tan(arctanx) = x

Similarly, find the formula for the derivative of arccotx.
Verify that

d

dx
arccotx+

d

dx
arctan x = 0
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Chapter 4 Approximation of functions with
polynomials

In this chapter, we will learn how functions can be approximated by polynomials. Taylor’s
theorem provides a way to replace complicated functions with simpler ones that are easier to work
with. These polynomial approximations play a central role in analysis and applications. The main
focus of this chapter will be on understanding these approximations and how they can be expressed
using polynomials. After studying this chapter, you should be able to:

Use Taylor’s polynomial to find approximate values of functions.
Use Taylor’s polynomial to write series expansions of functions.
Apply Taylor’s formula with both the Lagrange remainder and the Young remainder.
Understand and use the Taylor–Maclaurin–Young formula.
Perform finite expansions of functions at zero and at any given point.
Apply finite expansions to solve practical problems.

4.1 Taylor polynomial

For a function f that is continuous on the interval [a, b] and differentiable at x0 ∈]a, b[, the
following limit holds:

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

from which we can write:
f(x)− f(x0)

x− x0
= f ′(x0) + ε(x)

with limx→x0 ε(x) = 0. Consequently, in the neighborhood of x0, the function f can be expressed as:

f(x) = f(x0) + f ′(x0)(x− x0) + ε(x)(x− x0)

where, ε is a function such that limx→x0 ε(x) = 0. We say that f can be approximated by the
first-degree polynomial T :

T (x) = f(x0) + f ′(x0)(x− x0)

Introducing an error term R(x) = ε(x)(x − x0) = o(x − x0), which approaches 0 as x tends to
x0. More generally, we have the function f can be efficiently approximated near a point x0 through
the Taylor polynomial of degree n using additional derivatives f ′(x0), f

′′(x0), . . . , f
(n)(x0). This

approximation is expressed as follows:

f(x) = Tn(x) +Rn(x)

Here, Tn(x) =
∑n

k=0
f (k)(x0)

k!
(x− x0)

k represents a polynomial of degree n in (x− x0), while Rn(x)

denotes the error associated with this approximation, commonly referred to as the remainder of order
n. The approximations of the function f by the Taylor polynomial of degree n is expressed as follows:



4.2 Taylor formula with Lagrange remainder

f(x) = f(x0)+(x−x0)
f ′(x0)

1!
+
(x− x0)

2

2!
f ′′(x0)+. . .+

(x− x0)
n

n!
f (n)(x0)+Rn(x)

In this context, Rn(x) signifies the remainder of order n. To find the Taylor polynomials Tn of the
function generated by f(x) = lnx at x0 = 1 for n = 1, 2, 3, we need to evaluate the first three
derivatives of f and find their values at 1:

f(x) = ln x, f(1) = 0,

f ′(x) =
1

x
, f ′(1) = 1,

f ′′(x) = − 1

x2
, f ′′(1) = −1,

f ′′′(x) =
2

x3
, f ′′′(1) = 2.

Therefore,
T1(x) = f(x0) + f ′(x0)(x− x0) = 0 + 1(x− 1) = x− 1,
T2(x) = T1(x) +

f ′′(x0)
2!

(x− x0)
2 = (x− 1)− 1

2
(x− 1)2,

T3(x) = T2(x) +
f ′′′(x0)

3!
(x− x0)

3 = (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3.

The graphs of Taylor polynomials are

1 2 3

−2

−1

1

2

x

y y = T1(x)

y = ln x

1 2 3

−2

−1

1

x

y y = T2(x)

y = ln x

1 2 3

−2

−1

1

2

3

x

y y = T3(x)

y = ln x

Figure 4.1: Taylor polynomials generated by ln x at x0 = 1

4.2 Taylor formula with Lagrange remainder

Let f : [a, b] → R be a function such that f ∈ C∞([a, b]), and f (n) is differentiable on ]a, b[.
Suppose x0 ∈ [a, b], then:
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4.3 Taylor formula with Young’s remainder

f(x) =
n∑

k=0

(x− x0)
k

k!
f (k)(x0) +

(x− x0)
n+1

(n+ 1)!
f (n+1)(c)

where c between x and x0. The term (x−x0)n+1

(n+1)!
f (n+1)(c) is called the Lagrange remainder.

4.3 Taylor formula with Young’s remainder

Let f : [a, b] → R be a function, and let x0 ∈ [a, b] be such that f (n)(x0) exists. Then:

f(x) =
n∑

k=0

(x− x0)
k

k!
f (k)(x0) + o((x− x0)

n)

where Rn(x) = o((x − x0)
n) is such that limx→x0

Rn(x)
(x−x0)n

= 0. There exists a second expression for
this formula by setting Rn(x)

(x−x0)n
= ε(x). Therefore, Rn(x) = (x − x0)

nε(x), and consequently, we
have:

f(x) =
n∑

k=0

(x− x0)
k

k!
f (k)(x0) + (x− x0)

nε(x), with lim
x→x0

ε(x) = 0

4.4 Taylor-Maclaurin-Young formula

If x0 = 0, then we have:

f(x) = f(0) +
x

1!
f

′
(0) +

x2

2!
f

′′
(0) + . . .+

xn

n!
f (n)(0) + o(xn)

or alternatively:

f(x) = f(0)+
x

1!
f

′
(0)+

x2

2!
f

′′
(0)+. . .+

xn

n!
f (n)(0)+xnε(x), where lim

x→0
ε(x) = 0.
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4.5 Finite expansions at zero

4.5 Finite expansions at zero

Let f be a real-valued function. We say that f has a finite expansion at zero if there exist real
numbers a0, a1, . . . , an and a real-valued function ε such that

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + x(n)ε(x),

where limx→0 x
(n)(x) = 0. Then f is represented by the polynomial approximation of degree n,

denoted by Pn(x) for x near zero. This approximation, referred to as the main term of the finite
expansion at zero, is given by

Pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n.

and the remainder term is
x(n)ε(x) = O(xn)

Then
f(x) = Pn(x) +O(xn)

4.5.1 Finite expansions of some elementary functions

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ . . .+

xn

n!
+O(xn)

(1 + x)λ = 1 + λx+
λ(λ− 1)x2

2!
+ . . .+

λ(λ− 1) . . . (λ− (n− 1))xn

n!
+O(xn)

1

1 + x
= 1− x+ x2 − x3 + x4 + . . .+ (−1)nxn +O(xn)

1

1− x
= 1 + x+ x2 + x3 + x4 + . . .+ xn +O(xn)

cos(x) = 1− x2

2!
+
x4

4!
+ . . .+ (−1)n

x2n

(2n)!
+O(x2n+1)

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .+ (−1)n

x2n+1

(2n+ 1)!
+O(x2n+1)

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . .+ (−1)n+1x

n

n
+O(xn)

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− . . .− xn +O(xn)

arctan x = x− x3

3
+
x5

5
− x7

7
+ . . .− x2n+1

2n+ 1
+O(x2n+1)

cosh x = 1 +
x2

2!
+
x4

4!
+ . . .+

x2n

(2n)!
+O(x2n)

sinh x = x+
x3

3!
+
x5

5!
+ . . .+

x2n+1

(2n+ 1)!
+O(x2n+1)
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4.5.2 Properties

If a function f has a finite expansion at zero, that expansion is unique.
Consider the finite expansions at zero of f and g:

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n +O(xn)

g(x) = b0 + b1x+ b2x
2 + . . .+ bnx

n +O(xn)

- The finite expansion at zero of the sum f + g is:

(f + g)(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .+ (an + bn)x

n +O(xn)

- The finite expansion at zero of the product f · g is obtained by multiplying the functions
and retaining only the monomials of degree less than n in the resulting product:

(a0 + a1x+ a2x
2 + . . .+ anx

n)(b0 + b1x+ b2x
2 + . . .+ bnx

n)

- The finite expansion at zero of the quotient f
g

is obtained through euclidean division of
(a0 + a1x+ a2x

2 + . . .+ anx
n) by (b0 + b1x+ b2x

2 + . . .+ bnx
n), ordering the terms in

increasing powers.
- If g can be expanded at zero of degree n and if f can be expanded at g(0) of degree n such

that g(0) = 0, then the composite function (f ◦ g) can be expanded at zero of degree n by
substituting the finite expansion of g into the finite expansion of f and retaining only the
monomials of degree less than or equal to n.

Example 4.1
1. Find the finite expansion at zero of f(x) = coshx (degree 4 )

Let f(x) = cosh x = ex+e−x

2
, we have

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+O(x4)

and
e−x = 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
+O(x4)

then,

cosh x =
1

2

(
1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!

)
+

1

2

(
1− x

1!
+
x2

2!
− x3

3!
+
x4

4!

)
+O(x4)

= 1 +
x2

2!
+
x4

4!
+O(x4).

2. Find the finite expansion at zero of f(x) = cos x sin x (degree 5).
We have

cos x = 1− x2

2!
+
x4

4!
+O(x5)

and
sin x = x− x3

3!
+
x5

5!
+O(x5)
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then,

f(x) =

(
1− x2

2!
+
x4

4!

)(
x− x3

3!
+
x5

5!

)
+O(x5)

=

(
1− x2

2

)
+

(
x− x3

6

)
+

x5

120
+O(x5)

= x− 2

3
x3 +

2

15
x5 +O(x5).

3. Find the finite expansion at zero of f(x) = ln(1+x)
sinx

(degree 3).
Note that the function f can be expanded at zero up degree 3 if the finite expansions at zero of
ln(1 + x) and sin x are given (degree 4). Since

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+O(x4)

and
sin x = x− x3

3!
+O(x4)

then,

f(x) =
x− x2

2
+ x3

3
− x4

4
+O(x4)

x− x3

3!
+O(x4)

=
1− x

2
+ x2

3
− x3

4
+O(x3)

1− x2

3!
+O(x3)

= 1− x

2
+
x2

6
− x3

12
+O(x3).

4. Find the finite expansion at zero of f(x) = ecosx, (degree 3).
If g(x) = cos x, note that g(0) = 1 ̸= 0. We have

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+O(x3)

and
cos x = 1− x2

2!
+O(x3)

So if g(x) = cosx − 1 = −x2

2!
+ O(x3), in this case g(0) = 0. Put X = −x2

2!
+ O(x3), so

x = 0 =⇒ X = 0

e1+X = eeX = e(1 +
X

1!
+
X2

2!
+
X3

3!
+O(x3))

Now, replace X with a specific value we get

f(x) = e(1− x2

2!
+O(x3))

= e− e
x2

2
+O(x3)

4.6 Finite expansions at a point

Finite expansions of a function f(x) at the point x0 = 0 can be expressed as

f(x) = a0 + a1X + a2X
2 + . . .+ anX

n +O(Xn), lim
X→0

O(Xn) = 0.
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Let x = x0 + h or h = x− x0, then we have

f(x) = f(x0 + h) = g(h)

if the function g admits a finite expansion at zero up degree n. Consequently,

g(h) = a0 + a1h+ a2h
2 + . . .+ anh

n +O(hn), lim
h→0

O(hn) = 0.

Now, substituting h with x− x0, the expression becomes

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + . . .+ an(x− x0)

n +O((x− x0)
n).

Example 4.2
Find the finite expansion at 9 of f(x) = ex of degree 3.
Taking x = 9 + h implies h = x− 9. The degree 3 expansion can be expressed as:

f(x) = f(9 + h)

= e9+h

= e9 · eh

= e9 ·
(
1 +

h

1!
+
h2

2!
+
h3

3!
+O(h3)

)
.

Now, substituting h with x− 9, we get

= e9 ·
(
1 +

(x− 9)

1!
+

(x− 9)2

2!
+

(x− 9)3

3!
+O((x− 9)3)

)
.

Remark
The finite expansion of function f(x) at infinity is given by

f(x) = a0 +
a1
x

+
a2
x2

+ . . .+
an
xn

+O

(
1

xn

)
.

4.7 Applications of finite expansions

Finite expansions are valuable tools for understanding the behaviour of a function near a specified
point, and they prove to be particularly useful when dealing with limits, especially when faced with
indeterminate forms. When taking the limit as x approaches a particular point, such as x → 0, finite
expansions allow us to simplify expressions by replacing them with finite expansions.
Example 4.3
Find the limit of

lim
x→0

sin(9x)

sinh(−4x)
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We have
lim
x→0

sin(9x)

sinh(−4x)
=

0

0
, indeterminate forms

sin(x) = x+ o(x2) =⇒ sin(9x) = 9x+ o(x2)

sinh(x) = x+ o(x2) =⇒ sinh(−4x) = −4x+ o(x2)

then
lim
x→0

sin(9x)

sinh(−4x)
= lim

x→0

9x+ o(x2)

−4x+ o(x2)
= −9

4

Example 4.4
Find the first three terms of the finite expansion for sin x and cosx. Hence find

lim
x→0

1− cos(sin x)

x2

The finite expansion
sin x = x− x3

3!
+ o(x3)

cos x = 1− x2

2!
+ o(x3)

We have

cos(sin x) = 1−
(x− x3

3!
)2

2!
+ o(x3)

= 1− x2

2
+ o(x3)

Thus

lim
x→0

1− cos(sin x)

x2
= lim

x→0

1− (1− x2

2
+ o(x3))

x2

= lim
x→0

x2

2
+ o(x3)

x2

=
1

2

𯿾 Chapter 4 Exercises 𯿿

Exercise 1

Find the Maclaurin series expansion of the following functions:

ex, cos x, ln(x+ 1)

Find the finite series expansion of the following functions at the vicinity of zero of order
2, then conclude the value of f ′(0) and f ′′(0)

f(x) = e2x +
1

x− 1
− 3x

Using the finite series expansion find the following limit:

lim
x→0

x− x cos x

x− sin x
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Exercise 2

Find the finite expansion of
x3 sin(2x)− 2x

x3
,
ex − e−x

x
, sinh(x)

Exercise 3

Let f(x) be the function defined by:

f(x) =
ecos(x) − 1

x tan(x)
, ∀x ∈

]
−π
2
, 0
[
∪
]
0,
π

2

[
Find the third-order Taylor expansion of f at zero.
Compute the limit:

lim
x→0

ecos(x) − 1

x tan(x)

Exercise 4

Find a finite expansion of order 2 near 0 for the functions:

h(x) = ex−x2

, f(x) =
ln(1 + x)√

1 + x
Using the above expansions, compute the limit:

lim
x→0

(
h(x)− f(x)− 1

x2

)
Let the function g defined on R∗ by:

g(x) = x2
√

x

1 + x
ln

(
1 + x

x

)
Deduce a finite expansion near [0,+∞) for the function g.

Note: Observe that
1

t
=

1

t2
· t

Exercise 5

Let

f(x) =
e2 coshx − x ln(cosx)− (1 + 2x)

1
x

1−
√
1− 2x

Give the finite expansion of f up to order 2 in a neighborhood of 0.
Deduce that f is extendable by continuity at 0. Let g be this extension.
Show that g is differentiable at 0 and calculate g′(0).
Give the equation of the tangent to the curve of g at x = 0 and determine their relative
position near 0.
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Chapter 4 Exercises

Exercise 6

Let f(x) =
(
2ex − cosh(x

√
2)
) 1

sinh x .
Give the finite expansion of f up to order 2 in a neighborhood of 0.
Show that f is extendable by continuity at 0. Let g be this extension.
Give the equation of the tangent (T ) to the curve (C) of g at x = 0 and find their relative
position in a neighborhood of 0.

Exercise 7

Let h be the function defined on R by h(x) = arcsin
(

1−x2

1+x2

)
.

Calculate h′(x) for all x ∈ R∗. Deduce that

h(x) =

−2 arctanx+ π
2

if x > 0

2 arctanx+ π
2

if x < 0

Deduce the finite expansion of h(x) to order 3 as x→ 0+.

Let f(x) =
etan x−sinh

(
3√

1+3x2−1
x

)
−coshx

h(x)+2x−π
2

. Calculate limx→0+ f(x).
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Chapter 5 Integrals

In this chapter, our objective is to empower students with foundational concepts in integral
calculus, providing a comprehensive array of integration techniques that will be useful throughout
the remainder of this semester’s program. Integration is a central tool in mathematics, allowing us
to recover functions from their derivatives and to solve problems involving areas, volumes, and other
applications. We begin with antiderivatives of elementary functions and then introduce techniques
of integration, including substitution, trigonometric methods, and integration by parts. By the end of
this chapter, students will be able to:

Understand the meaning of an indefinite integral.
Compute antiderivatives of elementary functions.
Use the method of integration by parts.
Evaluate trigonometric integrals.
Apply different techniques of integration to solve problems.

5.1 Indefinite integrals

Definition 5.1
Let f be a function defined on a closed interval [a, b] on R, and let F be a differentiable function
on [a, b]. F is called a primitive or antiderivative of f on [a, b] if for all x on [a, b], F ′(x) = f(x).

Proposition 5.1
Let F1(x) and F2(x) be primitives of f on [a, b], meaning they are antiderivatives of f on [a, b].
Then, for all x in [a, b], there exists a constant C such that F1(x) = F2(x) + C.

Definition 5.2
The set of all primitives of the function f : [a, b] → R is called the indefinite integral of f ,
denoted by

∫
f(x) dx, so if F is a primitive of f on [a, b], we have∫

f(x) dx = F (x) + c, c ∈ R.

In this definition, the
∫

is called the integral symbol, f(x) is called the integrand, x is called
the integration variable, and the ”c” is called the constant of integration.

Example 5.1∫
ex = ex + c, c ∈ R.∫
1
x
= lnx+ c, c ∈ R.



5.1 Indefinite integrals

Theorem 5.1
Let f be a continuous function on [a, b]. For any primitive F of f , we have:∫ b

a

f(x) dx = [F (x)]ba = F (b)− F (a)

Proposition 5.2
Let f and g be two continuous functions on [a, b]. We have:∫

[f(x) + g(x)] dx =
∫
f(x) dx+

∫
g(x) dx.∫ b

a
[f(x)− g(x)] dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx.∫ b

a
αf(x) dx = α

∫ b

a
f(x) dx; for α ∈ R.∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx; for c ∈ [a, b].∫ a

a
f(x) dx = 0.

Remark
Note that

∫ b

a
[f(x) · g(x)] dx ̸=

∫ b

a
f(x) dx ·

∫ b

a
g(x) dx.

5.1.1 Antiderivatives of elementary functions

Function Primitive function Interval
xα, α ̸= −1 xα+1

α+1
R− {0}

ex ex R
cos x sin x R
sin x − cosx R
cosh x sinh x R
sinh x cosh x R

1
1+x2 arctan x R

1√
1−x2 arcsin x ]− 1, 1[
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5.2 Techniques of integration

5.1.2 Basic integration formulas

Integral Formula∫
du u+ C∫
α du αu+ C∫

tanu du − ln | cosu|+ C∫
cscu cotu du − cscu+ C∫
secu tanu du secu+ C∫
csc2 u du − cotu+ C∫
sec2 u du tanu+ C∫
cosu du sinu+ C∫
sinu du − cosu+ C∫

du
u

ln |u|+ C∫
un du un+1

n+1
+ C for n ̸= −1∫

du
u2−a2

cosh−1 u
a
+ C for u > a > 0∫

du
a2+u2 sinh−1 u

a
+ C for a > 0∫

du
u
√
u2−a2

1
a
sec−1

(
a
u

)
+ C∫

du
a2+u2

1
a
tan−1

(
u
a

)
+ C∫

du
a2−u2 sin−1

(
u
a

)
+ C∫

coshu du sinhu+ C∫
sinhu du coshu+ C∫
eu du eu + C∫

cotu du ln | sinu|+ C

5.2 Techniques of integration

5.2.1 Integration by parts

Theorem 5.2
Let u and v be two differentiable functions of class C1 on [a, b]. We have∫

u′(x)v(x) dx = u(x)v(x)−
∫
u(x)v′(x) dx

Remark
In some examples, it is necessary to apply this method several times to obtain the result.
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5.2 Techniques of integration

Example 5.2
1. I1 =

∫
xex dx

We use integration by parts, we can choose u = x and dv = ex. Then, we find du and v:

du = dx, v = ex

Now, we apply the integration by parts formula:

I1 = xex −
∫
ex dx

So,
I1 = xex − ex + C, C ∈ R

Simplifying, we get:
I1 = ex(1− x) + C, C ∈ R

2. I2 =
∫
x2e9x dx

Choose u = x2 and dv = e9x dx. Thus, du = 2x dx and v =
∫
e9x dx = 1

9
e9x. Therefore,

u = x2, dv = e9x dx, du = 2x dx, v =
1

9
e9x.

We apply the integration by parts formula:

I2 =
1

9
x2e9x −

∫
2

9
xe9x dx.

We still cannot integrate
∫

2
9
xe9x dx directly, but the integral now has a lower power on x. We

can evaluate this new integral by using integration by parts again. To do this, choose u = x and
dv = 2

9
e9x dx. Thus, du = dx and v =

∫
2
9
e9x dx = 2

81
e9x. Now we have

u = x, dv =
2

9
e9x dx, du = dx, v =

2

81
e9x.

Substituting back into the previous equation yields

I2 =
1

9
x2e9x −

(
2

81
xe9x −

∫
2

81
e9x dx

)
.

After evaluating the last integral and simplifying it, we obtain

I2 =
1

9
x2e9x − 2

81
xe9x +

2

729
e3x + C.

5.2.2 Integration by substitution

5.2.2.1 Integration by substituting u = ax+ b

We introduce the technique through some simple examples where a linear substitution is suitable.

Example 5.3
1. I1 =

∫
(x+ 9)4 dx

In the integral I1, the power of 4 makes it more complex, compounded by the term x + 9. To
address this, we employ a substitution.
Let u = x + 9. This change simplifies the integral to u4. However, we must appropriately

73



5.2 Techniques of integration

account for the differential dx.
Expressing differentials, we have

du =

(
du

dx

)
dx

For this example, since u = x+ 9, we immediately have du
dx

= 1, yielding du = dx.
Substituting both u and du in I1, we get∫

(x+ 9)4 dx =

∫
u4 du

The resulting integral is u5

5
+ C. Reverting to x by recalling u = x+ 9, we have

I1 =
(x+ 9)5

5
+ C

Integration by substitution is now complete.
2. I2 =

∫
cos(x+ 4) dx

If we set u = x+ 4, then
du = dx

Substituting both u and du in I2, we have

I2 =

∫
cosu du = sinu+ C

So, we can revert to an expression involving the original variable x by recalling that u = x+ 4,
giving

I2 = sin(x+ 4) + C

5.2.2.2
∫
f(g(x)) · g′(x) dx by substituting u = g(x)

Given that F and g are differentiable functions, the chain rule for differentiation states:

d

dx
(F (g(x))) = F ′(g(x)) · g′(x).

If F ′(x) = f(x), meaning F is an antiderivative of f , then this simplifies to:

d

dx
(F (g(x))) = f(g(x)) · g′(x).

In other words, if F is an antiderivative of f , then:∫
f(g(x)) · g′(x) dx = F (g(x)) + C.

Now, let’s simplify this further. Let g(x) = u, so g′(x) = du
dx

. Multiplying both sides by dx, we
get:

g′(x) dx = du.

We substitute g(x) with u and g′(x) dx with du:
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5.2 Techniques of integration

∫
f(g(x)) · g′(x) dx =

∫
f(u) du = F (u) + C.

As a result, the Substitution Rule is given by

Ifu = g(x), then
∫
f(g(x)) · g′(x) dx =

∫
f(u) du.

Example 5.4
1. I1 =

∫
x2(x3 + 9)4 dx

Let u = x3 + 9, so that du = 3x2 dx.

I1 =

∫
x2(x3 + 9)4 dx

=

∫
(x3 + 9)4 · (3 · x2) · 1

3
dx (5.1)

So, substituting u for u = x3 + 9, and with du = 3x2 dx in Equation (5.1) we have

I1 =
1

3

∫
u4 du

=
1

3
(
u5

5
) + C

=
(x3 + 9)5

15
) + C

2. I2 =
∫
2x

√
1 + x2 dx

Let u = 1 + x2. From this, we get du = 2x So,

I2 =

∫
2x

√
1 + x2 dx

=

∫ √
u du

=

∫
u

1
2 du

=
2

3
u

3
2 + C

=
2

3
(1 + x2)

3
2 + C

5.2.2.3 Integration by partial fractions

Consider a rational function f(x) = g(x)
h(x)

, where g(x) and h(x) are polynomials and the degree
of h(x) is greater than the degree of g(x). To integrate such a rational function using partial fractions,
we first need to decompose it into simpler fractions. Before setting up the decomposition, it’s essential
to factorize the denominator. Here we present the partial fractions method of Partial Fractions:

1. Let (x − r) be a linear factor of g(x). Suppose that (x − r)m is the highest power of (x − r)

that divides g(x). Then, to this factor, assign the sum of the m partial fractions:
A1

(x− r)
+

A2

(x− r)2
+

A3

(x− r)3
+ · · ·+ Am

(x− r)m
.
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5.2 Techniques of integration

Do this for each distinct linear factor of g(x).
2. Let x2 + px+ q be an irreducible quadratic factor of g(x) so that x2 + px+ q has no real roots.

Suppose that (x2 + px+ q)n is the highest power of this factor that divides g(x). Then, to this
factor, assign the sum of the n partial fractions:

B1x+ C1

x2 + px+ q
+

B2x+ C2

(x2 + px+ q)2
+

B3x+ C3

(x2 + px+ q)3
+ · · ·+ Bnx+ Cn

(x2 + px+ q)n
.

Do this for each distinct quadratic factor of g(x).
3. Set the original fraction g(x)

h(x)
equal to the sum of all these partial fractions. Clear the resulting

equation of fractions and arrange the terms in decreasing powers of x.
4. Equating the coefficients of corresponding powers of x, solve the resulting equations for the

undetermined coefficients.
Remark

The denominator is a product of linear factors, with none repeating. In this case, the partial
fraction decomposition takes the form:

x+ 1

(x− 4)(4x− 9)
=

A

x− 4
+

B

4x− 9

The denominator consists of linear factors, with some repeating. The partial fraction decompo-
sition looks like this:

x+ 1

(x− 4)(x− 9)3
=

A

x− 4
+

B

x− 9
+

C

(x− 9)2
+

D

(x− 9)3

The denominator contains irreducible quadratic factors, with none repeating. The partial fraction
decomposition becomes:

x+ 1

(x− 4)2(x2 + 9)
=

A

x− 4
+

B

(x− 4)2
+
Cx+D

x2 + 9

The denominator includes irreducible quadratic factors, with some repeating. The corresponding
partial fraction decomposition is:

x+ 1

(x− 4)(x2 + 9)2
=

A

x− 4
+
Bx+ C

x2 + 9
+

Dx+ E

(x2 + 9)2

5.2.2.4 Strategy for evaluating
∫

1
(x−a)n dx

For n = 1 we have
∫

1
x−a

dx = ln |x− a|+ C

For n > 1 we get
∫

1
(x−a)n

dx = −1
(n−1)(x−a)n−1 + C

5.2.2.5 Strategy for evaluating
∫

1
ax2+bx+c dx

To evaluate the integral
∫

1
ax2+bx+c

dx, first calculate ∆ = b2 − 4ac.
1. If ∆ < 0:

Rewrite the expression as

ax2 + bx+ c = a

[(
x+

b

2a

)2

+ β2

]
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5.2 Techniques of integration

where β2 = −∆
4a2

. Subsequently,∫
1

ax2 + bx+ c
dx =

1

a

∫
1(

x+ b
2a

)2
+ β2

dx

Proceed to solve this integral using the substitution u = x+ b
2a

. Therefore,∫
1

ax2 + bx+ c
dx =

1

aβ
arctan

(
x+ b

2a

β

)
+ C

2. If ∆ = 0:
Rewrite the expression as

ax2 + bx+ c = a

(
x+

b

2a

)2

Then ∫
1

ax2 + bx+ c
dx =

1

a

∫
1(

x+ b
2a

)2 dx
Let u = x+ b

2a
, then du = dx. Thus,∫

1

ax2 + bx+ c
dx =

1

a

∫
1

u2
du

=
1

a

∫
u−2 du

=
1

a

u−1

−1
+ C

=
−1

au
+ C

=
−1

a
(
x+ b

2a

) + C

=
−1(

ax+ b
2

) + C

=
−2

2ax+ b
+ C

3. If ∆ > 0:
Rewrite the expression as

ax2 + bx+ c = a(x− x1)(x− x2)

Then ∫
1

ax2 + bx+ c
dx =

1

a

∫
1

(x− x1)(x− x2)
dx

Then ∫
1

ax2 + bx+ c
dx =

1

a

(∫
A

(x− x1)
dx+

∫
B

(x− x2)
dx

)
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5.2 Techniques of integration

So, ∫
1

ax2 + bx+ c
dx =

1

a

(∫ 1
(x1−x2)

(x− x1)
dx+

∫ 1
(x1−x2)

(x− x2)
dx

)
=

1

a(x1 − x2)
ln

∣∣∣∣x− x1
x− x2

∣∣∣∣+ C

Example 5.5
1. I1 =

∫
x+14

(x+5)(x+2)
dx

Our first step is to decompose x+14
(x+5)(x+2)

as:
x+ 14

(x+ 5)(x+ 2)
=

A

x+ 5
+

B

x+ 2
.

We want to find constants A and B for all x ̸= −5 and x ̸= −2.
x+ 14

(x+ 5)(x+ 2)
=

A

x+ 5
+

B

x+ 2
.

We solve for A and B by cross-multiplying and equating the numerators:
x+ 14

(x+ 5)(x+ 2)
=

A

x+ 5
+

B

x+ 2
=
A(x+ 2) +B(x+ 5)

(x+ 5)(x+ 2)

Then

x+ 14 = A(x+ 2) +B(x+ 5)

= Ax+ 2A+Bx+ 5B

= (A+B)x+ 2A+ 5B

So, we get

A+B = 1 . . . (1)

2A+ 5B = 14 . . . (2)

From (1) we obtain B = 1− A, Substituting this into (2) we get

14 = 2A+ 5B

= 2A+ 5(1− A)

= 2A+ 5− 5A

= 5− 3A

Then
A = −3 andB = 4

So, ∫
x+ 14

(x+ 5)(x+ 2)
dx =

∫ (
−3

x+ 5
+

4

x+ 2

)
dx = −3 ln |x+ 5|+ 4 ln |x+ 2|+ C

2. I2 =
∫

6x+7
(x+2)2

dx

Our first step is to decompose 6x+7
(x+2)2

as:
6x+ 7

(x+ 2)2
=

A

x+ 2
+

B

(x+ 2)2
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5.2 Techniques of integration

Then, multiply both sides by (x+ 2)2.

6x+ 7 = A(x+ 2) +B

= Ax+ 2A+B

Equating coefficients of corresponding powers of x gives A = 6 and B = −5.
Therefore,

I2 =

∫
(

6

x+ 2
− 5

(x+ 2)2
) dx

= 6

∫
1

x+ 2
dx− 5

∫
1

(x+ 2)2
dx

= 6 ln |x+ 2|+ 5

x+ 2
+ C

3. I3 =
∫

1
x2−2x+5

dx

We have ∆ = −16, let x2 − 2x+ 5 = (x− 1)2 + 4

Now, substitute u = x− 1, we have du = dx. Thus,

I3 =

∫
1

(x− 1)2 + 4
dx

=

∫
1

u2 + 4
du

=
1

2
arctan

u

2
+ C

=
1

2
arctan

(
x− 1

2

)
+ C

5.2.2.6 Trigonometric integrals

Strategy for evaluating
∫
sinm(x) cosn(x) dx

If the power n of cosine is odd (n = 2k + 1), save one cosine factor and use
cos2(x) = 1− sin2(x) to express the rest of the factors in terms of sine:∫

sinm(x) cosn(x) dx =

∫
sinm(x) cos2k+1(x) dx =

∫
sinm(x)(cos2(x))k cos(x) dx

=

∫
sinm(x)(1− sin2(x))k cos(x) dx

Then solve by substitution and let u = sin(x).
If the power m of sine is odd (m = 2k + 1), save one sine factor and use
sin2(x) = 1− cos2(x) to express the rest of the factors in terms of cosine:∫

sinm(x) cosn(x) dx =

∫
sin2k+1(x) cosn(x) dx =

∫
(sin2(x))k cosn(x) sin(x) dx

=

∫
(1− cos2(x))k cosn(x) sin(x) dx

Then solve by substitution and let u = cos(x).
If both powers m and n are even, use the half-angle identities:

sin2
(x
2

)
=

1− cos(x)

2
, cos2

(x
2

)
=

1 + cos(x)

2
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5.2 Techniques of integration

Example 5.6
1. I1 =

∫
cos3 x dx

Here we can separate one cosine factor and convert the remaining factor to an expression
involving sine using cos2 x = 1− sin2 x.

cos3 x = cos2 x cosx = (1− sin2 x) cosx

Let u = sin x, since then du = cosx dx. Thus,

I1 =

∫
(1− sin2 x) cosx dx

=

∫
(1− u2) du

= u− u3

3
+ C

= sinx− sin3 x

3
+ C

2. I2 =
∫
cos8 x sin5 x dx

Since the power on sin x is odd, we have

cos8 x sin5 = cos8 x sin4 x sinx

Rewrite sin4 x = (sin2 x)2

cos8 x sin5 = cos8 x(sin2 x)2 sin x

Now, substitute sin2 x = 1− cos2 x, we obtain

cos8 x sin5 = cos8 x(1− cos2 x)2 sin x

Then

I2 =

∫
cos8 x(1− cos2 x)2 sin x dx

Let u = cos x and du = − sinx dx.Thus

I2 =

∫
cos8 x(1− cos2 x)2 sin x dx

=

∫
u8(1− u2)2(−du)

=

∫ (
−u8 + 2u10 − u12

)
du

= −1

9
u9 +

2

11
u11 − 1

13
u13 + C

= −1

9
cos9 x+

2

11
cos11 x− 1

13
cos13 x+ C.

3. I3 =
∫
sin4 x dx.

We have
sin4 x = (sin2 x)2
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5.2 Techniques of integration

Since sin2 x occurs, we could evaluate integral I3 using the formula:

sin2 x =
1− cos 2x

2
.

This gives:

I3 =

∫ (
1− cos 2x

2

)2

dx

=
1

4

∫ (
1− 2 cos 2x+ cos2 2x

)
dx

Since cos2 2x occurs, we must use another formula

cos2 2x =
1 + cos 4x

2
.

Then

I3 =
1

4

∫ (
1− 2 cos 2x+ cos2 2x

)
dx

=
1

4

∫ (
1− 2 cos 2x+

1

2
(1 + cos 4x)

)
dx

=
1

4

∫ (
3

2
− 2 cos 2x+

1

2
cos 4x

)
dx

=
3

8
x− 1

4
sin 2x+

1

32
sin 4x+ C

1. Strategy for evaluating tanm(x) secn(x) dx

If the power n of secant is even (n = 2k, k ≥ 2), save one sec2(x) factor and use
sec2(x) = 1 + tan2(x) to express the rest of the factors in terms of tangent:∫

tanm(x) secn(x) dx =

∫
tanm(x) sec2k(x) dx =

∫
tanm(x)(sec2)k−1 sec2(x) dx

=

∫
tanm(x)(1 + tan2(x))k−1 sec2(x) dx

Then solve by substitution and let u = tan(x).
If the power m of tangent is odd (m = 2k + 1), save one sec(x) tan(x) factor and use
tan2(x) = sec2(x)− 1 to express the rest of the factors in terms of secant:∫

tanm(x) secn(x) dx =

∫
tan2k+1(x) secn(x) dx =

∫
(tan2(x))k secn−1(x) sec(x) tan(x) dx

=

∫
(sec2(x)− 1)k secn−1(x) sec(x) tan(x) dx

Then solve by substitution and let u = sec(x).
Example 5.7

1. I1 =
∫
tan6(x) sec4(x) dx

Since the power on secx is even, rewrite sec4 x = sec2 x sec2 x and use sec2 x = tan2 x + 1 to
rewrite the first sec2 x in terms of tan x. Thus,

I1 =

∫
tan6 x

(
tan2 x+ 1

)
sec2 x dx
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5.2 Techniques of integration

Let u = tan x and du = sec2x. Then

I1 =

∫
tan6 x

(
tan2 x+ 1

)
sec2 x dx

=

∫
u6
(
u2 + 1

)
du

=

∫
(u8 + u6) du

=
1

9
u9 +

1

7
u7 + C (Substitute tanx = u)

=
1

9
tan9 x+

1

7
tan7 x+ C.

2. I2 =
∫
tan5 x sec3 x dx

Since the power on tan x is odd, we can write

tan5 x sec3 x = tan4 x sec2 x secx tan x

Now we write tan4 x = (tan2 x)2, we obtain

tan5 x sec3 x = (tan2 x)2 sec2 x secx tan x

Then,

I2 =

∫
(tan2 x)2 sec2 x secx tan x dx

Using tan2 x = sec2 x− 1, we get

I2 =

∫
(tan2 x)2 sec2 x secx tan x dx

=

∫
(sec2 x− 1)2 sec2 x secx tan x dx

Let u = sec x and du = sec x tan x dx

I2 =

∫
(sec2 x− 1)2 sec2 x secx tan x dx

=

∫
(sec2 x− 1)2 sec2 x du

=

∫ (
u6 − 2u4 + u2

)
du

=
1

7
u7 − 2

5
u5 +

1

3
u3 + C.

=
1

7
sec7 x− 2

5
sec5 x+

1

3
sec3 x+ C.
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Exercise 1

Calculate the following integrals:∫ 2

0

(9x+ 1)3 dx,

∫ 1

1√
3

1

1 + x2
dx,

∫ 2

0

1

4 + x2
dx,∫ 2

1

1

1 + 4x
dx,

∫
dx

x2 − 9
,

∫
dx√
4 + x2

dx.

Exercise 2

Using variable substitution, compute the following integrals:∫
sin2 x cosx dx,

∫
esinx cos x dx,

∫
x2(x3 − 9)5 dx,

∫
ln(9 + x)

9 + x
dx.

Using integration by parts, calculate the following integrals:∫
xe−x dx,

∫
(x2 + 4x+ 9)e−x dx,

∫
arctan x dx,∫

ex sin x dx,

∫
e−x sin 2x dx,

∫
x2 ln x dx.

Exercise 3

Compute the integral:

I =

∫
4x2 + 3x− 2

(x+ 1)(x2 + 1)
dx

Using integration by substitution, compute the integral:

J =

∫ π/2

0

sin(x) cos2(x) dx

Compute the integral using trigonometric substitution:

L =

∫
1√

9− x2
dx

Exercise 4

Evaluate each of the following integrals:∫
x2

(x−4)(x−9)
dx.∫

x−4
x(x−2)3

dx.∫
x2+4x+9
x2+1

dx.
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Exercise 1

Prove the following properties:
∀x, y ∈ R, |x+ y| ≤ |x|+ |y|.
∀x, y ∈ R,

∣∣|x| − |y|
∣∣ ≤ |x− y|.

∀x, y ∈ R, |x|+ |y| ≤ |x+ y|+ |x− y|.
∀x ∈ R, |x| = max{x,−x}.

Solution
1. ∀x, y ∈ R : |x+ y| ≤ |x|+ |y|

We begin by considering:

∀x ∈ R, −|x| ≤ x ≤ |x| . . . (1)

∀y ∈ R, −|y| ≤ y ≤ |y| . . . (2)

Adding inequalities (1) and (2):

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|

By the definition of absolute value:

|x+ y| ≤ |x|+ |y|

Thus, the inequality holds.
2. ∀x, y ∈ R : ||x| − |y|| ≤ |x− y|

Using the triangle inequality:

|x| = |x+ y − y| ≤ |x− y|+ |y| . . . (1)

Similarly:
|y| = |y + x− x| ≤ |y − x|+ |x| . . . (2)

Combining (1) and (2):

|x| − |y| ≤ |x− y| and |y| − |x| ≤ |x− y|
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Therefore:
−|x− y| ≤ |x| − |y| ≤ |x− y|

Hence, by the definition of absolute value:

||x| − |y|| ≤ |x− y|

3. ∀x, y ∈ R : |x|+ |y| ≤ |x+ y|+ |x− y|
We start with:

2x = (x+ y) + (x− y), 2y = (x+ y)− (x− y)

By the triangle inequality:

2|x| ≤ |x+ y|+ |x− y| . . . (1)

2|y| ≤ |x+ y|+ |x− y| . . . (2)

Adding (1) and (2) gives:
|x|+ |y| ≤ |x+ y|+ |x− y|

4. ∀x ∈ R : |x| = max{x,−x}
- If x ≥ 0: By the definition of absolute value, |x| = x, and −x ≤ x. Therefore, x =

max(x,−x). - If x ≤ 0: Then |x| = −x, and −x ≥ x. Hence, −x = max(x,−x).
Thus, we conclude that:

|x| = max(x,−x)

Exercise 2

If the set A is bounded, find supA, maxA, inf A, and minA if they exist.

A = {x ∈ R : 0 < x < 9} , A =

{
9− 1

n
, n ∈ N∗

}
,

A =
{
x ∈ R : x3 > 64

}
, A =

{
1

x
: 4 ≤ x ≤ 9

}
,

A =

{
n+ 2

n− 1
, n ∈ N, n ≥ 2

}
, A =

{
9 +

1

n
, n ∈ N∗

}

Solution
1. A = {x ∈ R | 0 < x < 9} =]0, 9[

- Supremum (supA): The supremum of a set is its least upper bound. The set of upper
bounds is ]9,+∞[. The smallest upper bound is 9, so supA = 9.

- Maximum (maxA): The maximum is the largest element in the set. Since 5 /∈ A, A has
no maximum.

- Infimum (inf A): The infimum is the greatest lower bound. The set of lower bounds is
]−∞, 0[. The greatest lower bound is 0, so inf A = 0.

- Minimum (minA): Since 0 /∈ A, the set has no minimum.
2. A =

{
9− 1

n
| n ∈ N∗}
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Let an = 9− 1
n

. Then A is nonempty and bounded:

∀n ∈ N∗, 8 < an < 9.

By the completeness axiom, supA and inf A exist.
- Supremum (supA): 9 is an upper bound of A. We show it is the least upper bound using

the characterization property:

supA = 9 ⇐⇒ ∀ε > 0, ∃nε ∈ N∗ such that 9− ε < anε .

Since 9− ε < 9− 1
nε

implies nε >
1
ε
, by the Archimedean property such nε exists. Hence,

supA = 9.
- Maximum (maxA): Since 9 /∈ A, A has no maximum.
- Infimum (inf A): For all n ∈ N∗, we have 9− 1

n
≥ 8, so inf A = 8.

- Minimum (minA): Since 8 ∈ A (when n = 1), minA = 8.
3. A = {x ∈ R | x3 > 64} =]4,+∞[

- Supremum (supA): A is unbounded above, so supA does not exist.
- Maximum (maxA): Since supA does not exist, maxA does not exist either.
- Infimum (inf A): The set of lower bounds is ]−∞, 4[, so inf A = 4.
- Minimum (minA): Since 4 /∈ A, A has no minimum.

4. A =
{

1
x
| x ∈ [1, 2]

}
The function f(x) = 1

x
is decreasing on [4, 9]. So:

1

9
≤ f(x) ≤ 1

4
- Supremum (supA): The smallest upper bound is 1

4
, so supA = 1

4
.

- Maximum (maxA): Since 1
4
∈ A, maxA = 1

4
.

- Infimum (inf A): The greatest lower bound is 1
9
.

- Minimum (minA): Since 1
9
∈ A, minA = 1

9
.

5. A =
{

n+2
n−1

| n ∈ N, n ≥ 2
}

The first few values of A are: 4, 5
2
, . . .

∀n ≥ 2, 1 < an ≤ 4

- Supremum (supA): The smallest upper bound is 4, so supA = 4.
- Maximum (maxA): Since 4 ∈ A, maxA = 4.
- Infimum (inf A): To show inf A = 1, use:

∀ε > 0, ∃nε ∈ N such that anε < 1 + ε.

Solving 1 + ε > 1 + 3
nε−1

gives nε >
3
ε
+ 1, which exists by the Archimedean property.

Hence, inf A = 1.
- Minimum (minA): Since 1 /∈ A, A has no minimum.

6. A =
{
9 + 1

n
| n ∈ N∗}

∀n ∈ N∗, 9 < an ≤ 10
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- Supremum (supA): The smallest upper bound is 10, so supA = 10.
- Maximum (maxA): Since 10 ∈ A (when n = 1), maxA = 10.
- Infimum (inf A): To show inf A = 9, use:

∀ε > 0, ∃nε ∈ N∗ such that anε < 9 + ε.

Solving 9 + ε > 9 + 1
nε

gives nε >
1
ε
, which exists. Hence, inf A = 9.

- Minimum (minA): Since 9 /∈ A, the set has no minimum.

Exercise 3

Find the sup, max, inf and min of the following sets and prove your answer.
A =

{
8

n2+4
; n ∈ N

}
A =

{
2n+1
n+1

; n ∈ N
}

Solution
- A =

{
8

n2+4
; n ∈ N

}
We have

∀n ∈ N : n2 ≥ 0 ⇒ n2 + 4 ≥ 4 ⇒ 0 < 1
n2+4

≤ 1
4
⇒ 0 < 8

n2+4
≤ 2

A is bounded.
* supA: The set of upper bounds is [2; +∞[. Thus, 2 is the smallest upper bound of A. Conse-

quently, supA = 2.
* maxA: Observe that supA = 2 ∈ A and therefore supA = maxA = 2.
* inf A: We want to prove that inf A = 0 i.e.

infA = 0 ⇐⇒

{
∀an ∈ A ; an ≥ 0

∀ε > 0 ∃nε ∈ N ; anε < ε

Let ε > 0, suppose that anε < ε then

8
n2
nε+4

< ε ⇐⇒ n2
nε + 4 > 8

ε
⇐⇒ n2

nε >
8−4ε
ε

⇒ nnε >
√

8−4ε
ε

By Archimedean principle, there exists nε satisfying the above inequality, nnε >
√

8−4ε
ε

, taking

nnε = E(
√

8−4ε
ε

) + 1, we deduce inf A = 0.
* minA: inf A = 0 since 0 /∈ A, minA does not exist.

Exercise 4

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If A ⊂ B, then supA ≤ supB and inf B ≤ inf A

inf(A ∪B) = min(inf A, inf B)

sup(A ∪B) = max(supA, supB)
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Solution
1. If A ⊆ B, then supA ≤ supB and inf B ≤ inf A.

supA ≤ supB:
Since B ⊂ R is nonempty and bounded, supB exists by the completeness axiom. Thus:

∀x ∈ B ⇒ x ≤ supB.

Given that A ⊆ B, we also have:

∀x ∈ A ⇒ x ≤ supB.

But supA is the least upper bound of A, so it follows that supA ≤ supB.
inf B ≤ inf A:
Similarly, since B is nonempty and bounded, inf B exists by the completeness axiom.
Hence:

∀x ∈ B ⇒ inf B ≤ x.

Since A ⊆ B, we also have:

∀x ∈ A ⇒ inf B ≤ x.

Since inf A is the greatest lower bound of A, we conclude that inf B ≤ inf A.
2. inf(A ∪B) = min(inf A, inf B):

To prove this, we need to show both inequalities:{
min(inf A, inf B) ≥ inf(A ∪B),

min(inf A, inf B) ≤ inf(A ∪B).

First, note that A ⊆ (A ∪B) and B ⊆ (A ∪B), which implies:

inf A ≥ inf(A ∪B) and inf B ≥ inf(A ∪B).

Therefore:
min(inf A, inf B) ≥ inf(A ∪B) . . . (1).

On the other hand, for any x ∈ (A ∪B), either x ∈ A or x ∈ B, which implies:

x ≥ inf A or x ≥ inf B.

Thus, x ≥ min(inf A, inf B), and so min(inf A, inf B) is a lower bound for A ∪ B. Since
inf(A ∪B) is the greatest lower bound, we have:

inf(A ∪B) ≥ min(inf A, inf B) . . . (2).

From (1) and (2), we conclude that:

inf(A ∪B) = min(inf A, inf B).

3. sup(A ∪B) = max(supA, supB):
The proof follows similarly as for the infimum. We need to show:{

max(supA, supB) ≥ sup(A ∪B),

max(supA, supB) ≤ sup(A ∪B),

leading to the conclusion:

sup(A ∪B) = max(supA, supB).
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Exercise 5

Suppose that A and B are nonempty and bounded sets of real numbers. Prove that:
If A ∩B ̸= ∅, then A ∩B is bounded:

max(inf A, inf B) ≤ inf(A ∩B) ≤ sup(A ∩B) ≤ min(supA, supB)

Solution
Note that A ∩B ⊂ A and A bounded, then A ∩B bounded.{

A ∩B ⊂ A

A ∩B ⊂ B
⇒

{
sup(A ∩B) ≤ sup(A)

sup(A ∩B) ≤ sup(B)

Then

sup(A ∩B) ≤ min(sup(A), sup(B))

On the other hand, {
A ∩B ⊂ A

A ∩B ⊂ B
⇒

{
inf(A) ≤ inf(A ∩B)

inf(B) ≤ inf(A ∩B)

Then

max(inf(A), inf(B)) ≤ inf(A ∩B)

So,

inf(A ∩B) ≤ sup(A ∩B)

6.2 Chapter 2 selected solutions

Exercise 1

Consider the sequences:

(1)un = (1 +
1

n
)n, (2)un =

√
n2 + 4n− n,

(3)un =
n∑

k=1

1

k(k + 1)
, (4)un =

n sin(n)

n2 + 1

Determine the limit of the sequence un as n approaches infinity.
Using the definition of limit, verify that.

lim
n→+∞

un =
4n− 1

2n+ 1
= 2, lim

n→+∞
un =

√
n2 + 1−

√
n = +∞
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Solution
1. Indeterminate form 1∞

Observe that (
1 +

1

n

)n

= en ln (1+ 1
n) = e

ln(1+ 1
n)

1/n .

So,

lim
n→+∞

ln
(
1 + 1

n

)
1/n

= lim
n→+∞

ln(1 + p)

p
= 1.

Therefore,

lim
n→+∞

(
1 +

1

n

)n

= e.

2. Indeterminate form +∞−∞
Multiplying and dividing by the conjugate

√
n2 + 4n+ n, we have:

√
n2 + 4n− n =

(n2 + 4n)− n2

√
n2 + 4n+ n

=
4n√

n2 + 4n+ n

=
4n

n
(√

1 + 4
n
+ 1
) .

Thus,
lim

n→+∞

(√
n2 + 4n− n

)
= 2.

3. Observe that
1

k(k + 1)
=

1

k
− 1

k + 1
.

It follows that:
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

Hence,

lim
n→+∞

n∑
k=1

1

k(k + 1)
= 1.

4. Using the Squeeze Theorem
For n ∈ N,

0 ≤
∣∣∣∣n sin(n)n2 + 1

∣∣∣∣ ≤ n

n2 + 1
.

Let vn = 0 and wn = n
n2+1

. Then

lim
n→∞

vn = lim
n→∞

wn = 0.
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By the Squeeze Lemma,

lim
n→∞

n sin(n)

n2 + 1
= 0.

5. Show that
lim

n→+∞
un =

4n− 1

2n+ 1
= 2.

We want to prove that for any ε > 0, there exists n0 such that for all n > n0:∣∣∣∣4n− 1

2n+ 1
− 2

∣∣∣∣ < ε.

Simplifying: ∣∣∣∣4n− 1

2n+ 1
− 2

∣∣∣∣ = ∣∣∣∣4n− 1− 4n− 2

2n+ 1

∣∣∣∣
=

3

2n+ 1
< ε.

So,
3 < 2nε+ ε⇒ n >

3− ε

2ε
.

The Archimedean property guarantees the existence of such n0, so taking

n0 =

⌈
3− ε

2ε

⌉
+ 1,

we conclude
lim
n→∞

un = 2.

6. Divergence to +∞
Show that

lim
n→∞

un =
√
n2 + 1−

√
n = +∞.

We want to show that:

∀A > 0, ∃M ∈ N such that ∀n > M,
√
n2 + 1−

√
n > A.

Note that:
n2 + 1 ≥ 2n⇒

√
n2 + 1 ≥

√
2n,

so: √
n2 + 1−

√
n ≥

√
2n−

√
n = (

√
2− 1)

√
n >

1

3

√
n.

Given A > 0, choose M such that 1
3

√
n > A. That is,

1

3

√
n > A⇒ n > (3A)2.

Taking
M =

⌈
(3A)2

⌉
+ 1,

we conclude:
lim
n→∞

(√
n2 + 1−

√
n
)
= +∞.
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Exercise 2

Consider the sequence:

un = 1
n+1

+ 1
n+2

+ 1
n+3

· · ·+ 1
2n

Prove that the sequence un is monotone increasing.
Prove that the sequence un is convergent, and its limit satisfies:

1
2
≤ l ≤ 1

Solution
For n ∈ N, we have

un+1 − un =
1

n+ 2
+

1

n+ 3
+

1

n+ 4
· · ·+ 1

2n+ 1
+

1

2n+ 2

−
( 1

n+ 1
+

1

n+ 2
+

1

n+ 3
· · ·+ 1

2n

)
=

1

2n+ 1
+

1

2n+ 2
− 1

n+ 1

=
2(n+ 1) + 2n+ 1− 2(2n+ 1)

(2n+ 1)2(n+ 1)

=
1

(2n+ 1)2(n+ 1)
> 0

Hence, the sequence is strictly increasing.
Note that for all k = 1, 2, . . . , n, we have n+ n ≥ n+ k ≥ n+ 1, then

1

2n
≤ 1

n+ k
≤ 1

n+ 1
Therefore,

1

2n
+

1

2n
+ · · ·+ 1

2n
≤ 1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≤ 1

n+ 1
+

1

n+ 1
+ · · ·+ 1

n+ 1
This implies

1

2
≤ un ≤ 1

Since the sequence un is monotone increasing and bounded, it is convergent by the monotone conver-
gence criterion for real sequences. Therefore,

1

2
≤ l = lim

n→∞
un ≤ 1

Exercise 3

Consider the sequence un defined by un =
√
n− E(

√
n)

Study the convergence of the subsequence un2 , un2+2n.
What can you conclude about the nature of the sequence un?
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Solution
Let

un =
√
n− E(

√
n)

1. Study the convergence of un2 , un2+2n

- For un2:

we have un2 =
√
n2 − E(

√
n2) = n− n = 0.

It is a constant sequence, hence it converges to 0.
- For un2+2n:

we have

un2+2n =
√
n2 + 2n− E(

√
n2 + 2n) =

√
n2 + 2n− n =

n√
n2 + 2n+ n

,

we observe that 
n2 < n2 + 2n < n2 + 2n+ 1

n2 < n2 + 2n < (n+ 1)2

n <
√
n2 + 2n < n+ 1

therefore,
lim

n→+∞
un2+2n = 1

2. The two sequences u2n and un2+2n converge to different limits, hence the sequence un is divergent.

Exercise 4

Define recursively a sequence un by: u0 =
3

2
un+1 = (un − 1)2 + 1

Prove that ∀n ∈ N; 1 < un < 2.
Prove that un is monotone sequence.
If un converges, compute its limit.

Solution
Define recursively a sequence un by:{

u0 = 3
2

un+1 = (un − 1)2 + 1

1. Prove that ∀n ∈ N; 1 < un < 2 using induction.
- Base case n = 0

1 < u0 =
3

2
< 2

- Assume that the property Pk is true for all n ≥ k ≥ 1 and prove the validity of P (n+ 1),
i.e., 1 < un+1 < 2.
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From the assumption:
1 < un < 2

and therefore,
0 < un − 1 < 1 ⇒ (un − 1)2 < 1

Hence,
1 < (un − 1)2 + 1 < 2

From this, the property P (n+ 1) is true, so P (n) is true for all n ∈ N, i.e.,

1 < un < 2

2. Prove that the sequence is monotonically increasing.

un+1 − un = (un − 1)2 + 1− un

= u2n + 1− 2un + 1− un

= u2n − 3un + 2

= (un − 1)(un − 2)

From the previous question, 0 < un − 1 and un − 2 < 0

Hence,

un+1 − un < 0

Therefore, the sequence is strictly decreasing.
3. The sequence un is strictly decreasing and bounded from the monotone convergence criterion

for real sequences, it converges to l such that l = (l − 1)2 + 1. Hence, l2 − 3l + 2 = 0. Thus,
l = 1 or l = 2. Since the initial term is u0 = 3

2
and the sequence un is strictly decreasing, l = 1.

Exercise 5

Define recursively a sequence un by:{
u0 = 1

un+1 = un+1
2un+3

Prove that ∀n ∈ N, un > 0.
Prove that ∀n ∈ N∗, (un+1 − un)(un+1 − un−1) ≥ 0.
Conclude that this sequence is monotone.
Is this sequence convergent? If it is convergent, find its limit.

Solution Let the sequence (un) be defined recursively by:

u0 = 1, un+1 =
un + 1

2un + 3
, ∀n ∈ N

Proving that un > 0 for all n ∈ N
We use mathematical induction.
Base case:

u0 = 1 > 0
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Induction hypothesis: Assume that un > 0 for some n ∈ N.
Inductive step: Since un > 0, it follows that:

un + 1 > 0, 2un + 3 > 3 > 0

Thus:
un+1 =

un + 1

2un + 3
>

1

3
> 0

Therefore, by induction, un > 0 for all n ∈ N.
Proving that (un+1 − un)(un − un−1) ≥ 0

We consider the difference:

un+1 − un =
un + 1

2un + 3
− un−1 + 1

2un−1 + 3

Using the common trick for rational differences:

un+1 − un =
(un + 1)(2un−1 + 3)− (un−1 + 1)(2un + 3)

(2un + 3)(2un−1 + 3)

Expanding and simplifying the numerator:

=
un(2un−1 + 3) + (2un−1 + 3)− un−1(2un + 3)− (2un + 3)

(2un + 3)(2un−1 + 3)

=
2unun−1 + 3un + 2un−1 + 3− 2unun−1 − 3un−1 − 2un − 3

(2un + 3)(2un−1 + 3)

=
un − un−1

(2un + 3)(2un−1 + 3)

Therefore:

(un+1 − un)(un − un−1) =
(un − un−1)

2

(2un + 3)(2un−1 + 3)
≥ 0

Showing that the sequence (un) is decreasing
From the previous result, we know that the sign of un+1−un is the same as the sign of un−un−1.
Hence, if one of them is negative (or zero), all subsequent differences are also negative (or zero).
Let us compute:

u1 =
u0 + 1

2u0 + 3
=

1 + 1

2 · 1 + 3
=

2

5
⇒ u1 − u0 =

2

5
− 1 = −3

5
< 0

Since u1 − u0 < 0, and the sign of the differences remains the same, we conclude:

un+1 − un ≤ 0 ⇒ (un) is decreasing

Is the sequence convergent?
Yes. The sequence (un) is decreasing and bounded below (from part 1, un > 0)
Hence, by the monotone convergence theorem, the sequence converges.
Computing the limit
Let ℓ = limn→∞ un. Passing to the limit in the recurrence relation:

ℓ =
ℓ+ 1

2ℓ+ 3
Multiply both sides by 2ℓ+ 3:

ℓ(2ℓ+ 3) = ℓ+ 1 ⇒ 2ℓ2 + 3ℓ = ℓ+ 1 ⇒ 2ℓ2 + 2ℓ− 1 = 0
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Solving the quadratic:

ℓ =
−2±

√
4 + 8

4
=

−2±
√
12

4
=

−2± 2
√
3

4
=

−1±
√
3

2
Only the positive root is acceptable since un > 0. Thus:

ℓ =
−1 +

√
3

2
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Exercise 1

Calculate the following limits if they exist

(1) lim
x→∞

(
x− 3

x+ 3

)x

, (2) lim
x→∞

esinx−x, (3) lim
x→0

x

|x|
,

(4) lim
x→1

3
√
x− 1√
x− 1

(5) lim
x→π

sin x

x− π
(6) lim

x→0

x− sin(2x)

x+ sin(3x)

Using the definition of the limit, show that

(1) lim
x→∞

4x− 9

9x+ 4
=

4

9
, (2) lim

x→−∞
x2 = +∞, (3) lim

x→−4
x>−4

9

4 + x
= +∞,

Solution
1. limx→∞

(
x−3
x+3

)x

= 1∞

We have
(
x−3
x+3

)x
= ex ln(x−3

x+3
)

Note that,
x− 3

x+ 3
= 1− 6

x+ 3

Then,

ln
(x− 3

x+ 3

)
= ln(1− 6

x+ 3
) =

ln(1− 6
x+3

)( −6
x+3

)
−6
x+3

We use
lim
x→0

ln(1 + x)

x
= 1

So

lim
x→∞

ln(1− 6
x+3

)( −6
x+3

)
−6
x+3

= lim
x→∞

−6

x+ 3

Then
lim
x→∞

x ln(
x− 3

x+ 3
) = lim

x→∞
x

−6

x+ 3
= −6

Thus,

lim
x→∞

(
x− 3

x+ 3

)x

= e−6

2. limx→∞ esinx−x
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We have
lim
x→∞

esinx−x = lim
x→∞

ex(
sin x
x

−1)

Since,
0 ≤ |sin x

x
| ≤ |1

x
|

Then, by Sandwich theorem,
lim
x→∞

sin x

x
= 0

Hence
lim
x→∞

esinx−x = 0

3. limx→0
x
|x|

Here we evaluate the left hand and right hand limits
- For the left hand limit, x < 0:

It gives limx→0−
x
|x| =

x
−x

= −1. Thus

lim
x→0−

x

|x|
= −1

- For the right hand limit, x > 0:
It gives limx→0+

x
|x| =

x
x
= 1. Thus

lim
x→0+

x

|x|
= 1

Then
lim
x→0

x

|x|
does not exist.

4. limx→1

3√x−1√
x−1

Let x = t6, then

lim
x→1

3
√
x− 1√
x− 1

= lim
x→1

t2 − 1

t3 − 1
= lim

x→1

(t− 1)(t+ 1)

(t3 − 1(t2 + t+ 1)
=

2

3

5. limx→π
sinx
x−π

By trigonometric identities, we have

lim
x→π

sin x

x− π
= lim

x→π

− sin(x− π)

x− π
So, put x− π = t then

lim
x→π

− sin(x− π)

x− π
= − lim

t→0

− sin t

t
= −1

Thus,
lim
x→π

sin x

x− π
= −1

6. limx→0
x−sin(2x)
x+sin(3x)

lim
x→0

x− sin(2x)

x+ sin(3x)
= lim

x→0

2x(1
2
− sin(2x)

2x
)

3x(1
3
+ sin(3x)

3x
)
=

−1

4
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Exercise 3

Study the extension by continuity of the following functions

(1) xearctan
1
x2 , (2) cos 1

x
, (3)

1− cos x

x(3− x) tan x

Solution
1. xearctan

1
x2

We have
lim
t→0

arctan
1

x2
=
π

2

Then
lim
t→0

xearctan
1
x2 = 0

The function f admits an extension by continuity at x = 0 as follows

f̃(x) =

xe
arctan 1

x2 x ̸= 0

0 x = 0

2. cos 1
x

lim
x→0

cos 1
x

which is a limit that does not exist, so he function f does not admit an extension by
continuity at x = 0.

3. 1−cosx
x(3−x) tanx

We have lim
x→0

1−cosx
x(3−x) tanx

= 0
0
, (indeterminate form).

So, cos x∼
0
1− x2

2
and tan x∼

0
x

Then

lim
x→∞

1− cos x

x(3− x) tan x
= lim

x→0

x2

2

x(3− x)x

= lim
x→0

1
2

(3− x)

= lim
x→0

1

2(3− x)

=
1

6
So, f admits the extension by continuity at x = 0 as follows

f̃(x) =

 1−cosx
x(3−x) tanx

x ̸= 0

1
6

x = 0

Exercise 6

Use the L’Hopital’s rule to find the following limit:

lim
x→0

x cosx− sinx

x3
, lim

x→0

(
sin x

x

) 1
x2
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Solution
1. lim

x→0

x cosx− sinx

x3
This limit is an indeterminate form of type 0

0
.

Let f(x) = x cos x− sin x, so f(0) = 0, and f ′(x) = −x sin x.
Let g(x) = x3, so g(0) = 0, and g′(x) = 3x2.
Then:

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

−x sinx
3x2

= lim
x→0

− sinx

3x
= −1

3

So,
lim
x→0

x cosx− sinx

x3
= −1

3

2. lim
x→0

(
sin x

x

) 1
x2

We write:

lim
x→0

(
sin x

x

) 1
x2

= lim
x→0

e
1
x2

ln( sin x
x )

Let us study:

lim
x→0

1

x2
ln

(
sin x

x

)
Using L’Hôpital’s Rule on:

lim
x→0

ln
(
sinx
x

)
x2

First derivative (numerator):
d

dx
ln

(
sin x

x

)
=
x cosx− sinx

x sinx

Denominator derivative:
d

dx
(x2) = 2x

So the limit becomes:
lim
x→0

x cosx− sinx

2x2 sin x

Apply L’Hôpital’s Rule again.
Numerator derivative:

d

dx
(x cosx− sinx) = −x sinx

Denominator derivative:
d

dx
(2x2 sin x) = 2(2x sinx+ x2 cos x)

So the new limit is:

lim
x→0

−x sinx
2(2x sinx+ x2 cos x)

= lim
x→0

− sinx

4 sinx+ 2x cos x

Now:
lim
x→0

− sinx

4 sinx+ 2x cos x
= −1

4
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However, if we re-evaluate precisely, the correct limit is:

lim
x→0

− cosx

2(3 cosx− x sin x)
= −1

6

Therefore,

lim
x→0

(
sin x

x

) 1
x2

= e−
1
6

6.4 Chapter 4 selected solutions

Exercise 1

Find the Maclaurin series expansion of the following functions:

ex, cos x, ln(x+ 1)

Find the finite series expansion of the following functions at the vicinity of zero of order
2, then conclude the value of f ′(0) and f ′′(0)

f(x) = e2x +
1

x− 1
− 3x

Using the finite series expansion find the following limit:

lim
x→0

x− x cos x

x− sin x

Solution
1. Find the Maclaurin series expansion of the following functions:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

cos x = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · for |x| < 1

2. Find the finite series expansion of the following function:

f(x) =
e2x + 1

x− 1− 3x

e2x = 1 + 2x+ 2x2 +O(x3)

⇒ e2x + 1 = 2 + 2x+ 2x2 +O(x3)

x− 1− 3x = −2x− 1

So,

f(x) =
2 + 2x+ 2x2 +O(x3)

−2x− 1

Expanding 1
−2x−1

= −1(1 + 2x+ 4x2 +O(x3)), we get:

100



6.4 Chapter 4 selected solutions

f(x) = −2 + 2x− 6x2 +O(x3)

Therefore,
f ′(0) = 2, f ′′(0) = −12

3. Using the finite series expansion, find the following limit:

lim
x→0

x− x cos x

x− sin x

cos x = 1− x2

2
+O(x4)

⇒ x− x cos x = x− x

(
1− x2

2

)
=
x3

2
+O(x5)

sin x = x− x3

6
+O(x5)

⇒ x− sin x =
x3

6
+O(x5)

lim
x→0

x3

2
x3

6

=
6

2
= 3

Exercise 2

Find the finite expansion of
x3 sin(2x)− 2x

x3
,
ex − e−x

x
, sinh(x)

Solution
1. x3 sin(2x)−2x

x3 The Maclaurin expansion of sin(2x) is:

sin(2x) = 2x− (2x)3

3!
+

(2x)5

5!
− · · · = 2x− 4x3

3
+

4x5

15
− · · ·

Multiply by x3

x3 sin(2x) = 2x4 − 4x6

3
+

4x8

15

Subtract 2x
x3 sin(2x)− 2x = 2x4 − 2x+ · · ·

Divide by x3
x3 sin(2x)− 2x

x3
= −2x+ 2x2 + · · ·

We get,
x3 sin(2x)− 2x

x3
= −2x+ 2x2 +O(x3)
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2. ex−e−x

x

First we expand the function ex and e−x using a Taylor series.

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · , e−x = 1− x+

x2

2!
− x3

3!
+ · · ·

Subtracting the two series:

ex − e−x = 2x+
2x3

3!
+ · · · = 2x+

x3

3
+ · · ·

Then dividing by x, we get:
ex − e−x

x
= 2 +

x2

3
+ · · ·

So,
ex − e−x

x
= 2 +

x2

3
+O(x4)

3. sinh(x)

We have:
sinh(x) =

ex − e−x

2
= x+

x3

6
+

x5

120
+ · · ·

Then,

sinh(x) = x+
x3

6
+

x5

120
+O(x7)

Exercise 5

Let

f(x) =
e2 coshx − x ln(cosx)− (1 + 2x)

1
x

1−
√
1− 2x

1. Give the finite expansion of f up to order 2 in a neighborhood of 0.
2. Deduce that f is extendable by continuity at 0. Let g be this extension.
3. Show that g is differentiable at 0 and calculate g′(0).
4. Give the equation of the tangent to the curve of g at x = 0 and determine their relative

position near 0.

Solution
First we calculate the finite expansion of f up to order 2 near 0.
the denominator:

1−
√
1− 2x = x+

1

2
x2 +

1

2
x3 + x3ε(x), with lim

x→0
ε(x) = 0

For the numerator components:

e2 coshx = e2
[
1 + x2 + x3ε(x)

]
x ln(cosx) = −x

3

2
+ x3ε(x)

(1 + 2x)1/x = e2
[
1− 2x+

14

3
x2 − 32

3
x3 + x3ε(x)

]
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Combining we get:

e2 coshx − x ln(cosx)− (1 + 2x)1/x = 2e2x− 11

3
e2x2 +

(
32

3
e2 +

1

2

)
x3 + x3ε(x)

Thus,

f(x) =
2e2 − 11

3
e2x+

(
32
3
e2 + 1

2

)
x2 + x2ε(x)

1 + 1
2
x+ 1

2
x2 + x2ε(x)

= 2e2 − 14

3
e2x+

(
12e2 +

1

2

)
x2 + x2ε(x)

Since limx→0 f(x) = 2e2 exists, f can be extended by continuity at 0. We define the extension g
as:

g(x) =

f(x) if x ̸= 0

2e2 if x = 0

To show g is differentiable at 0, we compute:
g(x)− g(0)

x
=

2e2 − 14
3
e2x+

(
12e2 + 1

2

)
x2 + x2ε(x)− 2e2

x
= −14

3
e2 +

(
12e2 +

1

2

)
x+ xε(x)

Taking the limit as x→ 0 gives:
g′(0) = −14

3
e2

The equation of the tangent to the curve at x = 0 is

y = 2e2 − 14

3
e2x

Comparing g(x) with the tangent:

g(x)− y =

(
12e2 +

1

2

)
x2 + x2ε(x) > 0 for x near 0

Therefore, the curve of g lies above its tangent near x = 0.
1. f(x) = 2e2 − 14

3
e2x+

(
12e2 + 1

2

)
x2 + x2ε(x)

2. g(0) = 2e2

3. g′(0) = −14
3
e2

4. Tangent: y = 2e2 − 14
3
e2x, with curve above tangent near 0

Exercise 6

Let f(x) =
(
2ex − cosh(x

√
2)
) 1

sinh x .
1. Give the finite expansion of f up to order 2 in a neighborhood of 0.
2. Show that f is extendable by continuity at 0. Let g be this extension.
3. Give the equation of the tangent (T ) to the curve (C) of g at x = 0 and find their relative

position in a neighborhood of 0.

Solution We have:

f(x) =
(
2ex − cosh(x

√
2)
) 1

sinh x
= eln(2e

x−cosh(x
√
2))/ sinhx
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1. In a neighborhood of 0, we have:

cosh(x
√
2) = 1 +

(x
√
2)2

2!
+ x3ϵ(x) = 1 + x2 + x3ϵ(x)

ln
(
2ex − cosh(x

√
2)
)
= ln

(
2

(
1 + x+

x2

2
+
x3

6

)
− 1− x2 + x3ϵ(x)

)
= ln

(
1 + 2x+

x3

3
+ x3ϵ(x)

)
= ln (1 + u) where u = 2x+

x3

3
+ x3ϵ(x) → 0 as x→ 0

= u− u2

2
+
u3

3
+ u3ϵ(u) = 2x− 2x2 + 3x3 + x3ϵ(x)

By the Euclidean division according to the increasing powers, we obtain:
ln
(
2ex − cosh(x

√
2)
)

sinh x
=

2x− 2x2 + 3x3 + x3ε(x)

x+ x3

6
+ x3ε(x)

= 2− 2x+
8x2

3
+ x2ε(x)

So the finite expansion of f up to order 2 in a neighborhood of 0 is given by:

f(x) = e2−2x+ 8x2

3
+x2ε(x) = e2eu where u = −2x+

8x2

3
+ x2ε(x) → 0 as x→ 0

= e2
(
1 + u+

u2

2
+ u2ε(u)

)
= e2

(
1− 2x+

14x2

3
+ x2ε(x)

)
with limx→0 ε(x) = 0.

2. Since f is not defined at 0 and

lim
x→0

f(x) = lim
x→0

[
e2
(
1− 2x+

14x2

3
+ x2ϵ(x)

)]
= e2 ∈ R,

then f is extendable by continuity at 0. Let g be its extension.
3. In a neighborhood of 0, we have:

g(x) = f(x) = e2
(
1− 2x+

14x2

3
+ x2ϵ(x)

)
.

with limx→0 ϵ(x) = 0. So the equation of the tangent to the curve (C) of g at x = 0 is:

(T ) : y = e2(1− 2x).

In a neighborhood of 0, we have:

g(x)− y ∼ 14e2x2

3
> 0.

So the curve (C) is above (T ) in a neighborhood of 0.
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Exercise 7

Let h be the function defined on R by h(x) = arcsin
(

1−x2

1+x2

)
.

1. Calculate h′(x) for all x ∈ R∗. Deduce that

h(x) =

−2 arctanx+ π
2

if x > 0

2 arctanx+ π
2

if x < 0

2. Deduce the finite expansion of h(x) to order 3 as x→ 0+.

Let f(x) =
etan x−sinh

(
3√

1+3x2−1
x

)
−coshx

h(x)+2x−π
2

. Calculate limx→0+ f(x).

Solution
1. Put u(x) = 1−x2

1+x2 . For x ∈ R∗, we have:

u′(x) =
−2x(1 + x2)− 2x(1− x2)

(1 + x2)2
=

−4x

(1 + x2)2

1− u(x)2 = 1− (1− x2)2

(1 + x2)2
=

4x2

(1 + x2)2√
1− u(x)2 =

 2x
1+x2 if x > 0

−2x
1+x2 if x < 0

Since h(x) = arcsinu(x), then h′(x) = u′(x)√
1−u(x)2

.
For x > 0:

h′(x) =

−4x
(1+x2)2

2x
1+x2

=
−2

1 + x2

For x < 0:

h′(x) =

−4x
(1+x2)2

−2x
1+x2

=
2

1 + x2

Hence:

h′(x) =

 −2
1+x2 if x > 0

2
1+x2 if x < 0

On the other hand:
For x > 0, h′(x) = (−2 arctan x)′, so there exists c1 ∈ R such that:

h(x) = −2 arctan x+ c1

Evaluating at x = 1:

h(1) = −2 arctan 1 + c1 = −π
2
+ c1 = arcsin(0) = 0

Thus c1 = π
2
, giving h(x) = −2 arctan x+ π

2
.

For x < 0, h′(x) = (2 arctan x)′, so there exists c2 ∈ R such that:

h(x) = 2 arctan x+ c2
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Evaluating at x = −1:

h(−1) = 2 arctan(−1) + c2 = −π
2
+ c2 = arcsin(0) = 0

Thus c2 = π
2
, giving h(x) = 2 arctan x+ π

2
.

2. Deduce the finite expansion of h(x) to order 3 as x→ 0+.
In a right neighborhood of 0:

h(x) = −2 arctan x+
π

2

= −2

[
x− x3

3
+ x3ϵ(x)

]
+
π

2

=
π

2
− 2x+

2

3
x3 + x3ϵ(x), with lim

x→0+
ϵ(x) = 0

3. Let f(x) =
etan x−sinh

(
3√

1+3x2−1
x

)
−coshx

h(x)+2x−π
2

. Calculate limx→0+ f(x).
LetD(x) = h(x)+2x− π

2
. From part (1)(b), the finite expansion ofD(x) to order 3 as x→ 0+

is:
D(x) =

2

3
x3 + x3ϵ(x), with lim

x→0+
ϵ(x) = 0

Now expand the numerator N(x) = etanx − sinh
(

3√1+3x2−1
x

)
− cosh x to order 3:

etanx = ex+
x3

3
+x3ϵ(x)

= 1 +

(
x+

x3

3

)
+
x2

2
+
x3

6
+ x3ϵ(x)

= 1 + x+
x2

2
+
x3

2
+ x3ϵ(x)

3
√
1 + 3x2 − 1

x
= x− x3 + x3ϵ(x)

sinh

(
3
√
1 + 3x2 − 1

x

)
= x− 5

6
x3 + x3ϵ(x)

cosh x = 1 +
x2

2
+ x3ϵ(x)

N(x) =

(
1 + x+

x2

2
+
x3

2

)
−
(
x− 5

6
x3
)
−
(
1 +

x2

2

)
+ x3ϵ(x)

=
4

3
x3 + x3ϵ(x)

Therefore:

f(x) =
N(x)

D(x)
=

4
3
x3 + x3ϵ(x)

2
3
x3 + x3ϵ(x)

= 2 + ϵ(x)

Thus:
lim
x→0+

f(x) = 2
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Exercise 1

Calculate the following integrals:∫ 2

0

(9x+ 1)3 dx,

∫ 1

1√
3

1

1 + x2
dx,

∫ 2

0

1

4 + x2
dx,∫ 2

1

1

1 + 4x
dx,

∫
dx

x2 − 9
,

∫
dx√
4 + x2

dx.

Solution
1.
∫ 2

0
(9x+ 1)3 dx = 1

9
[ (9x+1)4

4
]191 = 1

36
[194 − 1] = 3620

2.
∫ 1

1√
3

1
1+x2 dx = [arctan x]11√

3

= π
4
− π

6
=

π

12

3.
∫ 2

1
1

1+4x
dx = 1

4

∫ 2

1
4

1+4x
dx = 1

4
[ln 9− ln 5] =

1

4
ln (

9

5
)

4.
∫

dx
x2−9

=
∫

dx
(x−3)(x+3)

=
∫

a
x−3

dx+
∫

b
x+3

dx =
∫

1
6(x−3)

dx+
∫

1
6(x+3)

dx

= 1
6
(ln |x− 3| − ln |x+ 3| = 1

6
ln |x− 3

x+ 3
|+ c

5.
∫

dx√
4+x2 dx = 1

2

∫
dx√

1+(x
2
)2
dx =

1

2
sinh−1(

x

2
) + c

Exercise 2

Using variable substitution, compute the following integrals:∫
sin2 x cosx dx,

∫
esinx cos x dx,

∫
x2(x3 − 9)5 dx,

∫
ln(9 + x)

9 + x
dx.

Using integration by parts, calculate the following integrals:∫
xe−x dx,

∫
(x2 + 4x+ 9)e−x dx,

∫
arctan x dx,∫

ex sin x dx,

∫
e−x sin 2x dx,

∫
x2 ln x dx.

Solution
1.
∫
sin2 x cosx dx

Let t = sin x⇒ dt = cosxdx

The integral becomes: ∫
t2 dt = t3

3
+ c = sin3 x

3
+ c

Hence ∫
sin2 x cosx dx = sin3 x

3
+ c

107



6.5 Chapter 5 selected solutions

2.
∫
esinx cos x dx

Let sin x = t⇒cos xdx = dt

The integral becomes: ∫
esinx cos x dx =

∫
et dt = et + c = esinx + c

3.
∫ ln(9+x)

9+x
dx

Let ln(9 + x) = t⇒ 1
9+x

dx = dt

The integral becomes: ∫ ln(9+x)
9+x

dx =
∫
tdt = t2

2
+ c = (ln(9+x)2

2
+ c

4.
∫
xe−x dx = xe−x +

∫
e−x dx = e−x(x− 1) + c

Thus ∫
xe−x dx = e−x(x− 1) + c

5.
∫
(x2 + 4x+ 9)e−x dx

Let
f(x) = x2 + 4x+ 9⇒f ′(x) = 2x+ 4

g′(x) = e−x⇒g(x) = −e−x

Thus ∫
(x2 + 4x+ 9)e−x dx = −(x2 + 4x+ 9)e−x +

∫
(2x+ 4)e−x dx

Integrating by parts again: ∫
(2x+ 4)e−x dx

Let
f(x) = 2x+ 4⇒f ′(x) = 2

g(x) = e−x⇒g(x) = −e−x

Thus ∫
(2x+ 4)e−x dx = −(2x+ 4)e−x+ 2

∫
e−x dx = −(2x+ 4)e−x − 2e−x

Hence ∫
(x2 + 4x+ 9)e−x dx = −(x2 + 4x+ 9)e−x +

∫
(2x+ 4)e−x dx

= −(x2 + 4x+ 9)e−x − (2x+ 4)e−x − 2e−x + c

= −(x2 + 6x+ 15e−x + c

Hence
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6.5 Chapter 5 selected solutions∫
(x2 + 4x+ 5)e−x dx = −(x2 + 6x+ 11)e−x + c

6.
∫
arctan x dx

Let f(x) = arctan x⇒f ′(x) = 1
x2+1

g′(x) = 1⇒g(x) = x

Thus,∫
arctanx = x arctanx−

∫
x

x2+1
= x arctan x− 1

2
ln(x2 + 1) + c

Hence ∫
arctan x dx = x arctan x− 1

2
ln(x2 + 1) + c

7.
∫
ex sin x dx

Let f(x) = ex ⇒ f ′(x) = ex

and g(x) = sin x⇒ g′(x) = cos x.
We will apply integration by parts: ∫

ex sin x dx.

Using the integration by parts formula,
∫
u dv = uv −

∫
v du, we set:

u = sin x and dv = ex dx.

Thus, du = cos x dx and v = ex.
Applying the formula: ∫

ex sin x dx = ex sin x−
∫
ex cos x dx.

Now, we need to solve
∫
ex cos x dx using integration by parts again. Let:

u = cos x and dv = ex dx.

Thus, du = − sin x dx and v = ex.
Applying the formula:∫

ex cos x dx = ex cos x−
∫
ex(− sinx) dx = ex cos x+

∫
ex sin x dx.

Now, substitute this back into the previous equation:∫
ex sin x dx = ex sin x−

(
ex cos x+

∫
ex sin x dx

)
.

Simplifying: ∫
ex sin x dx = ex sin x− ex cos x−

∫
ex sin x dx.

Add
∫
ex sin x dx to both sides:

2

∫
ex sin x dx = ex(sin x− cos x).

Finally, divide by 2: ∫
ex sin x dx =

1

2
ex(sin x− cos x) + C

109



6.5 Chapter 5 selected solutions

Exercise 4

Evaluate each of the following integrals:∫
x2

(x−4)(x−9)
dx.∫

x−4
x(x−2)3

dx.∫
x2+4x+9
x2+1

dx.

Solution∫
x2

(x−4)(x−9)
dx

First, we perform partial fraction decomposition. We decompose the rational function as:
x2

(x− 4)(x− 9)
=

A

x− 4
+

B

x− 9

Multiplying both sides by (x− 4)(x− 9):

x2 = A(x− 9) +B(x− 4)

Expanding:
x2 = Ax− 9A+Bx− 4B = (A+B)x− (9A+ 4B)

Then: A+B = 1

−9A− 4B = 0

Solving the system:

B = 1− A⇒ −9A− 4(1− A) = 0 ⇒ −9A− 4 + 4A = 0 ⇒ −5A = 4 ⇒ A = −4

5

B = 1−
(
−4

5

)
=

9

5

We get:
x2

(x− 4)(x− 9)
=

−4

5(x− 4)
+

9

5(x− 9)

Then: ∫
x2

(x− 4)(x− 9)
dx =

∫ (
−4

5(x− 4)
+

9

5(x− 9)

)
dx

= −4

5

∫
1

x− 4
dx+

9

5

∫
1

x− 9
dx

= −4

5
ln |x− 4|+ 9

5
ln |x− 9|+ C

As a result: ∫
x2

(x− 4)(x− 9)
dx = −4

5
ln |x− 4|+ 9

5
ln |x− 9|+ C

∫
x−4

x(x−2)3
dx.

We begin by decomposing the integrand:
x− 4

x(x− 2)3
=
A

x
+

B

x− 2
+

C

(x− 2)2
+

D

(x− 2)3
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Multiply both sides by the denominator x(x− 2)3 to eliminate fractions:

x− 4 = A(x− 2)3 +Bx(x− 2)2 + Cx(x− 2) +Dx

Now, determine constants A,B,C,D using strategic values of x:
Let x = 0, then −4 = A(−2)3, so A = 1

2
.

Let x = 2, then −2 = D(2), so D = −1.
Solving for B and C using other values of x (e.g., x = 1, x = 3):

B = −1

3
, C =

7

6
Now the integral becomes:∫

x− 4

x(x− 2)3
dx =

∫ (
1

2x
− 1

3(x− 2)
+

7

6(x− 2)2
− 1

(x− 2)3

)
dx

Now, integrate each term individually:∫
1

2x
dx =

1

2
ln |x|∫

1

3(x− 2)
dx = −1

3
ln |x− 2|∫

7

6(x− 2)2
dx = − 7

6(x− 2)∫
1

(x− 2)3
dx =

1

2(x− 2)2

Therefore, the integral is:∫
x− 4

x(x− 2)3
dx =

1

2
ln |x| − 1

3
ln |x− 2| − 7

6(x− 2)
+

1

2(x− 2)2
+ C∫

x2+4x+9
x2+1

dx.
Note that:

x2 + 4x+ 9

x2 + 1
= 1 +

4x+ 8

x2 + 1

The integral becomes:∫
x2 + 4x+ 9

x2 + 1
dx =

∫
1 dx+

∫
4x

x2 + 1
dx+

∫
8

x2 + 1
dx

Now, integrate each term: ∫
1 dx = x∫

4x

x2 + 1
dx = 2 ln(x2 + 1)∫

8

x2 + 1
dx = 8arctan(x)

Therefore, the integral is:∫
x2 + 4x+ 9

x2 + 1
dx = x+ 2 ln(x2 + 1) + 8 arctan(x) + C
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Chapter 7 Problems

Problem 1
Exercise 1

Recall the statement of the Mean Value Theorem.
Recall the statement of Rolle’s Theorem.
Define the first 3 terms in the finite expansion for the function f : R → R at 0.

Exercise 2

Show that the equation cos x = x has a solution in the interval ]0, π
2
[.

Find the first 3 terms in the finite expansion for sin x and cosx. Hence find

lim
x→0

1− cos(sin x)

x2

Exercise 3

Let (un)n∈N∗ the real sequences defined by

un =
n∑

k=1

(−1)k√
k

Prove that u2n and u2n+1 are adjacent.
What can be said about the convergence of the sequence un?

Exercise 4

Consider the function f defined on R by

f(x) =

x
π
arctan 1

x
x ̸= 0

0 x = 0

Study the continuity of the function f at x0 = 0.
Study the differentiability of the function f at x0 = 0.



Problem 2
Exercise 1

1. Using the definition of limit, verify that

lim
n→∞

[
9 +

(−1)n

n

]
= 9.

2. Use L’Hopital’s Rule to calculate the following limit

lim
x→0

x cosx

x+ arcsin x
3. Find the Taylor Polynomial of degree 2 for the following function at 0.

ln(1 + sin x)

Exercise 2

We consider the two sequences (un) and (vn), n ∈ N, defined by:u0 = 1,

un+1 =
un+2vn

3
∀n ∈ N

v0 = 12,

vn+1 =
un+3vn

4
∀n ∈ N

Prove by induction that:

∀n ∈ N, un − vn = −11 ·
(

1

12

)n

Study the monotonicity of the two sequences (un) and (vn).
Deduce that the two sequences (un) and (vn) are adjacent.
Show that the sequence defined by tn = 3un + 8vn is constant.
Deduce the limit of each sequence (un) and (vn)

Exercise 3

Let f be a real function defined by:

f(x) =

cos2(πx) if x ≤ 1,

1 + ln(x)
x

if x > 1.

Determine the domain of f .
Study the continuity and differentiability of f on its domain of definition.
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Problem 3
Exercise 1

1. Recall the statement of the L’Hôpital’s Rule.
2. Recall the statement of the Squeeze Theorem.

Exercise 2

1. Find the following limits:

lim
x→∞

x[(1 +
1

x
)x − e], lim

n→∞

n∑
k=1

n2

n3 + k

2. Prove that
∀x ∈ [−1, 1] : arcsinx+ arccosx =

π

2

Exercise 3

Given sequences (un)n≥2 and (vn)n≥2 defined as:

un =
n−1∑
k=1

1√
k
− 2

√
n, vn =

n∑
k=1

1√
k
− 2

√
n

Prove that sequences un and vn converge to the same limit l.
Deduce lim

n→∞

∑n
k=1

1√
k
.

Exercise 4

Consider the function f defined on I =]− 1, 1[ by

f(x) =

 1
x
arcsin(x2) x ̸= 0

0 x = 0

Study the continuity of the function f on I.
Study the differentiability of the function f on I and calculate its derivative.
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Problem 4
Exercise 1

Let the real sequence (un) be defined as follows:u0 = 1,

un+1 =
un+1
2un+3

, ∀n ∈ N.
1. Prove that ∀n ∈ N, un > 0.
2. Prove that ∀n ∈ N∗, (un+1 − un)(un+1 − un−1) ≥ 0.
3. Conclude that the sequence (un) is decreasing.
4. Determine whether the sequence (un) converges. If it converges, find its limit.

Exercise 2

Let f be the function defined by:

f(x) =

1 + x
√
x, if x ≥ 0,

1 + ln(1 + x2), if x < 0.

1. Find Df , the domain of definition of f .
2. Prove that f is continuous on Df .
3. Prove that f is differentiable on Df , and find f ′(x).
4. Can we apply the Mean Value Theorem on the interval [−1, 1]? If so, find all real

numbers c such that:
f(1)− f(−1) = 2f ′(c).

Exercise 3

Let f be the function defined by:

f(x) =
ex cos x− 1

x
, ∀x ∈ R∗.

1. Find the Taylor expansion of f up to order 3 near x = 0.
2. Compute limx→0 f(x).
3. Determine whether f can be extended continuously to R.
4. Let f̃ denote the extended function of f . Study the differentiability of f̃ on R.



Problem 5
Exercise 1

1. Prove that:
∀x ∈ R : |x| = max(x,−x).

2. LetA andB be two non-empty and bounded subsets of R. IfA∩B is non-empty
and bounded, then:

max(inf(A), inf(B)) ≤ inf(A ∩B) ≤ sup(A ∩B) ≤ min(sup(A), sup(B)).

3. Prove that E(x+ p) = E(x) + p, p ∈ Z.

Exercise 2

Let (un)n∈N∗ , (vn)n∈N∗ , and (wn)n∈N be real sequences defined as follows:

un = (−1)n +
1

n
, ∀n ∈ N∗, vn = u2n, ∀n ∈ N∗, wn = u2n+1, ∀n ∈ N.

Study the monotonicity of the sequences (vn)n∈N∗ and (wn)n∈N.
Find the supremum and infimum of the sets A and B, then deduce the value of
the supremum and infimum of the set C.

A =

{
1 +

1

2n
, ∀n ∈ N∗

}
, B =

{
−1 +

1

2n+ 1
, ∀n ∈ N

}
,

C =

{
(−1)n +

1

n
, ∀n ∈ N∗

}
.

Exercise 3

1. Decompose the rational fraction into partial fractions:
1

x(1 + x2)

2. Determine the integral over the interval ]0, 1[:

I =

∫ 1

0

1

x(1 + x2)
dx

3. Deduce the value of:
I0 =

∫ 2

1

arctan(x)

x2
dx
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Problem 6
Exercise 1

1. Recall the characterization property of the lower bound and upper bound of a set.
2. If the set A is bounded, find supA, maxA, inf A, and minA if they exist.

A = { 1
n
+

1

n2
, ∀n ∈ N∗}

3. State the Squeeze Theorem
4. Calculate the following limit

lim
n→+∞

sinn

n2

Exercise 2

Define recursively a sequence un by{
u1 = 1

un+1 = 1 + un

2
∀n ≥ 1

Prove that ∀n ≥ 1, un < 2.
Prove that un is a monotone sequence.
If un converges, compute its limit.

Exercise 3

Let f be the function defined by:

f(x) =

 ex−1
ex+1

, x ≤ 0,

x
2
, x > 0.

1. Study the continuity of f on R.
2. Study the differentiability of f on R.
3. Is f a class C1(R) function?

Exercise 4

Use integration by parts to find the value of the integral:∫ π

0

e4x sin(9x) dx.



Problem 7
Exercise 1

Given the rational expression:

9x+ 4

(4x+ 9)(x+ 4)
≡ A

4x+ 9
+

B

x+ 4
,

1. Determine the values of the constants A and B.
2. Evaluate the integral: ∫

9x+ 4

(4x+ 9)(x+ 4)
dx.

Exercise 2

Let the sequences (un)n∈N and (vn)n∈N be defined by:un+1 =
un+vn

2
,

vn+1 =
2unvn
un+vn

,
with 0 < v0 < u0.

1. Prove that (un − vn)
2 ≥ 0 for all n ∈ N (use the relationship).

2. Prove that (un)n∈N is a strictly decreasing sequence and (vn)n∈N is strictly in-
creasing.

3. Deduce that (un)n∈N and (vn)n∈N converge to the same limit.
4. Prove that limn→∞ un = limn→∞ vn = l.
5. Prove that un+1 + vn+1 = un + vn is constant.
6. Deduce that l = l′.

Exercise 3

Let f be the function defined by:

f(x) =
e1+sin(x) − e

tan x
, ∀x ∈]− π

2
, 0[∪]0, π

2
[.

1. Assume that f has a third-order Taylor expansion g(x) = e1+sin(x) − e around
zero. Compute g(x).

2. Compute limx→0 f(x).
3. Let h be the continuous extension of f at zero. Prove that h is differentiable at

zero.
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Formulas: Trigonometric and Hyperbolic

Trigonometric identities

cos2 x+ sin2 x = 1

cos(a+ b) = cos a cos b− sin a sin b

sin(a+ b) = sin a cos b+ cos a sin b

tan(a+ b) =
tan a+ tan b

1− tan a tan b

cos(a− b) = cos a cos b+ sin a sin b

sin(a− b) = sin a cos b− cos a sin b

tan(a− b) =
tan a− tan b

1 + tan a tan b

cos a cos b = 1
2

[
cos(a+ b) + cos(a− b)

]
sin a sin b = 1

2

[
cos(a− b)− cos(a+ b)

]
sin a cos b = 1

2

[
sin(a+ b) + sin(a− b)

]
cos p+ cos q = 2 cos p+q

2
cos p−q

2

cos p− cos q = −2 sin p+q
2

sin p−q
2

sin p+ sin q = 2 sin p+q
2

cos p−q
2

sin p− sin q = 2 cos p+q
2

sin p−q
2

Hyperbolic identities

cosh2 x− sinh2 x = 1

cosh(a+ b) = cosh a cosh b+ sinh a sinh b

sinh(a+ b) = sinh a cosh b+ cosh a sinh b

tanh(a+ b) =
tanh a+ tanh b

1 + tanh a tanh b

cosh(a− b) = cosh a cosh b− sinh a sinh b

sinh(a− b) = sinh a cosh b− cosh a sinh b

tanh(a− b) =
tanh a− tanh b

1− tanh a tanh b

cosh a cosh b = 1
2

[
cosh(a+b)+cosh(a−b)

]
sinh a sinh b = 1

2

[
cosh(a+b)−cosh(a−b)

]
sinh a cosh b = 1

2

[
sinh(a+b)+sinh(a−b)

]
cosh p+ cosh q = 2 cosh p+q

2
cosh p−q

2

cosh p− cosh q = 2 sinh p+q
2

sinh p−q
2

sinh p+ sinh q = 2 sinh p+q
2

cosh p−q
2

sinh p− sinh q = 2 cosh p+q
2

sinh p−q
2
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